1
|
Zhou Z, Xu M, Bian M, Nie A, Sun B, Zhu C. Anti-hyperuricemia effect of Clerodendranthus spicatus: a molecular biology study combined with metabolomics. Sci Rep 2024; 14:15449. [PMID: 38965392 PMCID: PMC11224374 DOI: 10.1038/s41598-024-66454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Manfei Xu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Park SL, Lim J, Lee JH. The Association of Serum Uric Acid with Risk of Obstructive Sleep Apnea: The Korean National Health and Nutrition Examination Survey 2019-2021. J Pers Med 2024; 14:532. [PMID: 38793114 PMCID: PMC11122250 DOI: 10.3390/jpm14050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Upper airway collapse and apneas in obstructive sleep apnea (OSA) induce intermittent hypercapnia and hypoxia, eventually contributing to excessive uric acid production. This study aimed to evaluate the association between hyperuricemia and OSA in the general population via analysis of the eighth KNHANES dataset (2019-2021). OSA risk was identified via the STOP-Bang questionnaire, with a score ≥3 indicating high risk. Among 11,981 total participants, 4572 (38.2%) had a high OSA risk. Participants with a high OSA risk had higher uric acid levels compared to those with a low risk (5.5 ± 1.4 mg/dL vs. 4.8 ± 1.2 mg/dL, p < 0.001). Serum uric acid levels were positively correlated with STOP-Bang score (r: 0.317, p < 0.001). Multivariate analysis revealed that hyperuricemia was associated with a high OSA risk after adjusting for confounders (odds ratio: 1.30, 95%CI: 1.11-1.53, p = 0.001). Therefore, serum uric acid levels are significantly higher in those with a high OSA risk and correlate with the risk of OSA. Further, hyperuricemia is an independently associated risk factor for high OSA risk. More research is warranted to evaluate the long-term clinical outcomes of hyperuricemia in OSA and to determine whether treatment targeting hyperuricemia is effective in the clinical course of OSA.
Collapse
Affiliation(s)
- Su-Lim Park
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Jihye Lim
- Department of Medical Informatics and Biostatistics, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Ji-Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
3
|
Li Y, Zheng F, Zhong S, Zhao K, Liao H, Liang J, Zheng Q, Wu H, Zhang S, Cao Y, Wu T, Pang J. Protecting against ferroptosis in hyperuricemic nephropathy: The potential of ferrostatin-1 and its inhibitory effect on URAT1. Eur J Pharmacol 2024; 971:176528. [PMID: 38556118 DOI: 10.1016/j.ejphar.2024.176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 μM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.
Collapse
Affiliation(s)
- Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shiqi Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiacheng Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qiang Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Huicong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shifan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ying Cao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Fajardo VC, Barreto SM, Coelho CG, Diniz MDFH, Molina MDCB, Ribeiro ALP, Telles RW. Adherence to the Dietary Approaches to Stop Hypertension (DASH) and Serum Urate Concentrations: A Longitudinal Analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Nutr 2024; 154:133-142. [PMID: 37992809 DOI: 10.1016/j.tjnut.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Increased serum urate (SU) and hyperuricemia (HU) are associated with chronic noncommunicable diseases and mortality. SU concentrations are affected by several factors, including diet, and are expected to rise with age. We investigated whether the Dietary Approaches to Stop Hypertension (DASH) diet alter this trend. OBJECTIVE The objective was to assess whether adherence to the DASH diet predicts a longitudinal change in SU concentrations and risk of HU in 8 y of follow-up. METHODS Longitudinal analyses using baseline (2008-2010, aged 35-74 y), second (2012-2014), and third (2016-2018) visits data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The inclusion criteria were having complete food frequency questionnaire (FFQ) and urinary sodium measurement, in addition to having SU measurement at the 1st visit and at least 1 of the 2 follow-up visits. For the HU incidence analyses, participants had also to be free from HU at baseline. The final samples included 12575 individuals for the SU change analyses and 10549 for the HU incidence analyses. Adherence to DASH diet was assessed as continuous value. HU was defined as SU>6.8 mg/dL and/or urate-lowering therapy use. Mixed-effect linear and Poisson regressions (incidence rate ratio [IRR] and 95% confidence interval [CI]) were used in the analyses, adjusted for confounders. RESULTS The mean age was 51.4 (8.7) y, and 55.4% were females. SU means (standard deviation) were 5.4 (1.4) at 1st visit, 5.2 (1.4) at 2nd visit, and 5.1(1.3) mg/dL at 3rd visit. The HU incidence rate was 8.87 per 1000 person-y. Each additional point in adherence to the DASH diet accelerated SU decline (P< 0.01) and lowered the incidence of HU by 4.3% (IRR: 0.957; 95% CI: 0.938,0.977) in adjusted model. CONCLUSION The present study findings reinforce the importance of encouraging the DASH diet as a healthy dietary pattern to control and reduce the SU concentrations and risk of HU.
Collapse
Affiliation(s)
- Virgínia C Fajardo
- Universidade Federal de Minas Gerais, PhD Student of Post-graduate Program in Ciências Aplicadas à Saúde do Adulto, Belo Horizonte, Brazil
| | - Sandhi Maria Barreto
- Department of Preventive Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Hospital das Clínicas da UFMG/Ebserh, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina G Coelho
- Department of Preventive Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Hospital das Clínicas da UFMG/Ebserh, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria de Fátima Hs Diniz
- Hospital das Clínicas da UFMG/Ebserh, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Del Carmen B Molina
- Universidade Federal de Ouro Preto, Ouro Preto, Brazil and Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Telehealth Center, Hospital das Clínicas da UFMG/Ebserh, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosa W Telles
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Rheumatology Service, Hospital das Clínicas da UFMG/Ebserh, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Zhu C, Niu H, Bian M, Zhang X, Zhang X, Zhou Z. Study on the mechanism of Orthosiphon aristatus (Blume) Miq. in the treatment of hyperuricemia by microbiome combined with metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116805. [PMID: 37355082 DOI: 10.1016/j.jep.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Growing evidence indicates that hyperuricemia is closely associated with gut microbiota dysbiosis. Orthosiphon aristatus (Blume) Miq. (O. aristatus), as a traditional Chinese medicine, has been widely used to treat hyperuricemia in China. However, the mechanism by which O. aristatus treats hyperuricemia has not been clarified. AIM OF THE STUDY In this study, we investigated whether the molecular mechanism underlying the anti-hyperuricemia effect of O. aristatus is related to the regulation of gut microbiota by 16S rDNA gene sequencing combined with widely targeted metabolomics. MATERIALS AND METHODS Hyperuricemia was induced in rats by administration of 10% fructose and 20% yeast, and the uricosuric effect was assessed by measuring the uric acid (UA) levels in serum and cecal contents. Intestinal morphology was observed by hematoxylin and eosin (HE) staining. To explore the effects of O. aristatus on the gut microbiota and its metabolites, we utilized 16S rDNA gene sequencing combined with widely targeted metabolomics. Furthermore, metabolic pathway enrichment analysis was performed on the screened differential metabolites. The real time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB) were used to detect the expression of relevant proteins in the key pathway. RESULTS Our results indicated that O. aristatus intervention decreased serum UA levels and increased the UA levels in cecal contents in hyperuricemic rats. Additionally, O. aristatus improved intestinal morphology and altered the composition of the gut microbiota and its metabolites. Specifically, 16S rDNA revealed that O. aristatus treatment significantly reduced the abundance of unidentified-Ruminococcaceae and Lachnospiraceae-NK4A136-group. Meanwhile, widely targeted metabolomics showed that 17 metabolites, including lactose, 4-oxopentanoate and butyrate, were elevated, while 55 metabolites, such as flavin adenine dinucleotide and xanthine, were reduced. Metabolic pathway enrichment analysis found that O. aristatus was mainly involved in purine metabolism. Moreover, RT-PCR and WB suggested that O. aristatus could significantly up-regulate the expression of UA excretion transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the intestine. CONCLUSION O. aristatus exerts UA-lowering effect by regulating the gut microbiota and ABCG2 expression, indicating that this herb holds great promise in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Meng Bian
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochuan Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Zheng Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Gui R, Wang YK, Wu JP, Deng GM, Cheng F, Zeng HL, Zeng PH, Long HP, Zhang W, Wei XF, Wang WX, Zhu GZ, Ren WQ, Chen ZH, He XA, Xu KP. Cyclocarya paliurus leaves alleviate hyperuricemic nephropathy via modulation of purine metabolism, antiinflammation, and antifibrosis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
7
|
Wei B, Ren P, Yang R, Gao Y, Tang Q, Xue C, Wang Y. Ameliorative Effect of Mannuronate Oligosaccharides on Hyperuricemic Mice via Promoting Uric Acid Excretion and Modulating Gut Microbiota. Nutrients 2023; 15:nu15020417. [PMID: 36678288 PMCID: PMC9865265 DOI: 10.3390/nu15020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mannuronate oligosaccharide (MOS) is α-D-mannuronic acid polymer with 1,4-glycosidic linkages that possesses beneficial biological properties. The aim of this study was to investigate the hypouricemic effect of MOS in hyperuricemic mice and demonstrate the possible protective mechanisms involved. In this research, 200 mg/kg/day of MOS was orally administered to hyperuricemic mice for four weeks. The results showed that the MOS treatment significantly reduced the serum uric acid (SUA) level from 176.4 ± 7.9 μmol/L to 135.7 ± 10.9 μmol/L (p < 0.05). MOS alleviated the inflammatory response in the kidney. Moreover, MOS promoted uric acid excretion by regulating the protein levels of renal GLUT9, URAT1 and intestinal GLUT9, ABCG2. MOS modulated the gut microbiota in hyperuricemic mice and decreased the levels of Tyzzerella. In addition, research using antibiotic-induced pseudo-sterile mice demonstrated that the gut microbiota played a crucial role in reducing elevated serum uric acid of MOS in mice. In conclusion, MOS may be a potential candidate for alleviating HUA symptoms and regulating gut microbiota.
Collapse
Affiliation(s)
- Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruzhen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-186-6140-2667
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
8
|
Li H, Zhang X, Gu L, Li Q, Ju Y, Zhou X, Hu M, Li Q. Anti-Gout Effects of the Medicinal Fungus Phellinus igniarius in Hyperuricaemia and Acute Gouty Arthritis Rat Models. Front Pharmacol 2022; 12:801910. [PMID: 35087407 PMCID: PMC8787200 DOI: 10.3389/fphar.2021.801910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background:Phellinus igniarius (P. igniarius) is an important medicinal and edible fungus in China and other Southeast Asian countries and has diverse biological activities. This study was performed to comparatively investigate the therapeutic effects of wild and cultivated P. igniarius on hyperuricaemia and gouty arthritis in rat models. Methods: UPLC-ESI-qTOF-MS was used to identify the chemical constituents of polyphenols from wild P. igniarius (WPP) and cultivated P. igniarius (CPP). Furthermore, WPP and CPP were evaluated in an improved hyperuricaemia rat model induced by yeast extract, adenine and potassium oxonate, which was used to examine xanthine oxidase (XO) activity inhibition and anti-hyperuricemia activity. WPP and CPP therapies for acute gouty arthritis were also investigated in a monosodium urate (MSU)-induced ankle swelling model. UHPLC-QE-MS was used to explore the underlying metabolic mechanisms of P. igniarius in the treatment of gout. Results: The main active components of WPP and CPP included protocatechuic aldehyde, hispidin, davallialactone, phelligridimer A, hypholomine B and inoscavin A as identified by UPLC-ESI-qTOF-MS. Wild P. igniarius and cultivated P. igniarius showed similar activities in reducing uric acid levels through inhibiting XO activity and down-regulating the levels of UA, Cr and UN, and they had anti-inflammatory activities through down-regulating the secretions of ICAM-1, IL-1β and IL-6 in the hyperuricaemia rat model. The pathological progression of kidney damage was also reversed. The polyphenols from wild and cultivated P. igniarius also showed significant anti-inflammatory activity by suppressing the expression of ICAM-1, IL-1β and IL-6 and by reducing the ankle joint swelling degree in an MSU-induced acute gouty arthritis rat model. The results of metabolic pathway enrichment indicated that the anti-hyperuricemia effect of WPP was mainly related to the metabolic pathways of valine, leucine and isoleucine biosynthesis and histidine metabolism. Additionally, the anti-hyperuricemia effect of CPP was mainly related to nicotinate and nicotinamide metabolism and beta-alanine metabolism. Conclusions: Wild P. igniarius and cultivated P. igniarius both significantly affected the treatment of hyperuricaemia and acute gouty arthritis models in vivo and therefore may be used as potential active agents for the treatment of hyperuricaemia and acute gouty arthritis.
Collapse
Affiliation(s)
- Hongxing Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qín Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yue Ju
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Min Hu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qīn Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Sun HL, Wu YW, Bian HG, Yang H, Wang H, Meng XM, Jin J. Function of Uric Acid Transporters and Their Inhibitors in Hyperuricaemia. Front Pharmacol 2021; 12:667753. [PMID: 34335246 PMCID: PMC8317579 DOI: 10.3389/fphar.2021.667753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Disorders of uric acid metabolism may be associated with pathological processes in many diseases, including diabetes mellitus, cardiovascular disease, and kidney disease. These diseases can further promote uric acid accumulation in the body, leading to a vicious cycle. Preliminary studies have proven many mechanisms such as oxidative stress, lipid metabolism disorders, and rennin angiotensin axis involving in the progression of hyperuricaemia-related diseases. However, there is still lack of effective clinical treatment for hyperuricaemia. According to previous research results, NPT1, NPT4, OAT1, OAT2, OAT3, OAT4, URAT1, GLUT9, ABCG2, PDZK1, these urate transports are closely related to serum uric acid level. Targeting at urate transporters and urate-lowering drugs can enhance our understanding of hyperuricaemia and hyperuricaemia-related diseases. This review may put forward essential references or cross references to be contributed to further elucidate traditional and novel urate-lowering drugs benefits as well as provides theoretical support for the scientific research on hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Hao-Lu Sun
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Yi-Wan Wu
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - He-Ge Bian
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Hui Yang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Heng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|