1
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Liu Y, Lu S, Yang J, Yang Y, Jiao L, Hu J, Li Y, Yang F, Pang Y, Zhao Y, Gao Y, Liu W, Shu P, Ge W, He Z, Peng X. Analysis of the aging-related biomarker in a nonhuman primate model using multilayer omics. BMC Genomics 2024; 25:639. [PMID: 38926642 PMCID: PMC11209966 DOI: 10.1186/s12864-024-10556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jingwen Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yunli Pang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanpan Gao
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Ge
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China.
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
3
|
Wang L, Xu D. Regulation of long noncoding RNAs in the pathogenesis and clinical implications of pituitary adenomas. Immun Inflamm Dis 2023; 11:e1047. [PMID: 37904679 PMCID: PMC10571498 DOI: 10.1002/iid3.1047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pituitary adenoma (PA) is a type of tumor that develops in the sella turcica and is one of the most frequent intracranial tumors. It belongs to a type of adenoma derived from a single clone of cells in the pituitary gland. PA ranks third among all intracranial tumors, following only gliomas and meningioma. The average prevalence rate is approximately 15% at autopsy and 22.5% at radiological examinations. OBJECTIVE AND SIGNIFICANCE Most PAs are benign and non-invasive adenomas that can be removed surgically or controlled with medication. However, approximately 35% of them show invasion into nearby anatomical structures and cannot be completely resected. 0.1%~0.2% of PA cases eventually develop into pituitary carcinomas. Additionally, PA may cause severe morbidity due to mass effects and the disorder of pituitary hormone secretion. Therefore, there is an urgent need to clarify the pathological mechanism of PA, improve the accuracy of diagnosis, and develop targeted therapies. RESEARCH STATUS Although current knowledge about the pathogenesis of PA remains limited, epigenetic modulation of PA has been increasingly implicated. Long non-coding RNAs (lncRNAs) are known to regulate gene expression post-transcriptionally and exert substantial roles in the initiation, progression, or suppression of various tumors. Accumulating evidence has shown close relationships between lncRNA dysregulation and PA development. CONCLUSIONS This review highlights recent progress in the study of lncRNAs in PA pathogenesis and their potential as diagnostic/prognostic biomarkers or therapeutic targets for PA patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of EndocrinologyLiangzhou HospitalWuweiGansuChina
| | - Dingkai Xu
- Department of NeurosurgeryLiangzhou HospitalWuweiGansuChina
| |
Collapse
|
4
|
Urban VS, Cegledi A, Mikala G. Multiple myeloma, a quintessential malignant disease of aging: a geroscience perspective on pathogenesis and treatment. GeroScience 2022; 45:727-746. [PMID: 36508077 PMCID: PMC9742673 DOI: 10.1007/s11357-022-00698-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, which is predominantly a disease of older adults (the median age at diagnosis is 70 years). The slow progression from asymptomatic stages and the late-onset of MM suggest fundamental differences compared to many other hematopoietic system-related malignancies. The concept discussed in this review is that age-related changes at the level of terminally differentiated plasma cells act as the main risk factors for the development of MM. Epigenetic and genetic changes that characterize both MM development and normal aging are highlighted. The relationships between cellular aging processes, genetic mosaicism in plasma cells, and risk for MM and the stochastic processes contributing to clonal selection and expansion of mutated plasma cells are investigated. In line with the DNA damage accumulation theory of aging, in this review, the evolution of monoclonal gammopathy to symptomatic MM is considered. Therapeutic consequences of age-dependent comorbidities that lead to frailty and have fundamental influence on treatment outcome are described. The importance of considering geriatric states when planning the life-long treatment course of an elderly MM patient in order to achieve maximal therapeutic benefit is emphasized.
Collapse
Affiliation(s)
- Veronika S. Urban
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andrea Cegledi
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital–National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabor Mikala
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary.
| |
Collapse
|
5
|
Wang Y, Xue M, Xia F, Zhu L, Jia D, Gao Y, Li L, Shi Y, Li Y, Chen S, Xu G, Yuan C. Long noncoding RNA GAS5 in age-related diseases. Curr Med Chem 2021; 29:2863-2877. [PMID: 34711157 DOI: 10.2174/0929867328666211027123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Aging refers to a natural process and a universal phenomenon in all cells, tissues, organs and the whole organism. Long non-coding RNAs (lncRNAs) are non-coding RNAs with the length of 200 nucleotides. LncRNA growth arrest-specific 5 (lncRNA GAS5) is often down-regulated in cancer. The accumulation of lncRNA GAS5 has been found to be able to inhibit cancer growth, invasion and metastasis, while enhancing the sensitivity of cells to chemotherapy drugs. LncRNA GAS5 can be a signaling protein, which is specifically transcribed under different triggering conditions. Subsequently, it is involved in signal transmission in numerous pathways as a signal node. LncRNA GAS5, with a close relationship to multiple miRNAs, was suggested to be involved in the signaling pathway under three action modes (i.e., signal, bait and guidance). LncRNA GAS5 was found to be involved in different age-related diseases (e.g., rheumatoid arthritis, type 2 diabetes, atherosclerosis, osteoarthritis, osteoporosis, multiple sclerosis, cancer etc.). This study mainly summarized the regulatory effect exerted by lncRNA GAS5 on age-related diseases.
Collapse
Affiliation(s)
- Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
6
|
Methods for Characterization of Senescent Circulating and Tumor-Infiltrating T-Cells: An Overview from Multicolor Flow Cytometry to Single-Cell RNA Sequencing. Methods Mol Biol 2021; 2325:79-95. [PMID: 34053052 DOI: 10.1007/978-1-0716-1507-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunosenescence is the general term used to describe the aging-associated decline of immunological function that explains the higher susceptibility to infectious diseases and cancer, increased autoimmunity, or the reduced effectiveness of vaccinations. Senescence of CD8+ T-cells has been described in all these conditions.The most important classical markers of T senescent cells are the cell cycle inhibitors p16ink4a, p21, and p53, together with positivity for SA-βgal expression and the acquirement of a peculiar IFNγ -based secretory phenotype commonly defined SASP (Senescence Associated Secretory Phenotype). Other surface markers are the CD28 and CD27 loss together with gain of expression of CD45RA, CD57, TIGIT, and/or KLRG1. However, this characterization could not be sufficient to distinguish from truly senescent cells and exhausted T-cells. Furthermore, more complexity is added by the wide heterogeneity of T-cells subset in aged individuals or in the tumor microenvironment. A combined analysis by multicolor flow cytometry for surface and intracellular markers integrated with gene-expression arrays and single-cell RNA sequencing is required to develop effective interventions for therapeutic modulation of specific T-cell subsets. The RNASeq offers the great possibility to reveal at single-cell resolution the exact molecular hallmarks of senescent CD8+ T-cells without the limitations of bulk analysis. Furthermore, the comprehensive integration of multidimensional approaches (genomics, epigenomics, proteomics, metabolomics) will increase our global understanding of how immunosenescence of T-cells is interlinked to human aging.
Collapse
|
7
|
Li Q, Xiao Z, Wang Y, Liu X, Liu H, Luo Z, Zheng S. Alterations of long non-coding RNA and mRNA profiles associated with extracellular matrix homeostasis and vascular aging in rats. Bioengineered 2021; 12:832-843. [PMID: 33645431 PMCID: PMC8806258 DOI: 10.1080/21655979.2021.1889129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular aging has been closely associated with various cardiovascular disorders; however, its molecular mechanism remains poorly understood. In our study, RNA sequencing was utilized to explore the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in the thoracic aortas of young (3 weeks) and old (16 weeks) rats. Functional categorization of differentially expressed mRNAs was evaluated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, and lncRNA–microRNA–mRNA networks was constructed using Cytoscape software. In addition, three upregulated and three downregulated lncRNAs were further confirmed by quantitative reverse transcriptase-polymerase chain reaction. A total of 36 lncRNAs and 922 mRNAs were differential expression in the thoracic aortas of young and older rats. In addition, we found differentially expressed mRNAs that were enriched in multiple biological processes and signaling pathways associated with angiogenesis, such as extracellular matrix–receptor interaction and adenosine 3ʹ,5ʹ-monophosphate-activated protein kinase (AMPK) signaling. Moreover, AABR07013558.1, AABR07014823.1, and AABR07031489.1 were upregulated and ABR07053849.3, AABR07067310.2, and AC111292.1 were downregulated in the thoracic aortas of older rats compared with the young ones. Therefore, our findings provide several potential lncRNAs and mRNAs and signaling pathways related to vascular aging, which provide new clue for underlying the improvement of vascular aging.
Collapse
Affiliation(s)
- Qianqin Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Yongsheng Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zhiwen Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| |
Collapse
|
8
|
Wang YN, Yang CE, Zhang DD, Chen YY, Yu XY, Zhao YY, Miao H. Long non-coding RNAs: A double-edged sword in aging kidney and renal disease. Chem Biol Interact 2021; 337:109396. [PMID: 33508306 DOI: 10.1016/j.cbi.2021.109396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Aging as one of intrinsic biological processes is a risk factor for many chronic diseases. Kidney disease is a global problem and health care burden worldwide. The diagnosis of kidney disease is currently based on serum creatinine and urea levels. Novel biomarkers may improve diagnostic accuracy, thereby allowing early prevention and treatment. Over the past few years, advances in genome analyses have identified an emerging class of noncoding RNAs that play critical roles in the regulation of gene expression and epigenetic reprogramming. Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and could bind DNA, RNA and protein. Emerging evidence has demonstrated that lncRNAs played an important role in all stages of kidney disease. To date, only some lncRNAs were well identified and characterized, but the complexity of multilevel regulation of transcriptional programs involved in these processes remains undefined. In this review, we summarized the lncRNA expression profiling of large-scale identified lncRNAs on kidney diseases including acute kidney injury, chronic kidney disease, diabetic nephropathy and kidney transplantation. We further discussed a number of annotated lncRNAs linking with complex etiology of kidney diseases. Finally, several lncRNAs were highlighted as diagnostic biomarkers and therapeutic targets. Targeting lncRNAs may represent a precise therapeutic strategy for progressive renal fibrosis.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
9
|
Riasat K, Bardell D, Goljanek-Whysall K, Clegg PD, Peffers MJ. Epigenetic mechanisms in Tendon Ageing. Br Med Bull 2020; 135:90-107. [PMID: 32827252 PMCID: PMC7585832 DOI: 10.1093/bmb/ldaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tendon is a composite material with a well-ordered hierarchical structure exhibiting viscoelastic properties designed to transfer force. It is recognized that the incidence of tendon injury increases with age, suggesting a deterioration in homeostatic mechanisms or reparative processes. This review summarizes epigenetic mechanisms identified in ageing healthy tendon. SOURCES OF DATA We searched multiple databases to produce a systematic review on the role of epigenetic mechanisms in tendon ageing. AREAS OF AGREEMENT Epigenetic mechanisms are important in predisposing ageing tendon to injury. AREAS OF CONTROVERSY The relative importance of epigenetic mechanisms are unknown in terms of promoting healthy ageing. It is also unknown whether these changes represent protective mechanisms to function or predispose to pathology. GROWING POINT Epigenetic markers in ageing tendon, which are under-researched including genome-wide chromatin accessibility, should be investigated. AREAS TIMELY FOR DEVELOPING RESEARCH Metanalysis through integration of multiple datasets and platforms will enable a holistic understanding of the epigenome in ageing and its relevance to disease.
Collapse
Affiliation(s)
- Kiran Riasat
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - David Bardell
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK.,Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
10
|
Zhou Q, Wan Q, Jiang Y, Liu J, Qiang L, Sun L. A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. Cell Rep 2020; 31:107694. [PMID: 32460027 PMCID: PMC7603645 DOI: 10.1016/j.celrep.2020.107694] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable process that involves profound physiological changes. Long non-coding RNAs (lncRNAs) are emerging as important regulators in various biological processes but are not systemically studied in aging. To provide an organism-wide lncRNA landscape during aging, we conduct comprehensive RNA sequencing (RNA-seq) analyses across the mouse lifespan. Of the 1,675 aging-regulated lncRNAs (AR-lncRNAs) identified, the majority are connected to inflammation-related biological pathways. AR-lncRNAs exhibit high tissue specificity; conversely, those with higher tissue specificity are preferentially regulated during aging. White adipose tissue (WAT) displays the highest number of AR-lncRNAs and develops the most dynamic crosstalk between AR-lncRNA and AR-mRNA during aging. An adipose-enriched AR-lncRNA, lnc-adipoAR1, is negatively correlated with aging, and knocking it down inhibits adipogenesis, phenocopying the compromised adipogenic capacity of aged fat. Our works together reveal AR-lncRNAs as essential components in aging and suggest that although each tissue ages in a distinct manner, WAT is a leading contributor to aging-related health decline.
Collapse
Affiliation(s)
- Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yuxi Jiang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jin Liu
- Centre for Quantitative Medicine, Health Services & Systems Research, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Li Qiang
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
11
|
lncRNA ZFAS1 Improves Neuronal Injury and Inhibits Inflammation, Oxidative Stress, and Apoptosis by Sponging miR-582 and Upregulating NOS3 Expression in Cerebral Ischemia/Reperfusion Injury. Inflammation 2020; 43:1337-1350. [DOI: 10.1007/s10753-020-01212-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Chang W, Wang Y, Li W, Geng Z. Long non-coding RNA myocardial infarction associated transcript promotes the proliferation of cholangiocarcinoma cells by targeting miR-551b-3p/CCND1 axis. Clin Exp Pharmacol Physiol 2020; 47:1067-1075. [PMID: 32064660 DOI: 10.1111/1440-1681.13283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Accumulating reports have demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the occurrence and metastasis of cholangiocarcinoma (CCA). LncRNA myocardial infarction associated transcript (MIAT) has been widely reported in hepatocellular carcinoma, pancreatic cancer and colorectal cancer, but the relationship between MIAT and CCA progression has not yet been investigated. In the present study, we found that the expression of MIAT in CCA tissues was prominently higher than that in normal bile duct tissues. Moreover, TCGA-CHOL data in the GEPIA platform further revealed the upregulated expression of MIAT in CCA tissues. Additionally, quantitative real-time PCR results showed that MIAT expression was increased in CCA cell lines compared to the human intrahepatic biliary epithelial cell line. Functionally, MIAT knockdown significantly inhibited cell proliferation and induced G0/G1 phase arrest as well as apoptosis in HuCCT-1 and QBC939 cells. Conversely, ectopic expression of MIAT obviously facilitated the proliferation, cell cycle progression and apoptosis resistance of RBE cells. Mechanistically, MIAT directly interacted with miR-551b-3p and inversely modulated miR-551-3p level in CCA cells. Furthermore, MIAT knockdown reduced the expression of cyclin D1 (CCND1), which was rescued by miR-551b-3p silencing in HuCCT-1 cells. Importantly, CCND1 restoration partially reversed MIAT knockdown-induced proliferation inhibition, G0/G1 phase arrest and apoptosis in HuCCT-1 cells. In conclusion, MIAT was frequently overexpressed in CCA. MIAT contributed to the growth of CCA cells by targeting miR-551b-3p/CCND1 axis.
Collapse
Affiliation(s)
- Weiping Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yuan Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - WenZhi Li
- Chang'an District Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhimin Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Lupo G, Gaetani S, Cacci E, Biagioni S, Negri R. Molecular Signatures of the Aging Brain: Finding the Links Between Genes and Phenotypes. Neurotherapeutics 2019; 16:543-553. [PMID: 31161490 PMCID: PMC6694319 DOI: 10.1007/s13311-019-00743-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with cognitive decline and increased vulnerability to neurodegenerative diseases. The progressive extension of the average human lifespan is bound to lead to a corresponding increase in the fraction of cognitively impaired elderly individuals among the human population, with an enormous societal and economic burden. At the cellular and tissue levels, cognitive decline is linked to a reduction in specific neuronal subpopulations, a widespread decrease in synaptic plasticity and an increase in neuroinflammation due to an enhanced activation of astrocytes and microglia, but the molecular mechanisms underlying these functional changes during normal aging and in neuropathological conditions remain poorly understood. In this review, we summarize very recent and outstanding progress in elucidating the molecular changes associated with cognitive decline through the genome-wide profiling of aging brain cells at different molecular levels (genomic, epigenomic, transcriptomic, proteomic). We discuss how the correlation of different molecular and phenotypic traits driven by mathematical and computational analyses of large datasets has led to the prediction of key molecular nodes of neurodegenerative pathways, and provide a few examples of candidate regulators of cognitive decline identified with these approaches. Furthermore, we highlight the dysregulation of the synaptic transcriptome in neuronal cells and of the inflammatory transcriptome in glial cells as some of the key events during normal and neuropathological human brain aging.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy.
| | - Silvana Gaetani
- Department of Physiology and Farmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| |
Collapse
|
14
|
Maternally expressed gene 3 in metabolic programming. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194396. [PMID: 31271897 DOI: 10.1016/j.bbagrm.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Maternally Expressed Gene 3 (MEG3) is a long noncoding RNA (lncRNA) that coordinates a diverse array of cellular processes requiring epigenetic regulation of genes and interactions with key signaling proteins and by acting as a competitive endogenous (ce)RNA. Epigenetic modifications driven by in utero nutrition affect MEG3 expression and its role in the development of multiple metabolic disorders. This review examines how epigenetic modification of MEG3 expression can confer adaptedness to different metabolic environments. To this end, we discuss how nutritional status that leads to an increase of MEG3 expression can protect against cancer and metabolic dysfunctions, while interventions that promote MEG3 downregulation minimize the pleiotropic costs associated with its expression. Lastly, we identify research directions that would further shed light on the role of MEG3 in metabolic regulation and in functional imprinted gene networks. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
|
15
|
Liu JP. Aging mechanisms and intervention targets. Clin Exp Pharmacol Physiol 2019; 44 Suppl 1:3-8. [PMID: 29178613 DOI: 10.1111/1440-1681.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Premature aging occurs frequently to various tissues and organs resulting in the tissue-specific chronic diseases. The mechanisms of tissue-specific premature aging are largely unknown. In response to environmental cues, aging may originate from cytoplasm or the nucleus of a cell with cytoplasm aging in association with organelle degeneration in terminally differentiated cells and nuclear aging with dysfunctional telomeres and irreversible cell cycle arrest in stem and cancer cells. Either cytoplasm aging or nuclear aging may cause extracellular senescence-associated low-grade inflammation to spread aging. Referring to the recent findings in this special issue of Healthy Aging in CEPP and beyond, we describe the molecular and cellular mechanisms of physiological aging and tissue-specific pathological aging in chronic diseases.
Collapse
Affiliation(s)
- Jun-Ping Liu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, VIC, Australia.,Hudson Institute of Medical Research and Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Lu H, Yang D, Zhang L, Lu S, Ye J, Li M, Hu W. Linc-pint inhibits early stage pancreatic ductal adenocarcinoma growth through TGF-β pathway activation. Oncol Lett 2019; 17:4633-4639. [PMID: 30944652 PMCID: PMC6444384 DOI: 10.3892/ol.2019.10111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Long intergenic non-protein coding RNA, p53 induced transcript (Linc-pint) is a newly identified long non-coding RNA, which has demonstrated antitumor activities in various types of cancer. The present study aimed to investigate the role of Linc-pint in pancreatic ductal adenocarcinoma (PDAC). Plasma samples from patients with PDAC, and PDAC and normal cell lines were used in the study. Gene expression was analyzed by reverse transcription-quantitative polymerase chain reaction. Western blotting was used to assess protein level. Transforming growth factor β1 (TGF-β1) plasma level was determined by ELISA. Cancer cell proliferation was measured in vitro with the Cell Counting Kit-8 assy. The results demonstrated that Linc-pint plasma levels were significantly lower in patients with stage 0–1 PDAC compared with healthy controls. In addition, Linc-pint downregulation effectively distinguished patients with PDAC from healthy controls. Linc-pint and TGF-β1 plasma levels were positively correlated in patients with PDAC but not in healthy controls. Furthermore, Linc-pint overexpression upregulated TGF-β1 expression in PDAC cells but not in normal pancreatic ductal cells; however, exogenous TGF-β1 exhibited no significant effects on Linc-pint expression. Linc-pint overexpression and TGF-β1 both inhibited PDAC cell proliferation, whereas treatment with a TGF-β inhibitor reduced their inhibitory effects on cell proliferation. In conclusion, results from the present study suggested that Linc-pint may inhibit early stage PDAC growth through TGF-β pathway activation.
Collapse
Affiliation(s)
- Huimin Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dujiang Yang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shan Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jun Ye
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weiming Hu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Zhang W, Hu T, Song X. The function of lncRNAs in aging-related diseases and 3D genome. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Xing W, Lv X, Gao W, Wang J, Yang Z, Wang S, Zhang J, Yan J. Bone mineral density in patients with chronic heart failure: a meta-analysis. Clin Interv Aging 2018. [PMID: 29520133 PMCID: PMC5833795 DOI: 10.2147/cia.s154356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective This study aimed to verify the existing relationship between bone mineral density (BMD) and chronic heart failure (CHF) by meta-analysis. Methods Databases, including PubMed, Web of Science, and Chinese National Knowledge Infrastructure, published in English or Chinese up to February 28, 2017, were searched for studies on the association between CHF and BMD. Two independent reviewers collected the relevant articles. The standard mean deviation (SMD) and 95% confidence interval were calculated for BMD with fixed- and random-effect models. Subgroup and sensitivity analyses were also conducted. Results A total of six studies (552 CHF and 243 non-CHF patients) were included. The results indicated that the patients with CHF had a lower total BMD compared with the non-CHF patients. Similar effects were also observed for femoral neck, arm, leg, and trunk BMD. However, no difference was observed in the lumbar spine BMD. The SMD of total BMD in New York Heart Association classes I or II (NYHA I or II) patients was −0.62, while that in NYHA III or IV patients was −0.87, and the SMD of femoral bone mineral density in NYHA I or II patients was −0.47, while that in NYHA III or IV patients was −1.07. Moreover, vitamin D and parathyroid hormone (PTH) were also found to be associated with CHF. Conclusion Patients with CHF had a lower total BMD and femoral neck, arm, leg, or trochanter BMD than patients with non-CHF. Vitamin D reduced, whereas PTH increased, with the severity of CHF. The clinical significance of the present findings remains uncertain and should be confirmed by future studies.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Xiaoling Lv
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Wenyan Gao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Jirong Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Zhouxin Yang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Sanying Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Jing Zhang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| | - Jing Yan
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital
| |
Collapse
|
19
|
Xu W, Larbi A. Markers of T Cell Senescence in Humans. Int J Mol Sci 2017; 18:E1742. [PMID: 28796199 PMCID: PMC5578132 DOI: 10.3390/ijms18081742] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as "immunosenescence" can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.
Collapse
Affiliation(s)
- Weili Xu
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Anis Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Department of Microbiology, National University of Singapore, Singapore 117597, Singapore.
- Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
- Faculty of Sciences, University ElManar, Tunis 1068, Tunisia.
| |
Collapse
|