1
|
Alissa M, Aldurayhim M, Abdulaziz O, Alsalmi O, Awad A, Algopishi UB, Alharbi S, Safhi AY, Khan KH, Uffar C. From molecules to heart regeneration: Understanding the complex and profound role of non-coding RNAs in stimulating cardiomyocyte proliferation for cardiac repair. Curr Probl Cardiol 2024; 49:102857. [PMID: 39306148 DOI: 10.1016/j.cpcardiol.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Recent studies of noncoding genomes have shown important implications for regulating gene expression and genetic programs during development and their association with health, including cardiovascular disease. There are nearly 2,500 microRNAs (miRNAs), 12,000 long-chain non-coding RNAs (lncRNA), and nearly 4,000 circular RNAs (circles). Even though they do not code for proteins, they make up nearly 99% of the human genome. Non-coding RNA families (ncRNAs) have recently been discovered and established as novel and necessary controllers of cardiovascular risk factors and cellular processes and, therefore, have the potential to improve the diagnosis and prediction of cardiovascular disease. The increase in the prevalence of cardiovascular disease can be explained by the shortcomings of existing therapies, which focus only on the non-coding RNAs that protein codes for. On the other hand, recent studies point to the possibility of using ncRNAs in the early detection and intervention of CVD. These findings suggest that developing diagnostic tools and therapies based on miRNAs, lncRNAs, and circRNAs will potentially enhance the clinical management of patients with cardiovascular disease. Cardiovascular diseases include CH, HF, RHD, ACS, MI, AS, MF, ARR, and PAH, of which CH is the most common cardiovascular disease, followed by HF and RHD. This paper aims to elucidate the biological and clinical significance of miRNAs, increase, and circles, as well as their expression profiles and the possibility of regulating non-coding transcripts in cardiovascular diseases to improve the application of ncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed Aldurayhim
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Alsamghan Awad
- King Khalid University, College of Medicine, Family Medicine department, Saudi Arabia
| | | | - Sarah Alharbi
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khadijah Hassan Khan
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Christin Uffar
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Mably JD, Wang DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol 2024; 21:326-345. [PMID: 37985696 PMCID: PMC11031336 DOI: 10.1038/s41569-023-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
The surge in reports describing non-coding RNAs (ncRNAs) has focused attention on their possible biological roles and effects on development and disease. ncRNAs have been touted as previously uncharacterized regulators of gene expression and cellular processes, possibly working to fine-tune these functions. The sheer number of ncRNAs identified has outpaced the capacity to characterize each molecule thoroughly and to reliably establish its clinical relevance; it has, nonetheless, created excitement about their potential as molecular targets for novel therapeutic approaches to treat human disease. In this Review, we focus on one category of ncRNAs - long non-coding RNAs - and their expression, functions and molecular mechanisms in cardiac hypertrophy and heart failure. We further discuss the prospects for this specific class of ncRNAs as novel targets for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- John D Mably
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Dalil D, Bahanesteh A, Rezaei M, Afzali A, Vanaki A, Varamini A. The Role of Long Noncoding RNAs in Cardiomyocyte Proliferation and Heart Regeneration After Myocardial Infarction: A Systematic Review. Cell Transplant 2024; 33:9636897241266725. [PMID: 39126321 DOI: 10.1177/09636897241266725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Many studies support the idea that long noncoding RNAs (lncRNAs) are significantly involved in the process of cardiomyocyte (CM) regeneration following a myocardial infarction (MI). This study aimed to systematically review the emerging role of lncRNAs in cardiac regeneration by promoting CM proliferation after MI. Furthermore, the review summarized potential targets and the underlying mechanisms of lncRNAs to induce heart regeneration, suggesting utilizing lncRNAs as innovative therapeutic targets for mitigating MI injuries. We searched the PubMed, Scopus, and Web of Science databases for studies on lncRNAs that play a role in heart regeneration after MI. We used search terms that included MI, lncRNAs, CM, and proliferation. Relevant English articles published until June 11, 2023, were systematically reviewed based on inclusion and exclusion criteria. A total of 361 publications were initially identified, and after applying the inclusion and exclusion criteria, nine articles were included in this systematic review. These studies investigated the role of critical lncRNAs in cardiac regeneration after MI, including five upregulated and four downregulated lncRNAs. Acting as a competitive endogenous RNA is one of the main roles of lncRNAs in regulating genes involved in CM proliferation through binding to target microRNAs. The main molecular processes that greatly increase CM proliferation are those that turn on the Hippo/YAP1, PI3K/Akt, JAK2-STAT3, and E2F1-ECRAR-ERK1/2 signaling pathways. This systematic review highlights the significant role of lncRNAs in heart regeneration after MI and their impact on CM proliferation. The findings suggest that lncRNAs could serve as potential targets for therapeutic interventions aiming to enhance cardiac function.
Collapse
Affiliation(s)
- Davood Dalil
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Mahdi Rezaei
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirMohammad Afzali
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirParsa Vanaki
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirHossein Varamini
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Chen C, Lin X, Tang Y, Sun H, Yin L, Luo Z, Wang S, Liang P, Jiang B. LncRNA Fendrr: involvement in the protective role of nucleolin against H 2O 2-induced injury in cardiomyocytes. Redox Rep 2023; 28:2168626. [PMID: 36719027 PMCID: PMC9891159 DOI: 10.1080/13510002.2023.2168626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Nucleolin is a multifunctional nucleolar protein with RNA-binding properties. Increased nucleolin expression protects cells from H2O2-induced damage, but the mechanism remains unknown. Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. However, the biological functions and underlying mechanisms of lncRNAs in myocardial injury remain unclear.Methods: In a nucleolin-overexpressing cardiac cell line, high-throughput technology was used to identify lncRNAs controlled by nucleolin. Cell counting kit-8 assay was used to determine cell viability, lactate dehydrogenase (LDH) assay to detect cell death, caspase activity assay and propidium iodide staining to confirm cell apoptosis, and RNA immunoprecipitation to examine the interaction between Fendrr and nucleolin.Results: We found that Fendrr expression was significantly downregulated in mouse hearts subjected to myocardial ischemia-reperfusion (MI/R) injury. High Fendrr expression abrogated H2O2-mediated injury in cardiomyocytes as evidenced by increased cell viability and decreased cell apoptosis. Conversely, Fendrr knockdown exacerbated the cardiomyocytes injury. Also, nucleolin overexpression inhibits Fendrr downregulation in H2O2-induced cardiomyocyte injury. Fendrr overexpression significantly reversed the role of the suppression of nucleolin expression in H2O2-induced cardiomyocytes.Conclusion: LncRNA Fendrr is involved in the cardioprotective effect of nucleolin against H2O2-induced injury and may be a potential therapeutic target for oxidative stress-induced myocardial injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Hui Sun
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
5
|
Wu Z, Yin H, Guo Y, Yin H, Li Y. Detection of cell-type-enriched long noncoding RNAs in atherosclerosis using single-cell techniques: A brief review. Life Sci 2023; 333:122138. [PMID: 37805167 DOI: 10.1016/j.lfs.2023.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality and morbidity worldwide. Atherosclerotic plaque underlies the predominant factors and is composed of various cell types, including structure cells, such as endothelial and smooth muscle cells, and immune cells, such as macrophages and T cells. Single-cell RNA sequencing (scRNA-seq) has been extensively applied to decipher these cellular heterogeneities to expand our understanding on the mechanisms of atherosclerosis (AS) and to facilitate identifying cell-type-specific long noncoding RNAs (LncRNAs). LncRNAs have been demonstrated to deeply regulate biological activities at the transcriptional and post-transcriptional levels. A group of well-documented functional lncRNAs in AS have been studied. In our review, we selectively described several lncRNAs involved in the critical process of AS. We highlighted four novel lncRNAs (lncRNA CARMN, LINC00607, PCAT19, LINC01235) detected in scRNA-seq datasets and their functions in AS. We also reviewed open web source and bioinformatic tools, as well as the latest methods to perform an in-depth study of lncRNAs. It is fundamental to annotate functional lncRNAs in the various biological activities of AS, as lncRNAs may represent promising targets in the future for treatment and diagnosis in clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| | - Huarun Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongsheng Guo
- Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China; Peking University Health Science Center, 100191 Beijing, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| |
Collapse
|
6
|
Wang Y, Gao J, Zhang L, Yang R, Zhang Y, Shan L, Li X, Ma K. Bioinformatics analysis of lncRNA-related ceRNA networks in the peripheral blood lymphocytes of Kazakh patients with essential hypertension in Xinjiang. Front Cardiovasc Med 2023; 10:1155767. [PMID: 37396592 PMCID: PMC10311024 DOI: 10.3389/fcvm.2023.1155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Here, we aimed to investigate long non-coding RNA (lncRNA) expression characteristics in the peripheral blood lymphocytes of Xinjiang Kazakh people with essential hypertension and the underlying regulatory mechanisms of competing endogenous RNAs (ceRNA). Methods From April 2016 to May 2019, six Kazakh patients with essential hypertension and six Kazakh healthy participants were randomly selected from the inpatient and outpatient cardiology departments of the First Affiliated Hospital of Shihezi University Medical College, Xinjiang. After detecting the expression levels of lncRNA and mRNA in the peripheral blood lymphocytes using gene chip technology, their levels in the hypertensive group were compared with those in the control group. Six differentially expressed lncRNAs were randomly selected for real-time PCR to verify the accuracy and reliability of the gene chip results. GO functional clustering and KEGG pathway analyses were performed for differentially expressed genes. The ceRNA regulatory network of lncRNA-miRNA-mRNA was constructed, followed by visualization of the results. The expressions of miR-139-5p and DCBLD2 after PVT1 overexpression in 293T cells were detected by qRT-PCR and Western blot. Results In the test group, 396 and 511 differentially expressed lncRNAs and mRNAs, respectively, were screened out. The trend of real-time PCR results was consistent with that of the microarray results. The differentially expressed mRNAs were found to be primarily involved in the adhesion spot, leukocyte migration via endothelial cells, gap junction, actin cytoskeleton regulation, and extracellular matrix-receptor interaction signaling pathways. By constructing the ceRNA regulatory network, we found that lncRNA PVT1-miR-139-5p-DCBLD2 has a potential ceRNA regulatory mechanism involved in the development of essential hypertension in Xinjiang Kazakh people. In 293T cells, lncRNA PVT1 overexpression inhibited miR-139-5p and DCBLD2 levels. Conclusions Our findings indicate that differentially expressed lncRNAs may be involved in the development of essential hypertension. lncRNA PVT1-miR-139-5p-DCBLD2 was indicated to comprise a potential ceRNA regulatory mechanism involved in the development of essential hypertension in the Xinjiang Kazakh population. Thus, it may act as a novel screening marker or therapeutic target for essential hypertension in this population.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jie Gao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yingying Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
7
|
Cuesta-Llavona E, Lorca R, Rolle V, Alonso B, Iglesias S, Rodríguez-Reguero J, Duarte-Herrera ID, Pérez-Oliveira S, Junco-Vicente A, Lago CG, Coto E, Gómez J. Association of the Genetic Variation in the Long Non-Coding RNA FENDRR with the Risk of Developing Hypertrophic Cardiomyopathy. Life (Basel) 2022; 12:life12060818. [PMID: 35743849 PMCID: PMC9225451 DOI: 10.3390/life12060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In around 40−60% of Hypertrophic Cardiomyopathy (HCM) cases pathogenic variants are not identified. Our aim was to evaluate the possible association of lncRNAs with the risk of developing HCM. Methods: We sequenced 10 lncRNAs coding genes that have been associated with cardiovascular disease in a discovery cohort (238 HCM patients and 212 controls) by NGS, and genotyped rs74035787 G>A and rs1424019 A>G polymorphism in a validation cohort (962 HCM patients and 923 controls). Finally, we sequenced the FENDRR promoter by Sanger sequencing. Results: We observed by NGS that FENDRR rs39527, rs39529 and rs40384 polymorphisms were significantly associated with HCM in our cohort (p = 0.0284; OR: 0.24, 95%CI: 0.07−0.86). NGS results were confirmed by genotyping rs74035787 polymorphism (p = 0.001; OR:0.38, 95%CI: 0.21−0.66). Moreover, it is also associated when stratification by sex (p = 0.003; OR:0.20, 95%CI: 0.06−0.53), and age (≥50 years old p = 0.001, OR:0.33, 95%CI: 0.16−0.63) Moreover, the risk of HCM in the carriers of the GG genotype of the rs1424019 polymorphism was significantly higher than that of the AA/AG genotypes carriers in the elderly subjects (p = 0.045, OR:1.24, 95%CI: 1.01−1.53). On the other hand, we observed significant differences in the rs74035787 A/rs1424019 G haplotype frequency (p = 0.0035; OR: 0.20, 95%CI: 0.07−0.59). Conclusions: Our study suggested a significant association between FENDRR gene variants and HCM.
Collapse
Affiliation(s)
- Elías Cuesta-Llavona
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
- Redes de Investigación Cooperativa Orientadas a Resultadosen Salud (RICORs), 28029 Madrid, Spain
| | - Rebeca Lorca
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
- Redes de Investigación Cooperativa Orientadas a Resultadosen Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares del HUCA, 33011 Oviedo, Spain
| | - Valeria Rolle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
| | - Belén Alonso
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
| | - Sara Iglesias
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
| | - Julian Rodríguez-Reguero
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
- Unidad de Cardiopatías Familiares del HUCA, 33011 Oviedo, Spain
| | - Israel David Duarte-Herrera
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
| | - Sergio Pérez-Oliveira
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
| | - Alejandro Junco-Vicente
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
| | - Claudia García Lago
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
| | - Eliecer Coto
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
- Redes de Investigación Cooperativa Orientadas a Resultadosen Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares del HUCA, 33011 Oviedo, Spain
- Medicicine Department, Universidad de Oviedo, 33003 Oviedo, Spain
- Correspondence: (E.C.); (J.G.); Tel.: +34-985-10-80-00 (ext. 37484) (J.G.)
| | - Juan Gómez
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (E.C.-L.); (R.L.); (B.A.); (S.I.); (J.R.-R.); (I.D.D.-H.); (S.P.-O.); (A.J.-V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.R.); (C.G.L.)
- Redes de Investigación Cooperativa Orientadas a Resultadosen Salud (RICORs), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares del HUCA, 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Correspondence: (E.C.); (J.G.); Tel.: +34-985-10-80-00 (ext. 37484) (J.G.)
| |
Collapse
|
8
|
Zhao X, Wang C, Liu M, Meng F, Liu K. LncRNA FENDRR Servers as a Possible Marker of Essential Hypertension and Regulates Human Umbilical Vein Endothelial Cells Dysfunction via miR-423-5p/Nox4 Axis. Int J Gen Med 2022; 15:2529-2540. [PMID: 35282648 PMCID: PMC8906997 DOI: 10.2147/ijgm.s338147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Essential hypertension (EH) is an intricate non-communicable infirmity and lncRNAs are validated as essential mediators in EH. The study aimed to propose the expression pattern of FENDRR and miR-423-5p, substantiate the potential mechanism of FENDRR/miR-423-5p/Nox4 axis in EH. Patients and Methods The expression of FENDRR and miR-423-5p was evaluated by qRT-PCR and the clinical significance was explored by the ROC curve. Pearson correlation indicated the relationship between FENDRR and miR-423-5p. The function of FENDRR and miR-423-5p on HUVECs was clarified by CCK-8 assay, Transwell assay, and flow cytometry. Western blot was used to assess the relative protein expression of Nox4. Results FENDRR was highly expressed and miR-423-5p was lowly expressed in EH patients and a negative correlation between them was determined. FENDRR might serve as a predictive diagnosis in differentiating EH patients. Knockdown of FENDRR or overexpression of miR-423-5p showed expansionary effects in cell proliferation, cell migration, and inhibiting cell apoptosis. Meanwhile, miR-423-5p was determined as a target of FENDRR and mediated the function of FENDRR on HUVECs. Moreover, Nox4 is a down-streaming target gene of miR-423-5p. The protein expression of Nox4 was regulated by the alternation of miR-423-5p expression. Conclusion FENDRR played an energetic role in EH and contributed to HUVECs dysfunction by restricting cell proliferation, suppressing cell migration, and accelerating cell apoptosis by manipulating the miR-423-5p/Nox4 axis.
Collapse
Affiliation(s)
- Xiaojian Zhao
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chen Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Fansen Meng
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Kai Liu
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Kai Liu, Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, People’s Republic of China, Tel/Fax +86-371-65964376, Email
| |
Collapse
|
9
|
Martens L, Rühle F, Witten A, Meder B, Katus HA, Arbustini E, Hasenfuß G, Sinner MF, Kääb S, Pankuweit S, Angermann C, Bornberg-Bauer E, Stoll M. A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol 2021; 18:409-415. [PMID: 34313541 DOI: 10.1080/15476286.2021.1952756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
lncRNAs are at the core of many regulatory processes and have also been recognized to be involved in various complex diseases. They affect gene regulation through direct interactions with RNA, DNA or proteins. Accordingly, lncRNA structure is likely to be essential for their regulatory function. Point mutations, which manifest as SNPs (single nucleotide polymorphisms) in genome screens, can substantially alter their function and, subsequently, the expression of their downstream regulated genes. To test the effect of SNPs on structure, we investigated lncRNAs associated with dilated cardiomyopathy. Among 322 human candidate lncRNAs, we demonstrate first the significant association of an SNP located in lncRNA H19 using data from 1084 diseased and 751 control patients. H19 is generally highly expressed in the heart, with a complex expression pattern during heart development. Next, we used MFE (minimum free energy) folding to demonstrate a significant refolding in the secondary structure of this 861 nt long lncRNA. Since MFE folding may overlook the importance of sub-optimal structures, we showed that this refolding also manifests in the overall Boltzmann structure ensemble. There, the composition of structures is tremendously affected in their thermodynamic probabilities through the genetic variant. Finally, we confirmed these results experimentally, using SHAPE-Seq, corroborating that SNPs affecting such structures may explain hidden genetic variance not accounted for through genome wide association studies. Our results suggest that structural changes in lncRNAs, and lncRNA H19 in particular, affect regulatory processes and represent optimal targets for further in-depth studies probing their molecular interactions.
Collapse
Affiliation(s)
- Leonie Martens
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Frank Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Benjamin Meder
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany.,Genome Technology Center Stanford, Department of Genetics, Stanford University, Stanford, United States
| | - Hugo A Katus
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Sabine Pankuweit
- Department of Cardiology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Christiane Angermann
- Comprehensive Heart Failure Center, University Hospital and University of Würzburg, Würzburg, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Abdi E, Latifi-Navid S, Latifi-Navid H, Safaralizadeh R. LncRNA polymorphisms and upper gastrointestinal cancer risk. Pathol Res Pract 2021; 218:153324. [DOI: 10.1016/j.prp.2020.153324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
|
11
|
Szafranski P, Stankiewicz P. Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance. Genes (Basel) 2021; 12:177. [PMID: 33513839 PMCID: PMC7911649 DOI: 10.3390/genes12020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The FOXF1 Adjacent Noncoding Developmental Regulatory RNA (Fendrr) plays an important role in the control of gene expression in mammals. It is transcribed in the opposite direction to the neighboring Foxf1 gene with which it shares a region containing promoters. In humans, FENDRR is located on chromosome 16q24.1, and is positively regulated both by the FOXF1 distant lung-specific cis-acting enhancer and by trans-acting FOXF1. Fendrr has been shown to function as a competing endogenous RNA, sponging microRNAs and protein factors that control stability of mRNAs, and as an epigenetic modifier of chromatin structure around gene promoters and other regulatory sites, targeting them with histone methyltrasferase complexes. In mice, Fendrr is essential for development of the heart, lungs, and gastrointestinal system; its homozygous loss causes embryonic or perinatal lethality. Importantly, deregulation of FENDRR expression has been causatively linked also to tumorigenesis, resistance to chemotherapy, fibrosis, and inflammatory diseases. Here, we review the current knowledge on the FENDRR structure, expression, and involvement in development and tissue maintenance.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | | |
Collapse
|
12
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
13
|
Jia A, Wu Y, Ren W, Han P, Shao Y. Genetic variations of CARMN affect risk of esophageal cancer in northwest China. Gene 2020; 748:144680. [DOI: 10.1016/j.gene.2020.144680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
|
14
|
Long Noncoding RNAs CARMN, LUCAT1, SMILR, and MALAT1 in Thoracic Aortic Aneurysm: Validation of Biomarkers in Clinical Samples. DISEASE MARKERS 2020; 2020:8521899. [PMID: 32655720 PMCID: PMC7317319 DOI: 10.1155/2020/8521899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Materials and Methods Relative expression of lncRNAs CARMN, LUCAT1, SMILR, and MALAT1 was tested in clinical aortic tissue and blood plasma samples from TAA and non-TAA patients using the qRT-PCR method. The Mann–Whitney U test was used to compare ΔCt values between the study groups. ROC curve analysis was performed to evaluate the diagnostic value of plasma lncRNAs. Results We found significantly reduced CARMN (p = 0.033) and LUCAT1 (p = 0.009) expression in aortic tissue samples from TAA patients. Relative expression of MALAT1 (p = 0.117) and SMILR (p = 0.610) did not differ in aortic tissue between the TAA and non-TAA groups. Expression of both LUCAT1 and SMILR was significantly decreased in TAA patients' blood plasma compared to controls (p = 0.018 and p = 0.032, respectively). However, only LUCAT1 showed the ability to discriminate aneurysmal disease in patients' blood plasma (AUC = 0.654, 95%CI = 0.534‐0.775, p = 0.018). Conclusions We have shown that the expression of lncRNAs CARMN and LUCAT1 is reduced in dilated aortic tissue and that the LUCAT1 and SMILR expression is lower in the blood plasma of TAA patients. Decreased LUCAT1 expression in TAA patients' blood plasma may have diagnostic potential in discriminating patients with TAA.
Collapse
|
15
|
Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 2020; 27:2158-2175. [PMID: 31969690 DOI: 10.1038/s41418-020-0492-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Neonatal mammalian heart maintains a transient regeneration capacity after birth, whereas this regeneration ability gradually loses in the postnatal heart. Thus, the reactivation of cardiomyocyte proliferation is emerging as a key strategy for inducing heart regeneration in adults. We have reported that a highly conserved long noncoding RNA (lncRNA) LncDACH1 was overexpressed in the failing hearts. Here, we found that LncDACH1 was gradually upregulated in the postnatal hearts. Cardiac-specific overexpression of LncDACH1 (TG) in mice suppressed neonatal heart regeneration and worsened cardiac function after apical resection. Conversely, in vivo cardiac conditional knockout of LncDACH1 (CKO) and adenovirus-mediated silencing of endogenous LncDACH1 reactivated cardiomyocyte-proliferative potential and promoted heart regeneration after myocardial infarction (MI) in juvenile and adult mice. Mechanistically, LncDACH1 was found to directly bind to protein phosphatase 1 catalytic subunit alpha (PP1A), and in turn, limit its dephosphorylation activity. Consistently, PP1A siRNA or pharmacological blockers of PP1A abrogated cardiomyocyte mitosis induced by LncDACH1 silencing. Furthermore, LncDACH1 enhanced yes-associated protein 1 (YAP1) phosphorylation and reduced its nuclear translocation by binding PP1A. Verteporfin, a YAP1 inhibitor decreased LncDACH1 silencing-induced cardiomyocyte proliferation. In addition, targeting a conserved fragment of LncDACH1 caused cell cycle re-entry of human iPSC-derived cardiomyocytes. Collectively, LncDACH1 governs heart regeneration in postnatal and ischemic hearts via regulating PP1A/YAP1 signal, which confers a novel therapeutic strategy for ischemic heart diseases.
Collapse
|
16
|
Liu J, Li H, Liu Y, Sun Y, Wu J, Xiong Z, Li B, Jin T. MiR-143HG Gene Polymorphisms as Risk Factors for Gastric Cancer in Chinese Han Population. Curr Mol Med 2019; 20:536-547. [PMID: 31880258 DOI: 10.2174/1566524020666191227103144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND MicroRNA (miRNA) is a pivotal regulator of the occurrence and development of various cancers. And gastric cancer (GC) is one of the most common and deadly cancers in the world. The aim of this study is to explore whether the microRNA-143 host gene (miR-143HG) polymorphisms are correlated with the risk of GC. METHODS 5 single-nucleotide polymorphisms (SNPs) were genotyped among 506 patients and 500 healthy controls in Han Chinese population. Multiple genetic models, stratification analysis and haplotype analysis were used to evaluate the association between miR-143HG polymorphisms and GC risk by calculating odds ratios (ORs), 95% confidence intervals (CIs). RESULTS Our results indicated that rs11168100 was associated with decreased risk of GC under the Codominant model (OR = 0.67, 95%CI = 0.52-0.88, p = 0.003), and under the Dominant model (OR = 0.72, 95%CI = 0.56-0.92, p = 0.009). Rs353300 was associated with increased risk of GC under the Recessive model (OR = 1.41, 95%CI = 1.06-1.87, p = 0.017). Further, rs11168100 and rs353300 were correlated with the susceptibility of GC (age > 60 years), and three SNPs (rs12654195, rs353303, and rs353300) were related with the risk of GC (age ≤ 60 years). In addition, two SNPs (rs12654195 and rs11168100) were found to be associated with decrease in the susceptibility of GC in the female subgroup. Rs353300 represented two-sided roles in the occurrence and development of GC in female. Finally, rs3533003 was associated with decreased risk of GC in stratified analysis of lymph node metastasis. CONCLUSION For the first time, our results provide some evidence on the polymorphisms of miR-143HG associated with GC risk in the Chinese Han population.
Collapse
Affiliation(s)
- Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| |
Collapse
|
17
|
García-Padilla C, Domínguez JN, Aránega AE, Franco D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194435. [PMID: 31678627 DOI: 10.1016/j.bbagrm.2019.194435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular development is governed by a complex interplay between inducting signals such as Bmps and Fgfs leading to activation of cardiac specific transcription factors such as Nkx2.5, Mef2c and Srf that orchestrate the initial steps of cardiogenesis. Over the last decade we have witnessed the discovery of novel layers of gene regulation, i.e. post-transcriptional regulation exerted by non-coding RNAs. The function role of small non coding RNAs has been widely demonstrated, e.g. miR-1 knockout display several cardiovascular abnormalities during embryogenesis. More recently long non-coding RNAs have been also reported to modulate gene expression and function in the developing heart, as exemplified by the embryonic lethal phenotypes of Fendrr and Braveheart knock out mice, respectively. In this study, we investigated the differential expression profile during cardiogenesis of previously reported lncRNAs in heart development. Our data revealed that Braveheart, Fendrr, Carmen display a preferential adult expression while Miat, Alien, H19 preferentially display chamber-specific expression at embryonic stages. We also demonstrated that these lncRNAs are differentially regulated by Nkx2.5, Srf and Mef2c, Pitx2 > Wnt > miRNA signaling pathway and angiotensin II and thyroid hormone administration. Importantly isoform-specific expression and distinct nuclear vs cytoplasmic localization of Braveheart, Carmen and Fendrr during chamber morphogenesis is observed, suggesting distinct functional roles of these lncRNAs in atrial and ventricular chambers. Furthermore, we demonstrate by in situ hybridization a dynamic epicardial, myocardial and endocardial expression of H19 during cardiac development. Overall our data support novel roles of these lncRNAs in different temporal and tissue-restricted fashion during cardiogenesis.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| |
Collapse
|
18
|
Ma S, Liao Y. Noncoding RNAs in exercise-induced cardio-protection for chronic heart failure. EBioMedicine 2019; 46:532-540. [PMID: 31351933 PMCID: PMC6711852 DOI: 10.1016/j.ebiom.2019.07.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic heart failure (CHF) has long been a major medical care burden on society due to its high morbidity and mortality. Although lots of evidence has demonstrated the beneficial impacts of exercise on CHF, termed exercise-induced cardioprotection (EIC), the underlying mechanisms and applicability of EIC are elusive and controversial, and thus, clinical applications are difficult. Noncoding RNAs (ncRNAs) are potential therapeutic targets for CHF. Increasing number of ncRNAs were found to play a role in EIC and CHF. The purpose of this review is to illustrate the current knowledge of ncRNAs in EIC for CHF as well as their prospective and limitations in clinical application.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|