1
|
Lee JY, Park CS, Seo KJ, Kim IY, Han S, Youn I, Yune TY. IL-6/JAK2/STAT3 axis mediates neuropathic pain by regulating astrocyte and microglia activation after spinal cord injury. Exp Neurol 2023; 370:114576. [PMID: 37863306 DOI: 10.1016/j.expneurol.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
After spinal cord injury (SCI), the control of activated glial cells such as microglia and astrocytes has emerged as a promising strategy for neuropathic pain management. However, signaling mechanism involved in glial activation in the process of neuropathic pain development and maintenance after SCI is not well elucidated. In this study, we investigated the potential role and mechanism of the JAK2/STAT3 pathway associated with glial cell activation in chronic neuropathic pain development and maintenance after SCI. One month after contusive SCI, the activation of JAK2/STAT3 pathway was markedly upregulated in both microglia and astrocyte in nociceptive processing regions of the lumbar spinal cord. In addition, both mechanical allodynia and thermal hyperalgesia was significantly inhibited by a JAK2 inhibitor, AG490. In particular, AG490 treatment inhibited both microglial and astrocyte activation in the lumbar (L) 4-5 dorsal horn and significantly decreased levels of p-p38MAPK, p-ERK and p-JNK, which are known to be activated in microglia (p-p38MAPK and p-ERK) and astrocyte (p-JNK). Experiments using primary cell cultures also revealed that the JAK2/STAT3 pathway promoted microglia and astrocyte activation after lipopolysaccharide stimulation. Furthermore, JAK2/STAT3 signaling and pain behaviors were significantly attenuated when the rats were treated with anti-IL-6 antibody. Finally, minocycline, a tetracycline antibiotic, inhibited IL-6/JAK2/STAT3 signaling pathway in activated glial cells and restored nociceptive thresholds and the hyperresponsiveness of dorsal neurons. These results suggest an important role of the IL-6/JAK2/STAT3 pathway in the activation of microglia and astrocytes and in the maintenance of chronic below-level pain after SCI.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Biomedical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Jin Seo
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Biomedical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Yi Kim
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Biomedical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungmin Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02453, Republic of Korea; Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Herniman SE, Wood SJ, Khandaker G, Dazzan P, Pariante CM, Barnes NM, Krynicki CR, Nikkheslat N, Vincent RC, Roberts A, Giordano A, Watson A, Suckling J, Barnes TRE, Husain N, Jones PB, Joyce E, Lawrie SM, Lewis S, Deakin B, Upthegrove R. Network analysis of inflammation and symptoms in recent onset schizophrenia and the influence of minocycline during a clinical trial. Transl Psychiatry 2023; 13:297. [PMID: 37723153 PMCID: PMC10507090 DOI: 10.1038/s41398-023-02570-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
Attempts to delineate an immune subtype of schizophrenia have not yet led to the clear identification of potential treatment targets. An unbiased informatic approach at the level of individual immune cytokines and symptoms may reveal organisational structures underlying heterogeneity in schizophrenia, and potential for future therapies. The aim was to determine the network and relative influence of pro- and anti-inflammatory cytokines on depressive, positive, and negative symptoms. We further aimed to determine the effect of exposure to minocycline or placebo for 6 months on cytokine-symptom network connectivity and structure. Network analysis was applied to baseline and 6-month data from the large multi-center BeneMin trial of minocycline (N = 207) in schizophrenia. Pro-inflammatory cytokines IL-6, TNF-α, and IFN-γ had the greatest influence in the inflammatory network and were associated with depressive symptoms and suspiciousness at baseline. At 6 months, the placebo group network connectivity was 57% stronger than the minocycline group, due to significantly greater influence of TNF-α, early wakening, and pathological guilt. IL-6 and its downstream impact on TNF-α, and IFN-γ, could offer novel targets for treatment if offered at the relevant phenotypic profile including those with depression. Future targeted experimental studies of immune-based therapies are now needed.
Collapse
Affiliation(s)
- Sarah E Herniman
- Orygen, Melbourne, Australia.
- Centre of Youth Mental Health, University of Melbourne, Melbourne, Australia.
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.
| | - Stephen J Wood
- Orygen, Melbourne, Australia
- Centre of Youth Mental Health, University of Melbourne, Melbourne, Australia
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Golam Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Nicholas M Barnes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carl R Krynicki
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Naghmeh Nikkheslat
- Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Rachel C Vincent
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex Roberts
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Annalisa Giordano
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Andrew Watson
- The Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, London, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Nusrat Husain
- Lancashire & South Cumbria NHS Foundation Trust, London, UK
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Peter B Jones
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Eileen Joyce
- The Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, London, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Bill Deakin
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Early Interventions Service, Birmingham Womens and Children's NHS Foundation Trust, Birmingham, UK
| | - Rachel Upthegrove
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Early Interventions Service, Birmingham Womens and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
3
|
Minocycline Attenuates Microglia/Macrophage Phagocytic Activity and Inhibits SAH-Induced Neuronal Cell Death and Inflammation. Neurocrit Care 2022; 37:410-423. [PMID: 35585424 PMCID: PMC9519684 DOI: 10.1007/s12028-022-01511-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/05/2022] [Indexed: 01/28/2023]
Abstract
Background Neuroprotective treatment strategies aiming at interfering with either inflammation or cell death indicate the importance of these mechanisms in the development of brain injury after subarachnoid hemorrhage (SAH). This study was undertaken to evaluate the influence of minocycline on microglia/macrophage cell activity and its neuroprotective and anti-inflammatory impact 14 days after aneurismal SAH in mice. Methods Endovascular filament perforation was used to induce SAH in mice. SAH + vehicle-operated mice were used as controls for SAH vehicle-treated mice and SAH + minocycline-treated mice. The drug administration started 4 h after SAH induction and was daily repeated until day 7 post SAH and continued until day 14 every second day. Brain cryosections were immunolabeled for Iba1 to detect microglia/macrophages and NeuN to visualize neurons. Phagocytosis assay was performed to determine the microglia/macrophage activity status. Apoptotic cells were stained using terminal deoxyuridine triphosphate nick end labeling. Real-time quantitative polymerase chain reaction was used to estimate cytokine gene expression. Results We observed a significantly reduced phagocytic activity of microglia/macrophages accompanied by a lowered spatial interaction with neurons and reduced neuronal apoptosis achieved by minocycline administration after SAH. Moreover, the SAH-induced overexpression of pro-inflammatory cytokines and neuronal cell death was markedly attenuated by the compound. Conclusions Minocycline treatment may be implicated as a therapeutic approach with long-term benefits in the management of secondary brain injury after SAH in a clinically relevant time window. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01511-5.
Collapse
|
4
|
Chugh A, Patnana AK, Kumar P, Chugh VK, Singh S. The clinical efficacy of minocycline mouth rinse on recurrent aphthous stomatitis-A randomized controlled trial. Indian J Dent Res 2022; 33:24-29. [PMID: 35946240 DOI: 10.4103/ijdr.ijdr_478_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Recurrent aphthous stomatitis (RAS) is one of the most common ulcerative diseases affecting the general population. The present study aimed to evaluate the clinical efficiency of 0.5% minocycline mouth rinse prescribed along with the topical anesthetic gel and vitamin supplement over the topical anesthetic gel and vitamin supplement prescribed alone for treating RAS. Materials and Methods A total of 60 participants were randomly divided into two groups-experimental group: 0.5% minocycline mouth rinse prescribed along with vitamin supplement and topical anesthetic gel; and control group: vitamin supplement and topical anesthetic gel alone. The pain symptoms were evaluated using the VAS scores at baseline and first follow-up visits. The data were analyzed using Student's t test. Results A significant reduction in the pain scores was observed in participants using the 0.5% minocycline mouth rinse prescribed along with vitamin supplement and topical anesthetic gel on the first follow-up visit (P = < 0.001). Conclusion The 0.5% minocycline mouth rinse prescribed along with vitamin supplement and topical anesthetic gel had shown more reduction in the pain symptoms when compared to topical anesthetic gel and vitamin supplement prescribed alone for the treatment of RAS.
Collapse
Affiliation(s)
- Ankita Chugh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Arun Kumar Patnana
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Pravin Kumar
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Vinay Kumar Chugh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Surjit Singh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Wang R, Lin Q. Prolonged ketamine exposure induces enhanced excitatory GABAergic synaptic activity in the anterior cingulate cortex of neonatal rats. Neurosci Lett 2021; 745:135647. [PMID: 33444673 DOI: 10.1016/j.neulet.2021.135647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
Experimental studies have indicated that prolonged ketamine exposure in neonates at anesthetic doses causes neuronal apoptosis, which contributes to long-term impairments of learning and memory later in life. The neuronal excitotoxicity mediated by compensatory upregulation of N-methyl-d-aspartate receptors (NMDARs) is proposed to be the underlying mechanism. However, this view does not convincingly explain why excitotoxicity-related apoptotic injury develops selectively in immature neurons. We proposed that the GABAA receptors (GABAARs)-mediated excitatory synaptic signaling due to high expression of the Na+-K+-2Cl- co-transporter (NKCC1), occurring during the early neuronal development period, plays a distinct role in the susceptibility of immature neurons to ketamine-induced injury. Using whole-cell patch-clamp recordings from the forebrain slices containing the anterior cingulate cortex, we found that in vivo repeated ketamine administration significantly induced neuronal hyperexcitability in neonatal, but not adolescent, rats. Such hyperexcitability was accompanied by the increase both in GABAAR- and NMDAR-mediated synaptic transmissions. An interference with the NKCC1 by bumetanide treatment completely reversed these enhanced effects of ketamine exposure and blocked GABAAR-mediated postsynaptic current activity. Thus, these findings were significant as they showed, for the first time, that GABAAR-mediated excitatory action may contribute distinctly to neuronal excitotoxic effects of ketamine on immature neurons in the developing brain.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Psychology, The University of Texas at Arlington, TX, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, TX, USA.
| |
Collapse
|
6
|
Cawthon CR, Kirkland RA, Pandya S, Brinson NA, de La Serre CB. Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiol Behav 2020; 226:113124. [PMID: 32763334 PMCID: PMC7530053 DOI: 10.1016/j.physbeh.2020.113124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Vagal afferent neurons (VAN) projecting to the lamina propria of the digestive tract are the primary source of gut-originating signals to the central nervous system (CNS). VAN cell bodies are found in the nodose ganglia (NG). Responsiveness of VAN to gut-originating signals is altered by feeding status with sensitivity to satiety signals such as cholecystokinin (CCK) increasing in the fed state. Chronic high-fat (HF) feeding results in inflammation at the level of the NG associated with a loss of VAN ability to switch phenotype from the fasted to the fed state. HF feeding also leads to compositional changes in the gut microbiota. HF diet consumption notably drives increased Firmicutes to Bacteroidetes phyla ratio and increased members of the Actinobacteria phylum. Firmicutes and Actinobacteria are largely gram positive (GP). In this study, we aimed to determine if byproducts from GP bacteria can induce an inflammatory response in cultured NG and to characterize the mechanism and cell types involved in the response. NG were collected from male Wistar rats and cultured for a total of 72 hours. At 48-68 hours after plating, cultures were treated with neuronal culture media in which Serinicoccus chungangensis had been grown and removed (SUP), lipoteichoic acid (LTA), or meso-diaminopimelic acid (meso-DAP). Some treatments included the glial inhibitors minocycline (MINO) and/or fluorocitrate (FC). The responses were evaluated using immunocytochemistry, qPCR, and electrochemiluminescence. We found that SUP induced an inflammatory response characterized by increased interleukin (IL)-6 staining and increased expression of genes for IL-6, interferon (IFN)γ, and tumor necrosis factor (TNF)α along with genes associated with cell-to-cell communication such as C-C motif chemokine ligand-2 (CCL2). Inclusion of inhibitors attenuated some responses but failed to completely normalize all indications of response, highlighting the role of immunocompetent cellular crosstalk in regulating the inflammatory response. LTA and meso-DAP produced responses that shared characteristics with SUP but were not identical. Our results support a role for HF associated GP bacterial byproducts' ability to contribute to vagal inflammation and to engage signaling from nonneuronal cells.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Rebecca A Kirkland
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Shreya Pandya
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Nigel A Brinson
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia30602, United States.
| |
Collapse
|
7
|
Minocycline augmentation in older adults with persistent depression: an open label proof of concept study. Int Psychogeriatr 2020; 32:881-884. [PMID: 32690123 PMCID: PMC8350752 DOI: 10.1017/s1041610220001313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Less than 40% of depressed older adults treated with an antidepressant achieve remission. Incomplete response to treatment is common. Current augmentation strategies have limited efficacy, and many have side effects that restrict their utilization in older adults. We conducted the first open pilot trial of minocycline augmentation in older adults who had failed to achieve remission after adequate psychopharmacologic treatment. Subjects older than 55 years of age with major depression and failure to achieve substantial improvement of depressive symptoms after at least 6 weeks of antidepressant treatment were given augmentation with minocycline 100 mg twice daily over an 8-week period. At the end of 8 weeks of augmentation with minocycline, 31% (4/13) patients achieved remission. Remitters had higher baseline ratings of hopelessness and apathy. Minocycline was well tolerated with no reported adverse events or discontinuation due to intolerance. Larger placebo-controlled studies are needed to evaluate the effects of minocycline augmentation in older adults who had failed to achieve remission after adequate treatment with antidepressants.
Collapse
|
8
|
Lu SC, Chang YS, Kan HW, Hsieh YL. Tumor necrosis factor-α mediated pain hypersensitivity through Ret receptor in resiniferatoxin neuropathy. Kaohsiung J Med Sci 2019; 34:494-502. [PMID: 30173779 DOI: 10.1016/j.kjms.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022] Open
Abstract
Neurogenic inflammation is an onset characteristic of small fiber neuropathy (SFN), which is attributed to neuropathic manifestations. Tumor necrosis factor-α (TNFα) is a cytokine that mainly mediates neurogenic inflammation through the ligand receptor TNF receptor 1 (TNFR1), and targeting TNFα/TNFR1 signaling is a direction toward treating inflammatory diseases and injury-induced neuropathy. However, the relationships between TNFα/TNFR1 signaling and Ret signaling, which mediates pain hypersensitivity, remains elusive. This study used resiniferatoxin (RTX), an ultrapotent analog of capsaicin, to generate a mouse model of SFN, leading to marked hindpaw edema (p = 0.013) and parallel the release of TNFα (p = 0.014), which was associated with the upregulation of Ret(+) neurons (p = 0.0043) and partial depletion of TNFR1 caused by colocalization with TRPV1 depleted by RTX. Pharmacological intervention of TNFα with etanercept (Enbrel®, Wyeth), a clinical application of TNFα blockers, relieved neurogenic inflammation and caused a reduction in hindpaw thickness (p = 0.03) and TNFα releases (p = 0.01), which were determined to be associated with the normalization of mechanical allodynia (p = 0.22). The extraction of either TNFR1(+) or Ret(+) neurons from total of TNFR1(+):Ret(+) neurons indicated that TNFR1(-)/Ret(+) neurons correlated with the mechanical threshold in an antiparallel fashion (r = -0.84, p < 0.0001) but had no relationship with thermal latencies. This study confirmed that TNFα rather than TNFα mediated neuropathic manifestation through the Ret receptor, specifically mechanical allodynia in RTX neuropathy.
Collapse
Affiliation(s)
- Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy. Spinal Cord 2018; 56:1032-1041. [PMID: 29959433 DOI: 10.1038/s41393-018-0168-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022]
Abstract
STUDY DESIGN This is an animal study. OBJECTIVES Metformin is a safe drug for controlling blood sugar in diabetes. It has been shown that metformin improves locomotor recovery after spinal cord injury (SCI). Neuropathic pain is also a disturbing component of SCI. It is indicated that metformin has neuroprotective and anti-inflammatory effects, which attenuate neuropathic pain and hyperalgesia in injured nerves. Thus, we evaluated metformin's therapeutic effects on SCI neuroinflammation and its sensory and locomotor complications. Meanwhile, results were compared to minocycline, an anti-neuroinflammation therapy in SCI. SETTING Experimental Medicine Research Center, Tehran University of Medical Sciences, Iran METHODS: In an animal model of SCI, 48 male rats were subjected to T9 vertebra laminectomy. Animals were divided into a SHAM-operated group and five treatment groups. The treatments included normal saline as a vehicle control group, minocycline 90 mg/kg and metformin at the doses of 10, 50 and 100 mg/kg. Locomotor scaling, behavioral tests for neuropathic pain and weight changes were evaluated and compared through a 28-days period. At the end of the study, tissue samples were taken to assess neuroinflammatory changes. RESULTS Metformin 50 mg/kg improved the locomotors ability (p < 0.001) and decreased sensitivity to mechanical and thermal allodynia (p < 0.01). These results were compatible with minocycline effect on SCI (p > 0.05). While metformin led to weight loss, both metformin and minocycline significantly decreased neuroinflammation in the assessment of cord tissue histopathology, and levels of TNF-α and interleukin-1β (p < 0.001). CONCLUSIONS Metformin could be considered as an alternative therapeutic agent for SCI, as it potentially attenuates neuroinflammation, sensory and locomotor complications of cord injury.
Collapse
|
11
|
Wang W, Sidoli S, Zhang W, Wang Q, Wang L, Jensen ON, Guo L, Zhao X, Zheng L. Abnormal levels of histone methylation in the retinas of diabetic rats are reversed by minocycline treatment. Sci Rep 2017; 7:45103. [PMID: 28338045 PMCID: PMC5364468 DOI: 10.1038/srep45103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
In this study we quantified the alterations of retinal histone post-translational modifications (PTMs) in diabetic rats using a liquid chromatography - tandem mass spectrometry (LC-MS/MS) approach. Some diabetic rats were subsequently treated with minocycline, a tetracycline antibiotic, which has been shown to inhibit the diabetes-induced chronic inflammation in the retinas of rodents. We quantified 266 differentially modified histone peptides, including 48 out of 83 methylation marks with significantly different abundancein retinas of diabetic rats as compared to non-diabetic controls. About 67% of these marks had their relative abundance restored to non-diabetic levels after minocycline treatment. Mono- and di-methylation states of histone H4 lysine 20 (H4K20me1/me2), markers related to DNA damage response, were found to be up-regulated in the retinas of diabetic rats and restored to control levels upon minocycline treatment. DNA damage response biomarkers showed the same pattern once quantified by western blotting. Collectively, this study indicates that alteration of some histone methylation levels is associated with the development of diabetic retinopathy in rodents, and the beneficial effect of minocycline on the retinas of diabetic rodents is partially through its ability to normalize the altered histone methylation levels.
Collapse
Affiliation(s)
- Wenjun Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Wenquan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Leilei Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lin Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|
12
|
Yarom N, Zelig K, Epstein JB, Gorsky M. The efficacy of minocycline mouth rinses on the symptoms associated with recurrent aphthous stomatitis: a randomized, double-blind, crossover study assessing different doses of oral rinse. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:675-679. [PMID: 28411006 DOI: 10.1016/j.oooo.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of the study was to assess the efficacy of 2 different concentrations of minocycline mouthwashes on the symptoms of recurrent aphthous stomatitis (RAS). STUDY DESIGN The 2-year study was designed as a randomized, double-blind, crossover study. Healthy patients with frequent RAS episodes received 2 sealed and computer-randomized marked kits containing minocycline mouthwashes (0.2% and 0.5% solution). The patients were asked to use 1 of the kits on the first episode of RAS, starting with the first onset of prodromal symptoms, until the symptoms resolved or up to a maximum of 10 days (whichever came first). The patients were asked to use their second kit during a subsequent episode. RESULTS A total of 14 patients (8 males, 6 females) completed the 2 arms of the study. The mean intensity of pain was significantly lower when the 0.5% solution was used compared with the 0.2% solution (P = .027). The difference reached the level of statistical significance as soon as the end of the second day of use (P = .032). Only minor and temporary adverse reactions were documented. CONCLUSIONS We found that 0.5% minocycline mouth rinse was more effective than the 0.2% concentration, which had been suggested by our group in previous studies for the management of RAS.
Collapse
Affiliation(s)
- Noam Yarom
- Oral Medicine Unit, The Chaim Sheba Medical Center, Tel Hashomer, Israel; Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Keren Zelig
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joel B Epstein
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; and Consulting staff, City of Hope, Duarte, CA, USA
| | - Meir Gorsky
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Gong K, Ohara PT, Jasmin L. Patch Clamp Recordings on Intact Dorsal Root Ganglia from Adult Rats. J Vis Exp 2016. [PMID: 27768031 DOI: 10.3791/54287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Patch clamp studies from dorsal root ganglia (DRGs) neurons have increased our understanding of the peripheral nervous system. Currently, the majority of recordings are conducted on dissociated DRG neurons, which is a standard preparation for most laboratories. Neuronal properties, however, can be altered by axonal injury resulting from enzyme digestion used in acquiring dissociated neurons. Further, dissociated neuron preparations cannot fully represent the microenvironment of the DRG since loss of contact with satellite glial cells that surround the primary sensory neurons is an unavoidable consequence of this method. To overcome the limitations in using conventional dissociated DRG neurons for patch clamp recordings, in this report we describe a method to prepare intact DRGs and conduct patch clamp recordings on individual primary sensory neurons ex vivo. This approach permits the fast and straightforward preparation of intact DRGs, mimicking in vivo conditions by keeping DRG neurons associated with their surrounding satellite glial cells and basement membrane. Furthermore, the method avoids axonal injury from manipulation and enzyme digestion such as when dissociating DRGs. This ex vivo preparation can additionally be used to study the interaction between primary sensory neurons and satellite glial cells.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco;
| | - Peter T Ohara
- Department of Anatomy, University of California, San Francisco
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco;
| |
Collapse
|
14
|
Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016; 52:9-23. [PMID: 27139233 PMCID: PMC4855305 DOI: 10.1016/j.alcohol.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
This review updates the conceptual basis for the association of alcohol abuse with an insidious adaptation that facilitates negative affect during withdrawal from chronic intermittent alcohol (CIA) exposure - a change that later supports sensitization of stress-induced anxiety following alcohol abstinence. The finding that a CRF1-receptor antagonist (CRF1RA) minimized CIA withdrawal-induced negative affect supported an association of alcohol withdrawal with a stress mechanism. The finding that repeated stresses or multiple CRF injections into selected brain sites prior to a single 5-day chronic alcohol (CA) exposure induced anxiety during withdrawal provided critical support for a linkage of CIA withdrawal with stress. The determination that CRF1RA injection into positive CRF-sensitive brain sites prevented CIA withdrawal-induced anxiety provided support that neural path integration maintains the persistent CIA adaptation. Based upon reports that stress increases neuroimmune function, an effort was undertaken to test whether cytokines would support the adaptation induced by stress/CA exposure. Twenty-four hours after withdrawal from CIA, cytokine mRNAs were found to be increased in cortex as well as other sites in brain. Further, repeated cytokine injections into previously identified brain sites substituted for stress and CRF induction of anxiety during CA withdrawal. Discovery that a CRF1RA prevented the brain cytokine mRNA increase induced by CA withdrawal provided critical evidence for CRF involvement in this neuroimmune induction after CA withdrawal. However, the CRF1RA did not block the stress increase in cytokine mRNA increases in controls. The latter data supported the hypothesis that distinct mechanisms linked to stress and CA withdrawal can support common neuroimmune functions within a brain site. As evidence evolves concerning neural involvement in brain neuroimmune function, a better understanding of the progressive adaptation associated with CIA exposure will advance new knowledge that could possibly lead to strategies to combat alcohol abuse.
Collapse
Affiliation(s)
- George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; The UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|