1
|
Cai L, Wang J, Yi X, Yu S, Wang C, Zhang L, Zhang X, Cheng L, Ruan W, Dong F, Su P, Shi Y. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res 2024; 95:1543-1552. [PMID: 38245633 DOI: 10.1038/s41390-024-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. METHODS The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining. RESULTS We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial-mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro. CONCLUSIONS Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF. IMPACT The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.
Collapse
Affiliation(s)
- Liyun Cai
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xue Yi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Shuwei Yu
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Chong Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Liyuan Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xiaoling Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Lixian Cheng
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Feige Dong
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ping Su
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ying Shi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
2
|
Lorestani F, Movahedian A, Mohammadalipour A, Hashemnia M, Aarabi MH. Astaxanthin prevents nephrotoxicity through Nrf2/HO-1 pathway. Can J Physiol Pharmacol 2024; 102:128-136. [PMID: 37683291 DOI: 10.1139/cjpp-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Renal toxicity is one of the side effects of methotrexate (MTX). Therefore, this study explored the use of astaxanthin (AST), as a natural carotenoid, against MTX-induced nephrotoxicity emphasizing the changes in oxidative stress and the expression of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1). During the 10 days of the experiment, male Wistar rats in different groups received MTX (10 mg/kg) on days 6, 8, and 10 and three doses of AST (25, 50, and 75 mg/kg) during the entire course. Renal failure caused by MTX was observed in significant histopathological changes and a significant increase in serum levels of creatinine, urea, and uric acid (p < 0.05). Oxidative change induced by MTX injection was also observed by remarkably increasing the tissue level of malondialdehyde (MDA) and decreasing the activity of superoxide dismutase (SOD) and catalase (p < 0.001). AST decreases the adverse effects of MTX by upregulating the expression of Nrf2/HO-1 genes (p < 0.01) and decreasing the tissue level of MDA (p < 0.01). Also, AST significantly reduced the amount of creatinine, urea, and uric acid in the serum and improved the activity of SOD and catalase in the kidney tissue (p < 0.05). Thus, AST may protect the kidney against oxidative stress caused by MTX.
Collapse
Affiliation(s)
- Faezeh Lorestani
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Aarabi
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Rostami M, Aghaei M, Ghanadian M, Hashemnia M, Moezzi ND, Mohammadalipour A. Evaluation of the flavonol-rich fraction of Rosa damascena in an animal model of liver fibrosis by targeting the expression of fibrotic cytokines, antioxidant/oxidant ratio and collagen cross-linking. Life Sci 2023; 333:122143. [PMID: 37797686 DOI: 10.1016/j.lfs.2023.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION The flavonoid-rich fraction of Rosa damascena (FRFRD) contains antioxidant and active compounds. Therefore, this study aimed to investigate the role of FRFRD, rich in quercetin and kaempferol, in liver fibrosis induced by CCl4. MATERIALS AND METHODS The FRFRD fraction was separated and standardized by High-Performance Liquid Chromatography (HPLC) based on the levels of quercetin and kaempferol. Liver fibrosis was induced over CCl4 over 12 weeks in 30 male Wistar rats, and three concentrations of FRFRD were administered to them during the last four weeks. Subsequently, after evaluation of liver serum markers and fibrotic parameters, the relative expression of transforming growth factor-beta-1 (TGF-β1), platelet-derived growth factor (PDGF), and lysyl oxidase homolog 2 (Loxl2) genes were assessed, along with the measurement of lysyl oxidase activity and oxidative markers. RESULTS Fibrotic markers demonstrated progressive recovery of liver damage in the treated group compared to the non-treatment group (p < 0.01). These results were accompanied by a significant decrease in the expression of TGF-β1, PDGF, and Loxl2 genes, as well as, a reduction in lysyl oxidase activity (p < 0.001). The antioxidant effects of the treatment were observed through a significant decrease in malondialdehyde (MDA) levels and an increase in catalase enzyme (CAT) and glutathione peroxidase (GPx) activity in the treatment group compared to the fibrotic group (p < 0.01). CONCLUSION The flavonoid-rich fraction of Rosa damascena ameliorates liver damage by affecting collagen cross-linking and lowering oxidative and inflammatory levels.
Collapse
Affiliation(s)
- Mehdi Rostami
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Nasrin Deilami Moezzi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
6
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
7
|
Ji K, Fan M, Huang D, Sun L, Li B, Xu R, Zhang J, Shao X, Chen Y. Clodronate-nintedanib-loaded exosome-liposome hybridization enhances the liver fibrosis therapy by inhibiting Kupffer cell activity. Biomater Sci 2022; 10:702-713. [PMID: 34927632 DOI: 10.1039/d1bm01663f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis therapy remains limited due to the inefficiency of drug delivery and inflammation induced by Kupffer cells. In this study, an exosome-liposome hybrid drug delivery system (LIEV) was developed to increase the efficacy of clodronate (CLD)-inhibition of Kupffer cells and to effectively deliver nintedanib (NIN) to liver fibroblasts to ensure enhanced anti-fibrosis therapy. CLD and NIN co-loaded LIEV (CLD/NIN@LIEV) exerted non-specific inhibition of phagocytosis by Kupffer cells, reduced inflammatory cytokines, and showed homologous homing properties mediated by fibroblast-derived exosomes, thereby achieving superior antifibrotic effects in a CCl4-induced fibrosis mouse model by inhibiting the proliferation of fibroblasts. Furthermore, the inhibited Kupffer cells regenerated within 10 days after dosage withdrawal. Unlike carrier-free NIN treatment, CLD/NIN@LIEV induced a marked decrease in liver enzymes, indicating improved safety and anti-fibrosis efficacy. These results indicate its great potential for treatment with the combined anti-fibrosis agent and Kupffer cell inhibition strategies to enhance the liver fibrosis therapy.
Collapse
Affiliation(s)
- Keqin Ji
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Mingrui Fan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Dong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Lingna Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Bingqin Li
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruoting Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiajing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuan Shao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Kamalvand M, Biazar E, Daliri-Joupari M, Montazer F, Rezaei-Tavirani M, Heidari-Keshel S. Design of a decellularized fish skin as a biological scaffold for skin tissue regeneration. Tissue Cell 2021; 71:101509. [PMID: 33621947 DOI: 10.1016/j.tice.2021.101509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
The use of decellularized natural skin as an extracellular matrix (ECM) may be a great candidate to regenerate damaged tissues. In this study, decellularized scaffolds from fish skin were designed by different techniques (physical, chemical, and enzymatic methods) and investigated by analyses such as Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Tensile strength, Degradability, Histological studies, Toxicity test, and Determination of DNA content. Results showed that the best sample is related to the decellularized skin by hypertonic & hypotonic technique and Triton X100 solutions. Structural and mechanical results were demonstrated that samples have similar properties to human skin to regenerate it. The cytotoxicity results showed that decellularized skin by hypertonic & hypotonic method and Triton solution is non-toxic with minimal amount of genetic materials. Cellular results with epithelial cells indicated good adhesion on decellularized matrix, so it can be a suitable candidate for skin tissue regeneration.
Collapse
Affiliation(s)
- Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | | | - Fatemeh Montazer
- Pathology Department, Firoozabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Heidari-Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wang C, Li Y, Li H, Zhang Y, Ying Z, Wang X, Zhang T, Zhang W, Fan Z, Li X, Ma J, Pan X. Disruption of FGF Signaling Ameliorates Inflammatory Response in Hepatic Stellate Cells. Front Cell Dev Biol 2020; 8:601. [PMID: 32793588 PMCID: PMC7387415 DOI: 10.3389/fcell.2020.00601] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is a well-documented event that fibroblast growth factors (FGFs) regulate liver development and homeostasis in autocrine, paracrine, and endocrine manners via binding and activating FGF receptors (FGFRs) tyrosine kinase in hepatocytes. Recent research reveals that hepatic stellate cells (HSCs) play a fundamental role in liver immunology. However, how FGF signaling in HSCs regulates liver inflammation remains unclear. Here, we report that FGF promoted NF-κB signaling, an inflammatory pathway, in human HSCs, which was associated with FGFR1 expression. Both FGF and NF-κB signaling in HSCs were compromised by FGFR1 tyrosine kinase inhibitor. After stimulating HSCs with proinflammatory cytokines, expression of multiple FGF ligands was significantly increased. However, disruption of FGF signaling with FGFR inhibitors prominently reduced the apoptosis, inflammatory response, NF-κB nuclear translocation, and expression of matrix metalloproteinase-9 (MMP-9) induced by TNFα in HSCs. Interestingly, FGF21 significantly alleviated the inflammation responses in the concanavalin A (Con A)-induced acutely injured liver. Unlike canonic FGFs that elicit signals through activating the FGFR–heparan sulfate complex, FGF21 activates the FGFR–KLB complex and elicits a different set of signals. Therefore, the finding here indicates the urgency of developing pathway-specific inhibitors that only suppress canonical FGF, but not non-canonical FGF21, signaling for alleviating inflammation in the liver, which is presented in all stages of diseased liver.
Collapse
Affiliation(s)
- Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuelong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhangguo Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Karbownik A, Szkutnik-Fiedler D, Czyrski A, Kostewicz N, Kaczmarska P, Bekier M, Stanisławiak-Rudowicz J, Karaźniewicz-Łada M, Wolc A, Główka F, Grześkowiak E, Szałek E. Pharmacokinetic Interaction between Sorafenib and Atorvastatin, and Sorafenib and Metformin in Rats. Pharmaceutics 2020; 12:pharmaceutics12070600. [PMID: 32605304 PMCID: PMC7408095 DOI: 10.3390/pharmaceutics12070600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The tyrosine kinase inhibitor sorafenib is the first-line treatment for patients with hepatocellular carcinoma (HCC), in which hyperlipidemia and type 2 diabetes mellitus (T2DM) may often coexist. Protein transporters like organic cation (OCT) and multidrug and toxin extrusion (MATE) are involved in the response to sorafenib, as well as in that to the anti-diabetic drug metformin or atorvastatin, used in hyperlipidemia. Changes in the activity of these transporters may lead to pharmacokinetic interactions, which are of clinical significance. The study aimed to assess the sorafenib−metformin and sorafenib−atorvastatin interactions in rats. The rats were divided into five groups (eight animals in each) that received sorafenib and atorvastatin (ISOR+AT), sorafenib and metformin (IISOR+MET), sorafenib (IIISOR), atorvastatin (IVAT), and metformin (VMET). Atorvastatin significantly increased the maximum plasma concentration (Cmax) and the area under the plasma concentration–time curve (AUC) of sorafenib by 134.4% (p < 0.0001) and 66.6% (p < 0.0001), respectively. Sorafenib, in turn, caused a significant increase in the AUC of atorvastatin by 94.0% (p = 0.0038) and its metabolites 2−hydroxy atorvastatin (p = 0.0239) and 4−hydroxy atorvastatin (p = 0.0002) by 55.3% and 209.4%, respectively. Metformin significantly decreased the AUC of sorafenib (p = 0.0065). The AUC ratio (IISOR+MET group/IIISOR group) for sorafenib was equal to 0.6. Sorafenib did not statistically significantly influence the exposure to metformin. The pharmacokinetic interactions observed in this study may be of clinical relevance in HCC patients with coexistent hyperlipidemia or T2DM.
Collapse
Affiliation(s)
- Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
- Correspondence: ; Tel.: +48-61854-60000
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Natalia Kostewicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Paulina Kaczmarska
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Małgorzata Bekier
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | | | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Hy-Line International, Research and Development, Dallas Center, IA 50063, USA
| | - Franciszek Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| |
Collapse
|
12
|
Wei YH, Liao SL, Wang SH, Wang CC, Yang CH. Simvastatin and ROCK Inhibitor Y-27632 Inhibit Myofibroblast Differentiation of Graves' Ophthalmopathy-Derived Orbital Fibroblasts via RhoA-Mediated ERK and p38 Signaling Pathways. Front Endocrinol (Lausanne) 2020; 11:607968. [PMID: 33597925 PMCID: PMC7883643 DOI: 10.3389/fendo.2020.607968] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced differentiation of orbital fibroblasts into myofibroblasts is an important pathogenesis of Graves' ophthalmopathy (GO) and leads to orbital tissue fibrosis. In the present study, we explored the antifibrotic effects of simvastatin and ROCK inhibitor Y-27632 in primary cultured GO orbital fibroblasts and tried to explain the molecular mechanisms behind these effects. Both simvastatin and Y-27632 inhibited TGF-β-induced α-smooth muscle actin (α-SMA) expression, which serves as a marker of fibrosis. The inhibitory effect of simvastatin on TGF-β-induced RhoA, ROCK1, and α-SMA expression could be reversed by geranylgeranyl pyrophosphate, an intermediate in the biosynthesis of cholesterol. This suggested that the mechanism of simvastatin-mediated antifibrotic effects may involve RhoA/ROCK signaling. Furthermore, simvastatin and Y-27632 suppressed TGF-β-induced phosphorylation of ERK and p38. The TGF-β-mediated α-SMA expression was suppressed by pharmacological inhibitors of p38 and ERK. These results suggested that simvastatin inhibits TGF-β-induced myofibroblast differentiation via suppression of the RhoA/ROCK/ERK and p38 MAPK signaling pathways. Thus, our study provides evidence that simvastatin and ROCK inhibitors may be potential therapeutic drugs for the prevention and treatment of orbital fibrosis in GO.
Collapse
Affiliation(s)
- Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sen-Hsu Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chang-Hao Yang,
| |
Collapse
|