1
|
Ni C, Chen L, Hua B, Han Z, Xu L, Zhou Q, Yao M, Ni H. Epigenetic mechanisms of bone cancer pain. Neuropharmacology 2024; 261:110164. [PMID: 39307393 DOI: 10.1016/j.neuropharm.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The management and treatment of bone cancer pain (BCP) remain significant clinical challenges, imposing substantial economic burdens on patients and society. Extensive research has demonstrated that BCP induces changes in the gene expression of peripheral sensory nerves and neurons, which play crucial roles in the onset and maintenance of BCP. However, our understanding of the epigenetic mechanisms of BCP underlying the transcriptional regulation of pro-nociceptive (such as inflammatory factors and the transient receptor potential family) and anti-nociceptive (such as potassium channels and opioid receptors) genes remains limited. This article reviews the epigenetic regulatory mechanisms in BCP, analyzing the roles of histone modifications, DNA methylation, and noncoding RNAs (ncRNAs) in the expression of pro-nociceptive and anti-nociceptive genes. Finally, we provide a comprehensive view of the functional mechanisms of epigenetic regulation in BCP and explore the potential of these epigenetic molecules as therapeutic targets for BCP.
Collapse
Affiliation(s)
- Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zixin Han
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
2
|
Chen G, Gu P, Wu W, Yin Y, Pan L, Huang S, Lin W, Deng M. SETD2 deficiency in peripheral sensory neurons induces allodynia by promoting NMDA receptor expression through NFAT5 in rodent models. Int J Biol Macromol 2024; 282:136767. [PMID: 39476923 DOI: 10.1016/j.ijbiomac.2024.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/14/2024]
Abstract
Histone methylations play a crucial role in the development of neuropathic pain, and SET domain containing 2 (SETD2), a histone methyltransferase, serves as the sole tri-methylase known to catalyze H3K36me3 at the gene body. The N-methyl-d-aspartate receptor (NMDAR) is activated and mediates excitatory synaptic transmission in neuropathic pain. Nevertheless, the involvement of SETD2 in neuropathic pain and the specific regulatory mechanisms affecting NMDARs remain poorly understood. The expression levels of SETD2 were significantly decreased in the spinal cord and dorsal root ganglion (DRG) of rodents undergoing neuropathic pain induced by sciatic nerve chronic constrictive injury. Lentiviral shRNA-mediated SETD2 knockdown and conditional knockout in sensory neurons caused sustained NMDAR upregulation in DRG and spinal cord, which resulted in heightened neuronal excitability and increased pain hypersensitivity. SETD2 deficiency also led to reduced H3K36me3 deposition within the Grin1 (glutamate ionotropic receptor NMDA type subunit 1) gene body, thereby promoting aberrant transcription of the NMDARs subunit GluN1. The absence of SETD2 in the DRG potentiated neuronal excitability and increased presynaptic NMDAR activity in the spinal dorsal horn. Chromatin immunoprecipitation sequencing targeting H3K36me3 identified NFAT5 as a co-transcription factor in the transcriptional regulation of Grin1. These findings highlight SETD2 as a key regulator in pain signal transmission and offered new perspectives on the development of analgesics through the targeted modulation of epigenetic mechanisms.
Collapse
Affiliation(s)
- Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Panyang Gu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuan Yin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Chen H, Yu J, Hang L, Li S, Lu W, Xu Z. Evidence of the Involvement of Spinal EZH2 in the Development of Bone Cancer Pain in Rats. J Pain Res 2021; 14:3593-3600. [PMID: 34849017 PMCID: PMC8627314 DOI: 10.2147/jpr.s331114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Bone cancer pain (BCP) seriously affects the quality of life of patients with advanced cancer, but effective treatment methods are lacking. This study mainly investigates the role of EZH2 in a well-established BCP model induced by Walker 256 breast cancer cells in rats. Methods Female Sprague–Dawley rats of the same age weighing approximately 160 g were selected for the experiment. The BCP model was established by injecting inactivated Walker 256 breast cancer cells into the tibia. von Frey filaments were used to measure the paw withdrawal threshold, and bone destruction in the rat was observed using x-ray. The spinal EZH2 and H3K27Tm levels were measured using Western blotting and RT–qPCR analysis. Intrathecal injection of an EZH2 inhibitor was performed to examine the role of EZH2 in trigeminal BCP. Results Experimental results showed that injecting Walker 256 breast cancer cells into the tibia induced bone cancer pain. Spinal EZH2 and H3K27Tm levels were significantly increased over time in BCP rats. An intrathecal injection of 3-deazaneplanocin A (DZNep), a selective EZH2 inhibitor, downregulated the expression of EZH2 and attenuate the BCP-induced mechanical allodynia state. Conclusion Intrathecal injection of DZNep relieve bone cancer pain in rats. EZH2 expressed in spinal cord tissue may be involved in the process of bone cancer pain in rats.
Collapse
Affiliation(s)
- Haoming Chen
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Jianmang Yu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Lihua Hang
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Shuai Li
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Weikang Lu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhenkai Xu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, 215300, People's Republic of China
| |
Collapse
|
4
|
Jin G, Li Z, Xiao F, Qi X, Sun X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg Chem 2020; 99:103837. [DOI: 10.1016/j.bioorg.2020.103837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/25/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
5
|
Role of SET7/9 in the progression of ischemic renal injury in diabetic and non-diabetic rats. Biochem Biophys Res Commun 2020; 528:14-20. [PMID: 32448511 DOI: 10.1016/j.bbrc.2020.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
SET domain with lysine methyltransferase 7/9 (Set7/9), a histone lysine methyltransferase (HMT), recently suggested to exert a critical role among kidney disorders, whereas its role in diabetes associated IRI co-morbidity remains complete elusive. The present study aimed to understand the role of SET7/9 and histone methylation in regulation of inflammatory signaling under IRI in diabetes mellitus and non-diabetic rats. Our results demonstrated that IRI caused renal dysfunction via increased blood urea nitrogen (BUN) levels in ND and DM rats. The NF-κB mediated inflammatory cascade like increased p-NF-κB, reduced IκBα levels followed by enhanced leukocyte infiltration as shown by increased MCP-1 expressions. IRI results in increased histone H3 methylation at lysine 4 and 36 (H3K4Me2, H3K36Me2), and decreased histone H3 methylation at lysine 9. Additionally, IRI increased the protein and mRNA expression of H3K4Me2 specific histone methyltransferase-SET7/9 in DM and ND rats. The abovementioned results remain prominent in DM rats compared to ND rats followed by IRI. Further, treatment with a novel SET7/9 inhibitor; cyproheptadine, significantly improved renal functioning via reducing the BUN levels in ND and DM rats. Hence, this study demonstrated the role of SET7/9 in mediating active transcription via H3K4Me2, ultimately regulated the NFκB-mediated inflammatory cascade. Therefore, SET7/9 can be explored as novel target for drug development against IRI under DM and ND conditions.
Collapse
|
6
|
Hang LH, Chen HM, Yu JM, Xu Y, Li SN. Evidence of the involvement of spinal αB-crystallin in the maintenance of bone cancer pain in rats. Pharmacol Rep 2020; 72:208-213. [PMID: 32016842 DOI: 10.1007/s43440-019-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND αB-crystallin (CRYAB) is a small heat shock protein that is able to inhibit neuroinflammatory responses under various pathological conditions. Some studies have proven that neuroinflammatory mechanisms play important roles in bone cancer pain (BCP). However, whether CRYAB participates in the maintenance of BCP has not yet been examined. METHODS Walker256 tumour cells were inoculated into the tibia to induce a rat model of BCP. Von Frey hairs were used to measure mechanical allodynia. Immunohistochemistry and western blotting were used to examine the expression level of CRYAB in the spinal dorsal horn. RESULTS The gradual development of mechanical allodynia was induced by the injection of Walker256 cells into the tibia. The downregulation of spinal CRYAB expression was found in BCP rats. The intrathecal administration of CRYAB (from days 9 to 15 post-inoculation) dose-dependently alleviated mechanical allodynia in BCP rats. Additionally, there were concomitant increases in spinal CRYAB expression and decreases in TNF-α expression. CONCLUSIONS Spinal CRYAB may participate in the maintenance of BCP in rats. The findings will help to identify new drugs for the management of BCP.
Collapse
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China.
| | - Hao-Ming Chen
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China
| | - Jian-Mang Yu
- Department of Anesthesiology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215000, Jiangsu, People's Republic of China
| | - Ying Xu
- Department of Otorhinolaryngology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Shu-Na Li
- Department of Otorhinolaryngology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
7
|
Shen Y, Ding Z, Ma S, Ding Z, Zhang Y, Zou Y, Xu F, Yang X, Schäfer MKE, Guo Q, Huang C. SETD7 mediates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury. Brain Behav Immun 2019; 82:382-395. [PMID: 31505256 DOI: 10.1016/j.bbi.2019.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/26/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Gene transcription regulation is critical for the development of spinal microgliosis and neuropathic pain after peripheral nerve injury. Using a model of chronic constriction injury (CCI) of the sciatic nerve, this study characterized the role of SET domain containing lysine methyltransferase 7 (SETD7) which monomethylates histone H3 lysine 4 (H3K4me1), a marker for active gene transcription. SETD7 protein expression in the spinal dorsal horn ipsilateral to nerve lesion was increased from one day to 14 days after CCI, concomitantly with the expression of inflammatory genes, Ccl2, Il-6 and Il-1β. The CCI-induced SETD7 expression was predominantly localized to microglia, as demonstrated by immunohistochemistry and western blot from magnetic activated cell sorted spinal microglia. SETD7 knockdown by intrathecal lentivirus shRNA delivery prior to CCI prevented spinal microgliosis and neuropathic pain, whereas lentiviral SETD7 transduction exacerbated these symptoms. In addition, SETD7 regulated H3K4me1 level and expression of inflammatory mediators both in CCI rats and in the HAPI rat microglia cell line. Accordingly, PFI-2, a specific inhibitor of SETD7 monomethylation activity, suppressed the lipopolysaccharides-induced amoeboid morphology of primary microglia and the expression of inflammatory genes, Ccl2, Il-6 and Il-1β. Moreover, intrathecal administration of PFI-2 alleviated CCI-induced neuropathic pain. However, this effect was observed in male but not in female rats. These results demonstrate a critical role of SETD7 in the development of spinal microgliosis and neuropathic pain subsequently to peripheral nerve injury. The pharmacological approach further suggests that SETD7 is a new target for the treatment of neuropathic pain. The underlying mechanisms may involve H3K4me1-dependent regulation of inflammatory gene expression in microglia.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zijin Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangting Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany; Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz, Germany
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|