Jiang W, Ma C, Bai J, Du X. Macrophage SAMSN1 protects against sepsis-induced acute lung injury in mice.
Redox Biol 2022;
56:102432. [PMID:
35981417 PMCID:
PMC9418554 DOI:
10.1016/j.redox.2022.102432]
[Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE
Inflammation and oxidative stress contribute to the progression of sepsis-induced acute lung injury (ALI). SAM domain, SH3 domain and nuclear localization signals 1 (SAMSN1) is a signaling adaptor protein, and mainly regulates inflammatory response of various immune cells. The present study generates macrophage-specific SAMSN1-knockout (Samsn1MKO) and SAMSN1-transgenic (Samsn1MTG) mice to investigate its role and mechanism in sepsis-induced ALI.
METHODS
Samsn1MKO and Samsn1MTG mice were exposed to lipopolysaccharide (LPS) instillation or cecal ligation and puncture (CLP) surgery to induce sepsis-induced ALI. Bone marrow transplantation, cellular depletion and non-invasive adoptive transfer of bone marrow-derived macrophages (BMDMs) were performed to validate the role of macrophage SAMSN1 in sepsis-induced ALI in vivo. Meanwhile, BMDMs were isolated from Samsn1MKO or Samsn1MTG mice to further clarify the role of SAMSN1 in vitro.
RESULTS
Macrophage SAMSN1 expression was increased in response to LPS stimulation, and negatively correlated with LPS-induced ALI in mice. Macrophage SAMSN1 deficiency exacerbated, while macrophage SAMSN1 overexpression ameliorated LPS-induced inflammation, oxidative stress and ALI in mice and in BMDMs. Mechanistically, we found that macrophage SAMSN1 overexpression prevented LPS-induced ALI though activating AMP-activated protein kinase α2 (AMPKα2) in vivo and in vitro. Further studies revealed that SAMSN1 directly bound to growth factor receptor bound protein 2-associated protein 1 (GAB1) to prevent its protein degradation, and subsequently enhanced protein kinase A (PKA)/AMPKα2 activation in a protein tyrosine phosphatase, non-receptor type 11 (PTPN11, also known as SHP2)-dependent manner. Moreover, we observed that macrophage SAMSN1 overexpression diminished CLP-induced ALI in mice.
CONCLUSION
Our study documents the protective role of macrophage SAMSN1 against sepsis-induced inflammation, oxidative stress and ALI through activating AMPKα2 in a GAB1/SHP2/PKA pathway, and defines it as a promising biomarker and therapeutic target to treat sepsis-induced ALI.
Collapse