1
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
2
|
He YL, Wen JG, Pu QS, Wen YB, Zhai RQ, Chen Y, Ma Y, Liu EP, Xing D, Ji FP, Yang XH, Wang QW, Wang Y, Bauer SB. Losartan prevents bladder fibrosis and protects renal function in rat with neurogenic paralysis bladder. Neurourol Urodyn 2021; 40:137-146. [PMID: 33606304 DOI: 10.1002/nau.24567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
AIMS To investigate the effect of losartan on preventing bladder fibrosis and protecting renal function in rats with neurogenic paralysis bladder (NPB). MATERIALS AND METHODS Rats were assigned to the transecting spinal nerves group (TSNG), transecting spinal nerves + losartan group (LSTG), and control group (CG). On Day 32 postsurgery, bladder capacity (BC), bladder compliance (ΔC), bladder leakage pressure (Pves.leak ) of TSNG and LSTG while BC, ΔC, and bladder threshold pressure (Pves.thre ) of CG were measured by cystometry in each cohort. Renal function and the expression quantity of Angiotensin Ⅱ (Ang II) in blood were detected, in addition Ang II, Ang II Type 1 receptor (AT1), transformation growth factor β1 (TGFβ1), Collagen Ⅲ, and collagen fibrin in the bladder tissue were detected too. RESULTS ΔC in TSNG and LSTG decreased significantly compared to the CG. Pves.leak in TSNG and LSTG were significantly higher than Pves.thre in CG. Renal function of both TSNG and LSTG decreased significantly compared with the CG, but renal function in LSTG was better than in TSNG. Ang Ⅱ in blood and bladder tissue in TSNG and LSTG increased significantly compared with CG. AT1 was expressed in the bladder tissue of all rats. The TGFβ1, Collagen Ⅲ, and collagen fibrin expression level increased significantly in TSNG compared with LSTG and CG, while these levels were not significantly different between CG and LSTG. CONCLUSION Losartan might prevent NPB fibrosis by stopping the upregulated signaling of Ang II/AT1/TGFβ1 and consequently may reduce kidney damage from occurring.
Collapse
Affiliation(s)
- Yu L He
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China.,Pediatric surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian G Wen
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Qing S Pu
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Yi B Wen
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Rong Q Zhai
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Yan Chen
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Yuan Ma
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Er P Liu
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Dong Xing
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Feng P Ji
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Xing H Yang
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Joint International Pediatric Urodynamic Laboratory, Zhengzhou, China
| | - Qing W Wang
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
SACRED: Effect of simvastatin on hepatic decompensation and death in subjects with high-risk compensated cirrhosis: Statins and Cirrhosis: Reducing Events of Decompensation. Contemp Clin Trials 2021; 104:106367. [PMID: 33771685 PMCID: PMC8422958 DOI: 10.1016/j.cct.2021.106367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/21/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS The development of decompensation in cirrhosis demarcates a marked change in the natural history of chronic liver disease. HMG-CoA reductase inhibitors (statins) exert pleiotropic effects that reduce inflammation and fibrosis as well as improve vascular reactivity. Retrospective studies uniformly have associated statin utilization with improved outcomes for patients with cirrhosis. Prospective human studies have shown that statins reduce portal hypertension and reduce death in patients with decompensated cirrhosis after variceal hemorrhage when added to standard therapy with an acceptable safety profile. This proposal aims to extend these findings to demonstrate that simvastatin reduces incident hepatic decompensation events among cirrhotic patients at high risk for hepatic decompensation. METHODS We will perform the SACRED Trial (NCT03654053), a phase III, prospective, multi-center, double-blind, randomized clinical trial at 11 VA Medical Centers. Patients with compensated cirrhosis with clinically significant portal hypertension will be stratified based upon the concomitant use of nonselective beta-blockers and randomized to simvastatin 40 mg/day versus placebo for up to 24 months. Patients will be observed for the development of hepatic decompensation (variceal hemorrhage, ascites, encephalopathy), hepatocellular carcinoma, liver-related death, death from any cause, and/or complications of statin therapy. Ancillary studies will evaluate patient-reported outcomes and pharmacogenetic corollaries of safety and/or efficacy. CONCLUSION Statins have a long track-record of safety and tolerability. This class of medications is generic and inexpensive, and thus, if the hypothesis is proven, there will be few barriers to widespread acceptance of the role of statins to prevent decompensation in patients with compensated cirrhosis. ClinicalTrials.gov Identifier: NCT03654053.
Collapse
|
4
|
Abstract
The hydroxymethyglutaryl-coenzyme A reductase inhibitors (statins) are a commonly prescribed class of medication for the treatment of hyperlipidemia and coronary artery disease. This class of medication has several proven benefits, including reduction of mortality related to coronary artery disease. A major consideration when prescribing these drugs are the potential for adverse effects, mainly myalgias, myopathy, and hepatotoxicity. In this article, we summarize current data on statin-associated hepatotoxicity and highlight that the risk of clinically significant idiosyncratic drug-induced liver injury is actually quite small. We also review preclinical data suggesting potential hepatoprotective effects of statin therapy.
Collapse
Affiliation(s)
- Lindsay Meurer
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Stanley Martin Cohen
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Digestive Health Institute, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol 2018; 6:150. [PMID: 30483502 PMCID: PMC6240744 DOI: 10.3389/fcell.2018.00150] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Collapse
Affiliation(s)
- Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin, China.,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
7
|
Vargas JI, Arrese M, Shah VH, Arab JP. Use of Statins in Patients with Chronic Liver Disease and Cirrhosis: Current Views and Prospects. Curr Gastroenterol Rep 2017; 19:43. [PMID: 28752475 DOI: 10.1007/s11894-017-0584-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to analyze the current evidence regarding the use of statins in patients with chronic liver disease and cirrhosis. RECENT FINDINGS Chronic liver disease (CLD), cirrhosis, and its complications, including hepatocellular carcinoma (HCC), are significant public health problems. The use of statins in patients with CLD has been a matter of concern, and physicians are often reluctant to its prescription in these patients. This mainly relates to the potential occurrence of drug-induced liver injury. However, newer evidence from pre-clinical and clinical research has shown that statins are drugs with a potentially beneficial impact on the natural history of cirrhosis, on portal hypertension, and in HCC prevention. In this review, we summarize current evidence regarding the influence of statins in endothelial dysfunction in CLD, their ability to modulate hepatic fibrogenesis, and their vasoprotective effects in portal hypertension; we also focus on existing data about the impact of statins in cirrhosis development, progression, and complications and critically assess the current concerns about its use in patients with CLD.
Collapse
Affiliation(s)
- Jose Ignacio Vargas
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| | - Juan Pablo Arab
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Akershoek JJ, Brouwer KM, Vlig M, Boekema BKHL, Beelen RHJ, Middelkoop E, Ulrich MMW. Differential effects of Losartan and Atorvastatin in partial and full thickness burn wounds. PLoS One 2017; 12:e0179350. [PMID: 28614412 PMCID: PMC5470692 DOI: 10.1371/journal.pone.0179350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
Abstract
Healing of burn wounds is often associated with scar formation due to excessive inflammation and delayed wound closure. To date, no effective treatment is available to prevent the fibrotic process. The Renin Angiotensin System (RAS) was shown to be involved in fibrosis in various organs. Statins (e.g. Atorvastatin), Angiotensin receptor antagonists (e.g. Losartan) and the combination of these drugs are able to reduce the local RAS activation, and reduced fibrosis in other organs. We investigated whether inhibition of the RAS could improve healing of burn wounds by treatment with Atorvastatin, Losartan or the combination of both drugs. Therefore, full and partial thickness burn wounds were inflicted on both flanks of Yorkshire pigs. Oral administration of Atorvastatin, Losartan or the combination was started at post-burn day 1 and continued for 28 days. Full thickness wounds were excised and transplanted with an autologous meshed split-thickness skin graft at post-burn day 14. Partial thickness wounds received conservative treatment. Atorvastatin treatment resulted in enhanced graft take and wound closure of the full thickness wounds, faster resolution of neutrophils compared to all treatments and reduced alpha-smooth muscle actin positive cells compared to control treatment. Treatment with Losartan and to a lesser extent the combination therapy resulted in diminished graft take, increased wound contraction and poorer scar outcome. In contrast, Losartan treatment in partial thickness wounds decreased the alpha-smooth muscle actin+ fibroblasts and contraction. In conclusion, we showed differential effects of Losartan and Atorvastatin in full and partial thickness wounds. The extensive graft loss seen in Losartan treated wounds is most likely responsible for the poor clinical outcome of these full thickness burn wounds. Therefore, Losartan treatment should not be started before transplantation in order to prevent graft loss. Atorvastatin seems to accelerate the healing process in full thickness wounds possibly by dampening the pro-inflammatory response.
Collapse
Affiliation(s)
- Johanneke J. Akershoek
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Association of Dutch Burn Centres, Beverwijk, The Netherlands
| | - Katrien M. Brouwer
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Association of Dutch Burn Centres, Beverwijk, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Beverwijk, The Netherlands
| | | | - Rob H. J. Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Association of Dutch Burn Centres, Beverwijk, The Netherlands
| | - Magda M. W. Ulrich
- Association of Dutch Burn Centres, Beverwijk, The Netherlands
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Liu Y, Xu H, Geng Y, Xu D, Zhang L, Yang Y, Wei Z, Zhang B, Li S, Gao X, Wang R, Zhang X, Brann D, Yang F. Dibutyryl-cAMP attenuates pulmonary fibrosis by blocking myofibroblast differentiation via PKA/CREB/CBP signaling in rats with silicosis. Respir Res 2017; 18:38. [PMID: 28222740 PMCID: PMC5320641 DOI: 10.1186/s12931-017-0523-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/16/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Myofibroblasts play a major role in the synthesis of extracellular matrix (ECM) and the stimulation of these cells is thought to play an important role in the development of silicosis. The present study was undertaken to investigate the anti-fibrotic effects of dibutyryl-cAMP (db-cAMP) on rats induced by silica. METHODS A HOPE MED 8050 exposure control apparatus was used to create the silicosis model. Rats were randomly divided into 4 groups: 1)controls for 16 w; 2)silicosis for 16 w; 3)db-cAMP pre-treatment; 4) db-cAMP post-treatment. Rat pulmonary fibroblasts were cultured in vitro and divided into 4 groups as follows: 1) controls; 2) 10-7mol/L angiotensin II (Ang II); 3) Ang II +10-4 mol/L db-cAMP; and 4) Ang II + db-cAMP+ 10-6 mol/L H89. Hematoxylin-eosin (HE), Van Gieson staining and immunohistochemistry (IHC) were performed to observe the histomorphology of lung tissue. The levels of cAMP were detected by enzyme immunoassay. Double-labeling for α-SMA with Gαi3, protein kinase A (PKA), phosphorylated cAMP-response element-binding protein (p-CREB), and p-Smad2/3 was identified by immunofluorescence staining. Protein levels were detected by Western blot analysis. The interaction between CREB-binding protein (CBP) and Smad2/3 and p-CREB were measured by co-immunoprecipitation (Co-IP). RESULTS Db-cAMP treatment reduced the number and size of silicosis nodules, inhibited myofibroblast differentiation, and extracellular matrix deposition in vitro and in vivo. In addition, db-cAMP regulated Gαs protein and inhibited expression of Gαi protein, which increased endogenous cAMP. Db-cAMP increased phosphorylated cAMP-response element-binding protein (p-CREB) via protein kinase A (PKA) signaling, and decreased nuclear p-Smad2/3 binding with CREB binding protein (CBP), which reduced activation of p-Smads in fibroblasts induced by Ang II. CONCLUSIONS This study showed an anti-silicotic effect of db-cAMP that was mediated via PKA/p-CREB/CBP signaling. Furthermore, the findings offer novel insight into the potential use of cAMP signaling for therapeutic strategies to treat silicosis.
Collapse
Affiliation(s)
- Yan Liu
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Yucong Geng
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Lijuan Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Yi Yang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Bonan Zhang
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Shifeng Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Xuemin Gao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Ruimin Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Xianghong Zhang
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Fang Yang
- Basic Medical College, Hebei Medical University, No. 361 Zhongshan Road, Shijiazhuang city, Hebei province, China.
| |
Collapse
|
10
|
Wen M, Men R, Liu X, Yang L. Involvement of miR-30c in hepatic stellate cell activation through the repression of plasminogen activator inhibitor-1. Life Sci 2016; 155:21-8. [DOI: 10.1016/j.lfs.2016.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
11
|
Yamanaka O, Kitano-Izutani A, Tomoyose K, Reinach PS. Pathobiology of wound healing after glaucoma filtration surgery. BMC Ophthalmol 2015; 15 Suppl 1:157. [PMID: 26818010 PMCID: PMC4895697 DOI: 10.1186/s12886-015-0134-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conjunctival and subconjunctival fibrogenesis and inflammation are sight compromising side effects that can occur subsequent to glaucoma filtration surgery. Despite initial declines in intraocular pressure resulting from increasing aqueous outflow, one of the activated responses includes marshalling of proinflammatory and pro-fibrogenic cytokine mediator entrance into the aqueous through a sclerostomy window and their release by local cells, as well as infiltrating activated immune cells. These changes induce dysregulated inflammation, edema and extracellular matrix remodeling, which occlude outflow facility. A number of therapeutic approaches are being taken to offset declines in outflow facility since the current procedure of inhibiting fibrosis with either mitomycin C (MMC) or 5-fluorouracil (5-FU) injection is nonselective. One of them entails developing a new strategy for reducing fibrosis induced by wound healing responses including myofibroblast transdifferentiation and extracellular matrix remodeling in tissue surrounding surgically created shunts. The success of this endeavor is predicated on having a good understanding of conjunctival wound healing pathobiology. In this review, we discuss the roles of inappropriately activated growth factor and cytokine receptor linked signaling cascades inducing conjunctival fibrosis/scarring during post-glaucoma surgery wound healing. Such insight may identify drug targets for blocking fibrogenic signaling and excessive fibrosis which reduces rises in outflow facility resulting from glaucoma filtration surgery.
Collapse
Affiliation(s)
- Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| | - Ai Kitano-Izutani
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| | - Katsuo Tomoyose
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| | - Peter S Reinach
- Departments of Ophthalmology and Optometry Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|