1
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
2
|
Liu H, Xiong X, Zhu T, Zhu Y, Peng Y, Zhu X, Wang J, Chen H, Chen Y, Guo A. Differential nitric oxide induced by Mycobacterium bovis and BCG leading to dendritic cells apoptosis in a caspase dependent manner. Microb Pathog 2020; 149:104303. [PMID: 32504845 DOI: 10.1016/j.micpath.2020.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are critical for both innate and adaptive immunity. Meanwhile, nitric oxide (NO) is a member of reactive nitrogen species (RNS) generally considered to play a key role in the bactericidal process in innate immunity against Mycobacterium tuberculosis complex infection. The present study therefore investigated the mechanism of NO production in murine DCs induced by Mycobacterium bovis (M.bovis) and its attenuated strain Bacillus Calmette-Guérin (BCG) infection. The expression of genes Slc7A1, Slc7A2, iNOS, and ArgI essential to NO synthesis was up-regulated in M.bovis/BCG infected DCs. IFN-γ addition further increased, while the iNOS inhibitor L-NMMA significantly inhibited their expression. Accordingly, the end products of arginine metabolism, NO and urea, were found to be significantly increased. In addition, BCG induced significantly higher levels of apoptosis in DCs compared to M.bovis shown by higher levels of DNA fragmentation using flow cytometry and release of mitochondrial Cytochrome C, and up-regulation of the genes caspase-3, caspase-8, caspase-9 and dffa critical to apoptosis by qRT-PCR detection and western blot analysis. Furthermore, IFN-γ increased, but L-NMMA decreased apoptosis of M.bovis/BCG infected DCs. In addition, mycobacterial intracellular survival was significantly reduced by IFN-γ treatment in BCG infected DCs, while slightly increased by L-NMMA treatment. Taken altogether, our data show that NO synthesis was differentially increased and associated with apoptosis in M.bovis/BCG infected DCs. These findings may significantly contribute to elucidate the pathogenesis of M.bovis.
Collapse
Affiliation(s)
- Han Liu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xuekai Xiong
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yifan Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiaojie Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Jieru Wang
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Huanchun Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|