1
|
Sadeghinezhad J, Lazzarini G, Bojarzadeh H, Gatta A, Rezai S, Pirone A, Miragliotta V. Three-dimensional morphometry of kidney in New Zealand rabbit using unbiased design-based stereology. Microsc Res Tech 2024; 87:2053-2062. [PMID: 38655680 DOI: 10.1002/jemt.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The rabbit is widely used as a laboratory animal in experimental models of kidney diseases. This species is also important from a veterinary perspective as a companion animal. Stereology has been accepted as an accurate approach to kidney morphometry. The objective of the present project was to provide normal quantitative stereological parameters for adult rabbit kidneys. The left kidneys of five adult male New Zealand rabbits were used. Isotropic sections were obtained using the orientation method. Total kidney volume was calculated by the Cavalieri principle. The volume fraction of the renal structures was estimated using the point counting system. The lengths of the proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) were calculated using counting frames. The total glomerular number was accounted for using the physical/fractionator technique. The mean glomerular volume was obtained by dividing the total volume of glomeruli by their total number. The total volume of rabbit kidneys calculated was 10.39 ± 1.98 cm3. The fractional volume of the kidney cortex and medulla accounted for 57.79 ± 0.65% and 42.2 ± 0.65%, respectively. The total glomerular volume was 2.18 ± 0.32% of the whole kidney. The total number of glomeruli in the rabbit kidney was estimated as 204.68 ± 12 × 103. The mean glomerular volume measured 1.07 ± 0.12 × 106 μm3. The total length of PCT and DCT was 2.96 ± 0.29 km and 1.38 ± 0.24 km, respectively. These findings can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals by comparing with available data on humans and other species. RESEARCH HIGHLIGHTS: Three-dimensional morphometry of adult rabbit kidney structures was analyzed using quantitative stereology. Total volume of kidney, fractional volume of cortex and medulla, length of renal tubules and number of nephrons were estimated. These three-dimensional morphometrical data can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alessandra Gatta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Sobhan Rezai
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Charlton JR, Baldelomar EJ, Hyatt DM, Bennett KM. Nephron number and its determinants: a 2020 update. Pediatr Nephrol 2021; 36:797-807. [PMID: 32350665 PMCID: PMC7606355 DOI: 10.1007/s00467-020-04534-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Studies of human nephron number have been conducted for well over a century and have uncovered a large variability in nephron number. However, the mechanisms influencing nephron endowment and loss, along with the etiology for the wide range among individuals are largely unknown. Advances in imaging technology have allowed investigators to revisit the principles of renal structure and physiology and their roles in the progression of kidney disease. Here, we will review the latest data on the influences impacting nephron number, innovations made over the last 6 years to understand and integrate renal structure and function, and new developments in the tools used to count nephrons in vivo.
Collapse
Affiliation(s)
- Jennifer R. Charlton
- University of Virginia School of Medicine, Department of Pediatrics, Division of Nephrology, Charlottesville, VA, USA
| | - Edwin J. Baldelomar
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| | - Dylan M. Hyatt
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Kevin M. Bennett
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| |
Collapse
|
3
|
A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues. Comput Med Imaging Graph 2021; 89:101865. [PMID: 33548823 DOI: 10.1016/j.compmedimag.2021.101865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023]
Abstract
Reliable counting of glomeruli and evaluation of glomerulosclerosis in renal specimens are essential steps to assess morphological changes in kidney and identify individuals requiring treatment. Because microscopic identification of sclerosed glomeruli performed under the microscope is labor intensive, we developed a deep learning (DL) approach to identify and classify glomeruli as normal or sclerosed in digital whole slide images (WSIs). The segmentation and classification of glomeruli was performed by the U-Net model. Subsequently, glomerular classifications were refined based on glomerular histomorphometry. The U-Net model was trained using patches from Periodic Acid-Schiff (PAS) stained WSIs (n=31) from the AIDPATH - a multi-center dataset, and then tested on an independent set of WSIs (n=20) including PAS (n=6), and hematoxylin and eosin (H&E) stained WSIs (n=14) from four other institutions. The training and test WSIs were obtained from formalin fixed and paraffin embedded blocks with of human kidney specimens each presenting various proportions of normal and sclerosed glomeruli. In the PAS stained WSIs, normal and sclerosed glomeruli were respectively classified with the F1-score of 97.5% and 68.8%. In the H&E stained WSIs, the F1-scores of 90.8% and 78.1% were achieved. Regardless the tissue staining, the glomeruli in the test WSIs were classified with the F1-score of 94.5% (n=923, normal) and 76.8% for (n=261, sclerosed). These results demonstrate for the first time that a framework based on the U-Net model trained with glomerular patches from PAS stained WSIs can reliably segment and classify normal and sclerosed glomeruli in PAS and also H&E stained WSIs. Our approach yielded higher accuracy of glomerular classifications than some of the recently published methods. Additionally, our test set of images with ground truth is publicly available.
Collapse
|
4
|
Charlton JR, Baldelomar EJ, deRonde KA, Cathro HP, Charlton NP, Criswell SJ, Hyatt DM, Nam S, Pearl V, Bennett KM. Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatr Res 2020; 87:1185-1192. [PMID: 31805577 PMCID: PMC7255918 DOI: 10.1038/s41390-019-0684-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute kidney injury affects nearly 30% of preterm neonates in the intensive care unit. We aimed to determine whether nephrotoxin-induced AKI disrupted renal development assessed by imaging (CFE-MRI). METHODS Neonatal New Zealand rabbits received indomethacin and gentamicin (AKI) or saline (control) for four days followed by cationic ferritin (CF) at six weeks. Ex vivo images were acquired using a gradient echo pulse sequence on 7 T MRI. Glomerular number (Nglom) and apparent glomerular volume (aVglom) were determined. CF toxicity was assessed at two and 28 days in healthy rabbits. RESULTS Nglom was lower in the AKI group as compared to controls (74,034 vs 198,722, p < 0.01). aVglom was not different (AKI: 7.3 × 10-4 vs control: 6.2 × 10-4 mm3, p = 0.69). AKI kidneys had a band of glomeruli distributed radially in the cortex that were undetectable by MRI. Following CF injection, there was no difference in body or organ weights except for the liver, and transient changes in serum iron, platelets and white blood cell count. CONCLUSIONS Brief nephrotoxin exposure during nephrogenesis results in fewer glomeruli and glomerular maldevelopment in a unique pattern detectable by MRI. Whole kidney evaluation by CFE-MRI may provide an important tool to understand the development of CKD following AKI.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA.
| | | | - Kimberly A deRonde
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Helen P Cathro
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nathan P Charlton
- Department of Emergency Medicine, Division of Medical Toxicology, University of Virginia, Charlottesville, VA, USA
| | - Stacey J Criswell
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Dylan M Hyatt
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sejin Nam
- Department of Physics, University of Hawaii, Honolulu, HI, USA
| | - Valeria Pearl
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Many studies have suggested low nephron endowment at birth contributes to the risk of developing hypertension and chronic kidney disease (CKD) later in life. Loss of nephrons with age and disease is largely a subclinical process. New technologies are needed to count nephrons as glomerular filtration rate (GFR) is a poor surrogate for nephron number. RECENT FINDINGS Cortical volume, glomerular density, and percent globally sclerotic glomeruli are imperfect surrogates for nephron number. The disector-fractionator method is the most accurate method to count nephrons but is limited to autopsy settings. Glomerular density combined with kidney imaging and ultrafiltration coefficient-based methods require a kidney biopsy, and have been applied in living humans (kidney donors). Low nephron number predicts a higher postdonation urine albumin. Contrast-enhanced MRI has detected glomeruli without a biopsy, but so far, not in living humans. SUMMARY Currently, there is no accurate and well tolerated method for determining nephron number in living humans. A clinically useful method may allow GFR to be replaced by its more relevant determinants: nephron number and single nephron GFR. This could revolutionize nephrology by separating the measurement of chronic disease (nephron loss) from more reversible hemodynamic effects (nephron hyperfiltration/hypofiltration).
Collapse
|
6
|
Lee YQ, Beckett EL, Sculley DV, Rae KM, Collins CE, Pringle KG. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. Am J Physiol Renal Physiol 2019; 316:F1227-F1235. [DOI: 10.1152/ajprenal.00082.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maternal undernutrition during pregnancy is prevalent across the globe, and the origins of many chronic diseases can be traced back to in utero conditions. This systematic review considers the current evidence in animal models regarding the relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function. CINAHL, Cochrane, EMBASE, MEDLINE, and Scopus were searched to November 2017. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles were screened by two independent reviewers. Twenty-eight studies met the inclusion criteria: 16 studies were on rats, 9 on sheep, 2 on baboons, and 1 on goats. The majority of the rat studies had maternal global nutrient restriction during pregnancy at 50% of ad libitum while restriction for sheep and baboon studies ranged from 50% to 75%. Because of the heterogeneity of outcome measures and the large variation in the age of offspring at followup, no meta-analysis was possible. Common outcome measures included kidney weight, nephron number, glomerular size, glomerular filtration rate, and creatinine clearance. To date, there have been no studies assessing kidney function in large animal models. Most studies were rated as having a high or unknown risk of bias. The current body of evidence in animals suggests that exposure to maternal global nutrient restriction during pregnancy has detrimental effects on offspring kidney structure and function, such as lower kidney weight, lower nephron endowment, larger glomerular size, and lower glomerular filtration rate. Further long-term followup of studies in large animal models investigating kidney function through to adulthood are warranted.
Collapse
Affiliation(s)
- Yu Qi Lee
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Emma L. Beckett
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dean V. Sculley
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kym M. Rae
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
- Department of Rural Health, University of Newcastle, Tamworth, New South Wales, Australia
- Priority Research Center for Generational Health and Aging, University of Newcastle, Newcastle, New South Wales, Australia
| | - Clare E. Collins
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kirsty G. Pringle
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, Gomeroi Gaaynggal Center, University of Newcastle, Tamworth, New South Wales, Australia
| |
Collapse
|
7
|
Sadeghinezhad J, Nyengaard JR. Cat Kidney Glomeruli and Tubules Evaluated by Design-Based Stereology. Anat Rec (Hoboken) 2019; 302:1846-1854. [PMID: 31087775 DOI: 10.1002/ar.24144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Renal function is related to its structure and three-dimensional structural parameters correlate better with the kidney function than two-dimensional structural parameters. Stereology is the current gold-standard technique for the morphometrical evaluation of kidney structures. This study describes morphometric features of the kidney of the cat using design-based stereological techniques aimed to introduce the cat as a translational model in nephrology and provide basic findings for diagnosis and treatment of kidney diseases in this species. Left kidneys of four cats were included in the present study. The kidney volume, volume fraction of cortex and medulla, glomerular volume, glomerular mean volume, glomerular number, and proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) length were estimated. The kidney volume was estimated to 11.4 ± 1.3 cm3 . The volume fraction of cortex and medulla was 65.6 ± 2% and 34.2 ± 2%, respectively. The total number of glomeruli was estimated to be 186 ± 11 × 103 using the physical disector/fractionator method. The mean glomerular volume was estimated to be 1.54 ± 0.06 × 106 μm3 and the glomerular volume was covering 2.13 ± 0.34% of the whole kidney. The total length of PCT and DCT was estimated to be 2.26 ± 0.48 km and 505 ± 43 m, respectively. Our data might contribute to the knowledge of kidneys in mammals and provide a comparison with available data on human and other mammals. Anat Rec, 302:1846-1854, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Kannan S, Morgan LA, Liang B, Cheung MG, Lin CQ, Mun D, Nader RG, Belghasem ME, Henderson JM, Francis JM, Chitalia VC, Kolachalama VB. Segmentation of Glomeruli Within Trichrome Images Using Deep Learning. Kidney Int Rep 2019; 4:955-962. [PMID: 31317118 PMCID: PMC6612039 DOI: 10.1016/j.ekir.2019.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction The number of glomeruli and glomerulosclerosis evaluated on kidney biopsy slides constitute standard components of a renal pathology report. Prevailing methods for glomerular assessment remain manual, labor intensive, and nonstandardized. We developed a deep learning framework to accurately identify and segment glomeruli from digitized images of human kidney biopsies. Methods Trichrome-stained images (n = 275) from renal biopsies of 171 patients with chronic kidney disease treated at the Boston Medical Center from 2009 to 2012 were analyzed. A sliding window operation was defined to crop each original image to smaller images. Each cropped image was then evaluated by at least 3 experts into 3 categories: (i) no glomerulus, (ii) normal or partially sclerosed (NPS) glomerulus, and (iii) globally sclerosed (GS) glomerulus. This led to identification of 751 unique images representing nonglomerular regions, 611 images with NPS glomeruli, and 134 images with GS glomeruli. A convolutional neural network (CNN) was trained with cropped images as inputs and corresponding labels as output. Using this model, an image processing routine was developed to scan the test images to segment the GS glomeruli. Results The CNN model was able to accurately discriminate nonglomerular images from NPS and GS images (performance on test data: Accuracy: 92.67% ± 2.02% and Kappa: 0.8681 ± 0.0392). The segmentation model that was based on the CNN multilabel classifier accurately marked the GS glomeruli on the test data (Matthews correlation coefficient = 0.628). Conclusion This work demonstrates the power of deep learning for assessing complex histologic structures from digitized human kidney biopsies.
Collapse
Affiliation(s)
- Shruti Kannan
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Laura A Morgan
- College of Engineering, Boston University, Boston, Massachusetts, USA
| | - Benjamin Liang
- College of Engineering, Boston University, Boston, Massachusetts, USA
| | - McKenzie G Cheung
- College of Engineering, Boston University, Boston, Massachusetts, USA
| | - Christopher Q Lin
- College of Engineering, Boston University, Boston, Massachusetts, USA
| | - Dan Mun
- College of Health & Rehabilitation Sciences, Sargent College, Boston University, Boston, Massachusetts, USA
| | - Ralph G Nader
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mostafa E Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean M Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.,Veterans Administration Boston Healthcare System, Boston, Massachusetts, USA
| | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.,Hariri Institute for Computing and Computational Science & Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Takiyama Y, Sera T, Nakamura M, Ishizeki K, Saijo Y, Yanagimachi T, Maeda M, Bessho R, Takiyama T, Kitsunai H, Sakagami H, Fujishiro D, Fujita Y, Makino Y, Abiko A, Hoshino M, Uesugi K, Yagi N, Ota T, Haneda M. Impacts of Diabetes and an SGLT2 Inhibitor on the Glomerular Number and Volume in db/db Mice, as Estimated by Synchrotron Radiation Micro-CT at SPring-8. EBioMedicine 2018; 36:329-346. [PMID: 30322799 PMCID: PMC6197731 DOI: 10.1016/j.ebiom.2018.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recent large-scale clinical studies demonstrate that sodium-glucose cotransporter 2 (SGLT2) inhibitors protect the diabetic kidney. However, clinical and animal studies have not shown the changes of the total glomeruli in the whole kidney treated with SGLT2 inhibitors. METHODS We performed computed tomography (CT) imaging on mice using synchrotron radiation to investigate the impact of luseogliflozin, a SGLT2 inhibitor, on the number and volume of glomeruli in the whole kidney. FINDINGS We did not observe a significant difference in the total glomerular number (Nglom) among mice. Luseogliflozin redistributed the number of glomeruli in different regions, accompanied by the normalization of diabetes-augmented renal volume (Vkidney). Diabetic db/db mice had a larger glomerular volume in the mid-cortex than did control db/m mice, and luseogliflozin increased the glomerular volume in all renal cortical zones of the whole kidney in db/db mice. According to the multivariate regression analysis, hemoglobin A1c level was the most relevant determinant of Vkidney, not Nglom or mean glomerular volume (Vglom), indicating that hyperglycemia induced renal (tubular) hypertrophy, but not glomerular enlargement. Luseogliflozin increased hypoxia in the juxtamedullary region, sustained upregulated renal renin expression and plasma renin activity, and failed to decrease albuminuria by downregulating megalin in db/db mice. INTERPRETATION Based on our findings, SGLT2 inhibitors may alter glomerular distribution and size in addition to their glucose-lowering effects, presumably by affecting oxygen metabolism and humoral factors. FUND: Funding for this research was provided by The Japan Society for the Promotion of Science, the Japan Diabetes Foundation, and Asahikawa Medical University.
Collapse
Affiliation(s)
- Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan.
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Japan
| | - Kanaki Ishizeki
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yasuaki Saijo
- Department of Health Science, Asahikawa Medical University, Japan
| | - Tsuyoshi Yanagimachi
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Manami Maeda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Takao Takiyama
- Department of Neurosurgery, Asahikawa Medical University, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Daisuke Fujishiro
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yukihiro Fujita
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Atsuko Abiko
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Masato Hoshino
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Kentaro Uesugi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Naoto Yagi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
10
|
Xie L, Koukos G, Barck K, Foreman O, Lee WP, Brendza R, Eastham-Anderson J, McKenzie BS, Peterson A, Carano RAD. Micro-CT imaging and structural analysis of glomeruli in a model of Adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2018; 316:F76-F89. [PMID: 30256127 DOI: 10.1152/ajprenal.00331.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomeruli number and size are important for determining the pathogenesis of glomerular disease, chronic kidney disease, and hypertension. Moreover, renal injury can occur in specific cortical layers and alter glomerular spatial distribution. In this study, we present a comprehensive structural analysis of glomeruli in a model of Adriamycin (doxorubicin) nephropathy. Glomeruli are imaged (micro-CT at 10 × 10 × 10 μm3) in kidney specimens from C57Bl/6 mouse cohorts: control treated with saline ( n = 9) and Adriamycin treated with 20 mg/kg Adriamycin ( n = 7). Several indices were examined, including glomerular number, glomerular volume, glomerular volume heterogeneity, and spatial density at each glomerulus and in each cortical layer (superficial, midcortical, and juxtamedullary). In the Adriamycin-treated animals, glomerular number decreased significantly in the left kidney [control: 8,298 ± 221, Adriamycin: 6,781 ± 630 (mean ± SE)] and right kidney (control: 7,317 ± 367, Adriamycin: 5,522 ± 508), and glomerular volume heterogeneity increased significantly in the left kidney (control: 0.642 ± 0.015, Adriamycin: 0.786 ± 0.018) and right kidney (control: 0.739 ± 0.016, Adriamycin: 0.937 ± 0.023). Glomerular spatial density was not affected. Glomerular volume heterogeneity increased significantly in the superficial and midcortical layers of the Adriamycin cohort. Adriamycin did not affect glomerular volume or density metrics in the juxtamedullary region, suggesting a compensatory mechanism of juxtamedullary glomeruli to injury in the outer cortical layers. Left/right asymmetry was observed in kidney size and various glomeruli metrics. The methods presented here can be used to evaluate renal disease models with subtle changes in glomerular endowment locally or across the entire kidney, and they provide an imaging tool to investigate diverse interventions and therapeutic drugs.
Collapse
Affiliation(s)
- Luke Xie
- Biomedical Imaging, Genentech, South San Francisco, California
| | - Georgios Koukos
- Molecular Biology, Genentech, South San Francisco, California
| | - Kai Barck
- Biomedical Imaging, Genentech, South San Francisco, California
| | - Oded Foreman
- Pathology, Genentech, South San Francisco, California
| | - Wyne P Lee
- Translation Immunology, Genentech, South San Francisco, California
| | - Robert Brendza
- Neuroscience, Genentech, South San Francisco, California
| | | | - Brent S McKenzie
- Translation Immunology, Genentech, South San Francisco, California
| | - Andrew Peterson
- Molecular Biology, Genentech, South San Francisco, California
| | | |
Collapse
|
11
|
Tögel F, Valerius MT, Freedman BS, Iatrino R, Grinstein M, Bonventre JV. Repair after nephron ablation reveals limitations of neonatal neonephrogenesis. JCI Insight 2017; 2:e88848. [PMID: 28138555 DOI: 10.1172/jci.insight.88848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth.
Collapse
Affiliation(s)
- Florian Tögel
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - M Todd Valerius
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Benjamin S Freedman
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rossella Iatrino
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mor Grinstein
- Center for Regenerative Medicine and Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Arsenault MG, Miao Y, Jones K, Sims D, Spears J, Wright GM, Hartwig S. Estimation of total glomerular number using an integrated disector method in embryonic and postnatal kidneys. Can J Kidney Health Dis 2014; 1:12. [PMID: 25780607 PMCID: PMC4349599 DOI: 10.1186/2054-3581-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/14/2014] [Indexed: 01/10/2023] Open
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a polymorphic group of clinical disorders comprising the major cause of renal failure in children. Included within CAKUT is a wide spectrum of developmental malformations ranging from renal agenesis, renal hypoplasia and renal dysplasia (maldifferentiation of renal tissue), each characterized by varying deficits in nephron number. First presented in the Brenner Hypothesis, low congenital nephron endowment is becoming recognized as an antecedent cause of adult-onset hypertension, a leading cause of coronary heart disease, stroke, and renal failure in North America. Genetic mouse models of impaired nephrogenesis and nephron endowment provide a critical framework for understanding the origins of human kidney disease. Current methods to quantitate nephron number include (i) acid maceration (ii) estimation of nephron number from a small number of tissue sections (iii) imaging modalities such as MRI and (iv) the gold standard physical disector/fractionator method. Despite its accuracy, the physical disector/fractionator method is rarely employed because it is labour-intensive, time-consuming and costly to perform. Consequently, less rigourous methods of nephron estimation are routinely employed by many laboratories. Here we present an updated, digitized version of the physical disector/fractionator method using free open source Fiji software, which we have termed the integrated disector method. This updated version of the gold standard modality accurately, rapidly and cost-effectively quantitates nephron number in embryonic and post-natal mouse kidneys, and can be easily adapted for stereological measurements in other organ systems.
Collapse
Affiliation(s)
- Michel G Arsenault
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - Yuan Miao
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - Kathleen Jones
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - David Sims
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - Jonathan Spears
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - Glenda M Wright
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3 Canada
| |
Collapse
|
13
|
Morrison JL, Lumbers E, Bennet L, Black J. Introduction: Celebrating Emeritus Scientia Professor Eugenie R Lumbers AM and Professor Caroline McMillen. Clin Exp Pharmacol Physiol 2013; 40:740-2. [PMID: 24117727 DOI: 10.1111/1440-1681.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|