1
|
Turovsky EA, Plotnikov EY, Simakin AV, Gudkov SV, Varlamova EG. New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemia-like conditions. Arch Biochem Biophys 2025; 764:110241. [PMID: 39613283 DOI: 10.1016/j.abb.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ischemic stroke is the cause of high mortality and disability Worldwide. The material costs of stroke treatment and recovery are constantly increasing, making the search for effective and more cost-effective treatment approaches an urgent task for modern biomedicine. In this study, iron nanoparticles doped with selenium nanoparticles, FeNP@SeNPs, which are three-layered structures, were created and characterized using physical methods. Fluorescence microscopy, inhibitor and PCR analyzes were used to determine the signaling pathways involved in the activation of the Ca2+ signaling system of cortical astrocytes and the protection of cells from ischemia-like conditions (oxygen-glucose deprivation and reoxygenation). In particular, when using magnetic selenium nanoparticles together with electromagnetic stimulation, an additional pathway for nanoparticle penetration into the cell is activated through the activation of TRPV4 channels and the mechanism of their endocytosis is facilitated. It has been shown that the use of magnetic selenium nanoparticles together with magnetic stimulation represents an advantage over the use of classical selenium nanoparticles, as the effective concentration of nanoparticles can be reduced many times over.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997, Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950, Nizhny Novgorod, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| |
Collapse
|
2
|
Hulme L, Hochstetler A, Schwerk C, Schroten H, Ishikawa H, Tung CY, Perrin B, Blazer-Yost B. Characterization of TRPV4-mediated signaling pathways in an optimized human choroid plexus epithelial cell line. Am J Physiol Cell Physiol 2022; 323:C1823-C1842. [PMID: 35938676 PMCID: PMC9744646 DOI: 10.1152/ajpcell.00193.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The objectives of these studies were twofold: 1) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and 2) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters. Electrophysiology was used to understand and explore TRPV4-mediated signaling in the HIBCPP cell line, considering both short-circuit current (Isc) and conductance responses. HIBCPP cells grown under optimized culture conditions exhibited minimal multilayering, developed an intermediate resistance monolayer, retained differentiation properties, and expressed, and correctly localized, junctional proteins and native transporters. We found that activation of TRPV4 resulted in a robust, multiphasic change in electrogenic ion flux and increase in conductance accompanied by substantial fluid secretion. This response appears to be modulated by a number of different effectors, implicating phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K) in TRPV4-mediated ion flux. The HIBCPP cell line is a representative model of the human BCSFB, which can be utilized for studies of transporter function, intracellular signaling, and regulation of CSF production.
Collapse
Affiliation(s)
- Louise Hulme
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Alexandra Hochstetler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Laboratory of Clinical Regenerative Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chun-Yu Tung
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Benjamin Perrin
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
3
|
Bagnell AM, Sumner CJ, McCray BA. TRPV4: A trigger of pathological RhoA activation in neurological disease. Bioessays 2022; 44:e2100288. [PMID: 35297520 PMCID: PMC9295809 DOI: 10.1002/bies.202100288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4), a member of the TRP superfamily, is a broadly expressed, cell surface-localized cation channel that is activated by a variety of environmental stimuli. Importantly, TRPV4 has been increasingly implicated in the regulation of cellular morphology. Here we propose that TRPV4 and the cytoskeletal remodeling small GTPase RhoA together constitute an environmentally sensitive signaling complex that contributes to pathological cell cytoskeletal alterations during neurological injury and disease. Supporting this hypothesis is our recent work demonstrating direct physical and bidirectional functional interactions of TRPV4 with RhoA, which can lead to activation of RhoA and reorganization of the actin cytoskeleton. Furthermore, a confluence of evidence implicates TRPV4 and/or RhoA in pathological responses triggered by a range of acute neurological insults ranging from stroke to traumatic injury. While initiated by a variety of insults, TRPV4-RhoA signaling may represent a common pathway that disrupts axonal regeneration and blood-brain barrier integrity. These insights also suggest that TRPV4 inhibition may represent a safe, feasible, and precise therapeutic strategy for limiting pathological TRPV4-RhoA activation in a range of neurological diseases.
Collapse
Affiliation(s)
- Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Kawasaki S, Soga M, Sakurai Y, Nanchi I, Yamamoto M, Imai S, Takahashi T, Tsuno N, Asaki T, Morioka Y, Fujita M. Selective blockade of transient receptor potential vanilloid 4 reduces cyclophosphamide-induced bladder pain in mice. Eur J Pharmacol 2021; 899:174040. [PMID: 33737012 DOI: 10.1016/j.ejphar.2021.174040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel activated by various physical stimuli such as cell swelling and shear stress. TRPV4 is expressed in bladder sensory nerves and epithelium, and its activation produces urinary dysfunction in rodents. However, there have been few reports regarding its involvement in bladder pain. Therefore, we investigated whether TRPV4 is involved in bladder pain in mouse cystitis model. Intraperitoneal injection of cyclophosphamide (CYP; 300 mg/kg) produced mechanical hypersensitivity in the lower abdomen associated with a severe inflammatory bladder in mice. The mechanical threshold was reversed significantly in Trpv4-knockout (KO) mice. Repeated injections of CYP (150 mg/kg) daily for 4 days provoked mild bladder inflammation and persistent mechanical hypersensitivity in mice. Trpv4-KO mice prevented a reduction of the mechanical threshold without an alteration in bladder inflammation. A selective TRPV4 antagonist also reversed the mechanical threshold in chronic cystitis mice. Although expression of Trpv4 was unchanged in the bladders of chronic cystitis mice, the level of phosphorylated TRPV4 was increased significantly. These results suggest involvement of TRPV4 in bladder pain of cystitis mice. A TRPV4 antagonist might be useful for patients with irritable bladder pain such as those with interstitial cystitis/painful bladder syndrome.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Behavior, Animal/drug effects
- Cells, Cultured
- Cyclophosphamide
- Cystitis, Interstitial/chemically induced
- Cystitis, Interstitial/metabolism
- Cystitis, Interstitial/physiopathology
- Cystitis, Interstitial/prevention & control
- Disease Models, Animal
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nociceptive Pain/chemically induced
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Nociceptive Pain/prevention & control
- Pain Threshold/drug effects
- Phosphorylation
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Mice
Collapse
Affiliation(s)
- Shiori Kawasaki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Masahiko Soga
- Animal Production Technology for Animal Models, Shionogi Techno Advance Research Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yusuke Sakurai
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Miyuki Yamamoto
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Sunao Imai
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Tatsuya Takahashi
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Naoki Tsuno
- API R&D Laboratory, CMC R&D Division, Shionogi & Co., Ltd., 1-3, Kuise terajima 2-chome, Amagasaki, Hyogo, 660-0813, Japan
| | - Toshiyuki Asaki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yasuhide Morioka
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Masahide Fujita
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| |
Collapse
|
5
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
6
|
Hsu SS, Liang WZ. Cytotoxic Effects of Mesaconitine, the Aconitum carmichaelii Debx Bioactive Compound, on HBEC-5i Human Brain Microvascular Endothelial Cells: Role of Ca 2+ Signaling-Mediated Pathway. Neurotox Res 2020; 39:256-265. [PMID: 32588354 DOI: 10.1007/s12640-020-00249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Mesaconitine, one of Aconitum carmichaelii Debx bioactive compounds, was shown to evoke Ca2+ homeostasis and its related physiological effects in endothelial cell types. However, the effect of mesaconitine on Ca2+ signaling and cell viability in human brain microvascular endothelial cells is unclear. This study focused on exploring whether mesaconitine changed cytosolic Ca2+ concentrations ([Ca2+]i), affected cell viability, and established the relationship between Ca2+ signaling and viability in HBEC-5i human brain microvascular endothelial cells. In HBEC-5i cells, cell viability was measured by the cell proliferation reagent (WST-1). [Ca2+]i was measured by the Ca2+-sensitive fluorescent dye fura-2. Mesaconitine (10-100 μM) concentration dependently induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 25%. Mesaconitine (40-100 μM) caused cytotoxicity in HBEC-5i cells. This cytotoxic response was significantly reversed by chelation of cytosolic Ca2+ with BAPTA/AM. In Ca2+-containing medium, mesaconitine-induced Ca2+ entry was inhibited by 25% by modulators of store-operated Ca2+ channels and protein kinase C (PKC). Furthermore, mesaconitine also induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished mesaconitine-evoked [Ca2+]i rises. Conversely, treatment with mesaconitine abolished thapsigargin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished mesaconitine-induced [Ca2+]i rises. In sum, mesaconitine caused cytotoxicity that was triggered by preceding [Ca2+]i rises. Furthermore, mesaconitine induced [Ca2+]i rises by evoking Ca2+ entry via PKC-sensitive store-operated Ca2+ channels and PLC-dependent Ca2+ release from the endoplasmic reticulum. It suggests that Ca2+ signaling have a potential cytotoxic effect on mesaconitine-treated human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Surgery, National Defense Medical Center, Taipei, 11490, Taiwan.,College of Health and Nursing, Meiho University, Neipu, Pingtung, 91202, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan. .,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
| |
Collapse
|
7
|
Hou W, Fu H, Liu X, Duan K, Lu X, Lu M, Sun T, Guo T, Weng J. Cation Channel Transient Receptor Potential Vanilloid 4 Mediates Topography-Induced Osteoblastic Differentiation of Bone Marrow Stem Cells. ACS Biomater Sci Eng 2019; 5:6520-6529. [PMID: 33417804 DOI: 10.1021/acsbiomaterials.9b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Micro/nanotopographies (MNTs) have been reported to enhance the osseointegration of biomaterials and modulate cell functions, but the underlying mechanisms are incompletely understood. We hypothesized that transient receptor potential vanilloid 4 (TRPV4) may mediate the topographically induced osteoblastic differentiation of bone marrow stem cells (BMSCs) by regulating the NFATc1 and Wnt/β-catenin signaling. To test this hypothesis, murine BMSCs were cultured on polished titanium (Ti) discs (PT) and Ti discs carrying titania nanotubes (i.e., MNTs) with diameters of ∼30 and ∼100 nm (termed TNT-30 and TNT-100, respectively). It was found that the MNTs (in particular TNT-100) promoted the expression and activation of TRPV4. Inhibition of TRPV4 in BMSCs cultured on TNT-100 reduced the expression of osteoblastic genes and the gene expression and protein levels of NFATc1 and Wnt3a/β-catenin and also decreased nuclear translocation of NFATc1 and β-catenin (all vs uninhibited BMSCs). Conversely, activation of TRPV4 in BMSCs cultured on PT increased the expression of the osteoblastic gene and the gene expression and protein level of NFATc1 and Wnt3a/β-catenin and also enhanced the nuclear translocation of NFATc1 and β-catenin (all vs unactivated BMSCs). These differences suggest that the MNTs promoted TRPV4 expression and activation to enhance intracellular Ca2+, which further increased the nuclear translocation of NFATc1 and stimulated the Wnt/β-catenin signaling, thus leading to upregulated expression of osteoblastic genes. These results indicate TRPV4 to be a mediator in MNT-induced osteoblastic differentiation of BMSCs.
Collapse
|
8
|
Zhang X, Mao A, Xiao W, Zhang P, Han X, Zhou T, Chen Y, Jin J, Ma X. Morin induces endothelium-dependent relaxation by activating TRPV4 channels in rat mesenteric arteries. Eur J Pharmacol 2019; 859:172561. [PMID: 31326379 DOI: 10.1016/j.ejphar.2019.172561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Morin, a natural flavonol, has been reported to have beneficial pharmacological effects. Although its vascular protective effects have been studied, little is known about its effects on the mesenteric artery and the underlying mechanisms. Transient receptor potential vanilloid type 4 (TRPV4) channels are one of the most important Ca2+-permeable cation channels in vascular endothelial cells and play an important role in regulating rat mesenteric vascular tone. In the present study, the myogenic effects of morin were investigated using wire and pressure myography in the isolated mesenteric artery. Morin induced endothelium-dependent relaxation of isolated rat mesenteric arteries in a concentration-dependent manner. In addition, morin stimulated relaxation by activating TRPV4-mediated Ca2+ influx without affecting the nitric oxide (NO), hydrogen peroxide (H2O2), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) pathways. In primary cultured rat mesenteric artery endothelial cells and over-expressing TRPV4 HEK 293 cells, the TRPV4 inhibitor HC067047 significantly reduced the morin-induced increase in intracellular Ca2+ concentration. Furthermore, in rats with hypertension induced by NꞶ-nitro-L-arginine methyl ester (L-NAME), oral administration of morin (50 mg/kg/day) decreased systolic blood pressure. In L-NAME-induced hypertensive rats, morin significantly improved the relaxation response of the arteries to acetylcholine. Thus, we demonstrated that morin induces endothelium-dependent relaxation in the rat mesenteric artery by acting on TRPV4 channels to mediate Ca2+ influx and attenuate blood pressure in L-NAME-induced hypertension, thereby highlighting the potential of morin in the treatment of hypertension.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wang Xiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiping Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Wang HQ, Meng XY, Chen M, Xu SH, Zhu M, Lu X, Wu FX, Yu WF. Bile acids elicited endothelium-dependent vasoconstrictor hypo-activity through TRPV4 channels in the thoracic aorta of bile duct ligation rats. Biomed Pharmacother 2019; 109:511-518. [DOI: 10.1016/j.biopha.2018.10.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
|