1
|
Harwell LC, McMillion CA, Lamper AM, Summers JK. Development of a generalized pseudo-probabilistic approach for characterizing ecological conditions in estuaries using secondary data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:753. [PMID: 39030312 PMCID: PMC11271375 DOI: 10.1007/s10661-024-12877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Under the best circumstances, achieving or sustaining optimum ecological conditions in estuaries is challenging. Persistent information gaps in estuarine data make it difficult to differentiate natural variability from potential regime shifts. Long-term monitoring is critical for tracking ecological change over time. In the United States (US), many resource management programs are working at maximum capacity to address existing state and federal water quality mandates (e.g., pollutant load limits, climate impact mitigation, and fisheries management) and have little room to expand routine sampling efforts to conduct periodic ecological baseline assessments, especially at state and local scales. Alternative design, monitoring, and assessment approaches are needed to help offset the burden of addressing additional data needs to increase understanding about estuarine system resilience when existing monitoring data are sparse or spatially limited. Research presented here offers a pseudo-probabilistic approach that allows for the use of found or secondary data, such as data on hand and other acquired data, to generate statistically robust characterizations of ecological conditions in estuaries. Our approach uses a generalized pseudo-probabilistic framework to synthesize data from different contributors to inform probabilistic-like baseline assessments. The methodology relies on simple geospatial techniques and existing tools (R package functions) developed for the US Environmental Protection Agency to support ecological monitoring and assessment programs like the National Coastal Condition Assessment. Using secondary estuarine water quality data collected in the Northwest Florida (US) estuaries, demonstrations suggest that the pseudo-probabilistic approach produces estuarine condition assessment results with reasonable statistical confidence, improved spatial representativeness, and value-added information. While the pseudo-probabilistic framework is not a substitute for fully evolved monitoring, it offers a scalable alternative to bridge the gap between limitations in resource management capability and optimal monitoring strategies to track ecological baselines in estuaries over time.
Collapse
Affiliation(s)
- Linda C Harwell
- US Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA.
| | - Courtney A McMillion
- Oak Ridge Associated Universities, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
- Santa Rosa County Florida, Development Services Department, 6051 Old Bagdad Highway, Suite 202, Milton, FL, 32583, USA
| | - Andrea M Lamper
- Oak Ridge Associated Universities, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
- CDM Smith, 670 N Commercial St, Unit 208, Manchester, NH, 03101, USA
| | - J Kevin Summers
- US Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| |
Collapse
|
2
|
Shin N, Saitoh TM, Takeuchi Y, Miura T, Aiba M, Kurokawa H, Onoda Y, Ichii K, Nasahara KN, Suzuki R, Nakashizuka T, Muraoka H. Review: Monitoring of land cover changes and plant phenology by remote‐sensing in East Asia. Ecol Res 2022. [DOI: 10.1111/1440-1703.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nagai Shin
- Research Institute for Global Change Japan Agency for Marine‐Earth Science and Technology Yokohama Japan
- River Basin Research Centre Gifu University Gifu Japan
| | | | - Yayoi Takeuchi
- Biodiversity Division National Institute for Environmental Studies Tsukuba Japan
| | - Tomoaki Miura
- Research Institute for Global Change Japan Agency for Marine‐Earth Science and Technology Yokohama Japan
- Department of Natural Resources and Environmental Management University of Hawaii at Manoa Honolulu Hawaii USA
| | - Masahiro Aiba
- Research Institute for Humanity and Nature Kyoto Japan
| | - Hiroko Kurokawa
- Department of Forest Vegetation Forestry and Forest Products Research Institute Tsukuba Japan
| | - Yusuke Onoda
- Faculty of Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Kazuhito Ichii
- Center for Environmental Remote Sensing Chiba University Chiba Japan
| | | | - Rikie Suzuki
- Research Institute for Global Change Japan Agency for Marine‐Earth Science and Technology Yokohama Japan
| | - Tohru Nakashizuka
- Department of Forest Vegetation Forestry and Forest Products Research Institute Tsukuba Japan
| | - Hiroyuki Muraoka
- River Basin Research Centre Gifu University Gifu Japan
- Biodiversity Division National Institute for Environmental Studies Tsukuba Japan
| |
Collapse
|
3
|
A network simplification approach to ease topological studies about the food-web architecture. Sci Rep 2022; 12:13948. [PMID: 35977970 PMCID: PMC9385703 DOI: 10.1038/s41598-022-17508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Food webs studies are intrinsically complex and time-consuming. Network data about trophic interaction across different large locations and ecosystems are scarce in comparison with general ecological data, especially if we consider terrestrial habitats. Here we present a complex network strategy to ease the gathering of the information by simplifying the collection of data with a taxonomic key. We test how well the topology of three different food webs retain their structure at the resolution of the nodes across distinct levels of simplification, and we estimate how community detection could be impacted by this strategy. The first level of simplification retains most of the general topological indices; betweenness and trophic levels seem to be consistent and robust even at the higher levels of simplification. This result suggests that generalisation and standardisation, as a good practice in food webs science, could benefit the community, both increasing the amount of open data available and the comparison among them, thus providing support especially for scientists that are new in this field and for exploratory analysis.
Collapse
|
4
|
Wicquart J, Gudka M, Obura D, Logan M, Staub F, Souter D, Planes S. A workflow to integrate ecological monitoring data from different sources. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Laloë JO, Chivers WJ, Esteban N, Hays GC. Reconstructing past thermal conditions in beach microclimates. GLOBAL CHANGE BIOLOGY 2021; 27:6592-6601. [PMID: 34558767 DOI: 10.1111/gcb.15903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Reconstruction of past conditions provides important information on how ecosystems have been impacted by climate change, but generally for microhabitats worldwide there are no long-term empirical measurements. In these cases, there has been protracted debate about how various large-scale environmental proxies can best be used to reconstruct local temperatures. Here we help resolve this debate by examining how well environmental proxies hindcast sand temperatures at nest depths for five sea turtle nesting sites across the world. We link instrumental air temperature and sea surface temperature records with empirical sand temperature observations in the Atlantic (Ascension Island and Cape Verde), the Indian Ocean (Chagos Archipelago), the Caribbean (St Eustatius) and the Pacific (French Polynesia). We found strong correlations between sea surface temperatures, air temperatures and sand temperatures at all our study sites. Furthermore, Granger causality testing shows variations in sea surface temperature and air temperature precede variations in sand temperatures. We found that different proxies (air or sea temperature or a combination of both) predicted mean monthly sand temperatures within <0.5°C of empirical observations. Reconstructions of sand temperatures over the last 170 years reveal a slight warming of temperatures (maximum 0.5°C per century). An analysis of 36 published datasets revealed that the gradient of the relationship between sand temperature and air temperature is relatively constant, suggesting long-term changes in sand temperature could be extended around the world to include nesting sites where there are no empirical measurements of sand temperature. Our approaches are likely to have utility for a range of microhabitats where there is an interest in long-term changes in temperature.
Collapse
Affiliation(s)
- Jacques-Olivier Laloë
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William J Chivers
- School of Electrical Engineering and Computing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole Esteban
- Faculty of Science and Engineering, Swansea University, Swansea, Wales, United Kingdom
| | - Graeme C Hays
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Mandeville CP, Koch W, Nilsen EB, Finstad AG. Open Data Practices among Users of Primary Biodiversity Data. Bioscience 2021; 71:1128-1147. [PMID: 34733117 PMCID: PMC8560312 DOI: 10.1093/biosci/biab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Presence-only biodiversity data are increasingly relied on in biodiversity, ecology, and conservation research, driven by growing digital infrastructures that support open data sharing and reuse. Recent reviews of open biodiversity data have clearly documented the value of data sharing, but the extent to which the biodiversity research community has adopted open data practices remains unclear. We address this question by reviewing applications of presence-only primary biodiversity data, drawn from a variety of sources beyond open databases, in the indexed literature. We characterize how frequently researchers access open data relative to data from other sources, how often they share newly generated or collated data, and trends in metadata documentation and data citation. Our results indicate that biodiversity research commonly relies on presence-only data that are not openly available and neglects to make such data available. Improved data sharing and documentation will increase the value, reusability, and reproducibility of biodiversity research.
Collapse
Affiliation(s)
- Caitlin P Mandeville
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wouter Koch
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erlend B Nilsen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Anders G Finstad
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Takeuchi Y, Muraoka H, Yamakita T, Kano Y, Nagai S, Bunthang T, Costello MJ, Darnaedi D, Diway B, Ganyai T, Grudpan C, Hughes A, Ishii R, Lim PT, Ma K, Muslim AM, Nakano S, Nakaoka M, Nakashizuka T, Onuma M, Park C, Pungga RS, Saito Y, Shakya MM, Sulaiman MK, Sumi M, Thach P, Trisurat Y, Xu X, Yamano H, Yao TL, Kim E, Vergara S, Yahara T. The
Asia‐Pacific
Biodiversity Observation Network: 10‐year achievements and new strategies to 2030. Ecol Res 2021. [DOI: 10.1111/1440-1703.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yayoi Takeuchi
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 Japan
| | - Hiroyuki Muraoka
- River Basin Research Center Gifu University 1‐1 Yanagido, Gifu 501‐1193 Japan
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv) Research Institute for Global Change (RIGC), Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) 2‐15, Natsushima‐cho, Yokosuka Kanagawa 237‐0061 Japan
| | - Yuichi Kano
- Institute of Decision Science for a Sustainable Society, Kyushu University 744 Motooka Nishi‐ku, Fukuoka 819‐0395 Japan
| | - Shin Nagai
- Department of Environmental Geochemical Cycle Research Japan Agency for Marine‐Earth Science and Technology Yokohama Kanagawa 236‐0001 Japan
| | - Touch Bunthang
- Inland Fisheries Research and Development Institute of Fisheries Administration #186, Norodom Blvd., Phnom Penh Cambodia
| | - Mark John Costello
- Faculty of Bioscience and Aquaculture Nord Universitet Bodø Norway
- School of Environment University of Auckland Auckland 1142 New Zealand
| | - Dedy Darnaedi
- Universitas Nasional Jakarta Selatan Jakarta 12520 Indonesia
| | - Bibian Diway
- Research, Development and Innovation Division Forest Department Sarawak Kuching Sarawak Malaysia
| | - Tonny Ganyai
- Research and Development Department Sarawak Energy Berhad Kuching Sarawak Malaysia
| | - Chaiwut Grudpan
- Department of Fisheries Ubon Ratchathani University 85 Sathonlamak Rd, Mueang Si Khai, Warin Chamrap District, Ubon Ratchathani 34190 Thailand
| | - Alice Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Jinghong 666303 China
| | - Reiichiro Ishii
- Research Institute for Humanity and Nature 457‐4 Motoyama, Kamigamo, Kita‐ku, Kyoto 603‐8047 Japan
| | - Po Teen Lim
- Bachok Marine Research Station Institute of Ocean and Earth Sciences, University of Malaya Kelantan 16310 Malaysia
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany, Chinese Academy of Sciences Xiangshan, Haidian District, Beijing 100093 China
| | - Aidy M. Muslim
- Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT) Kuala Terengganu 21030 Malaysia
| | - Shin‐ichi Nakano
- Center for Ecological Research Kyoto University 2‐509‐3 Hirano, Otsu Shiga, 520‐2113 Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere Hokkaido University Aikappu 1 Akkeshi Hokkaido 088‐1113 Japan
| | - Tohru Nakashizuka
- Research Institute for Humanity and Nature 457‐4 Motoyama, Kamigamo, Kita‐ku, Kyoto 603‐8047 Japan
- Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan
| | - Manabu Onuma
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 Japan
| | - Chan‐Ho Park
- Genetic Resources Information Center National Institute of Biological Resources 42 Hwangyeoung‐ro 42, Seo‐gu, Incheon, 22689 Republic of Korea
| | - Runi Sylvester Pungga
- Research, Development and Innovation Division Forest Department Sarawak Kuching Sarawak Malaysia
| | - Yusuke Saito
- Biodiversity Center of Japan, Ministry of the Environment, Japan Fujiyoshida City Yamanashi 403‐0005 Japan
| | | | | | - Maya Sumi
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 Japan
| | - Phanara Thach
- Inland Fisheries Research and Development Institute of Fisheries Administration #186, Norodom Blvd., Phnom Penh Cambodia
| | - Yongyut Trisurat
- Department of Forest Biology, Faculty of Forestry Kasetsart University Bangkok 10900 Thailand
| | - Xuehong Xu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany, Chinese Academy of Sciences, Biodiversity Committee, Chinese Academy of Sciences Beijing 100093 China
| | - Hiroya Yamano
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 Japan
| | - Tze Leong Yao
- Forest Research Institute Malaysia Kepong Selangor 52109 Malaysia
| | - Eun‐Shik Kim
- Department of Forestry, Environment, and Systems Kookmin University Seoul 02707 South Korea
| | - Sheila Vergara
- Biodiversity Information Management, ASEAN Centre for Biodiversity, Forestry Campus, UPLB Los Banos Laguna 4031 Philippines
| | - Tetsukazu Yahara
- Department of Biology Kyushu University Hakozaki 6‐10‐1, Higashi‐ku, Fukuoka 812‐81 Japan
| |
Collapse
|
8
|
Yamakita T, Yamada K, Yokooka H, Kanaya G. Traits database of tidal flat macrobenthos along the Northwest Pacific coast of Japan. Ecol Res 2020. [DOI: 10.1111/1440-1703.12183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Takehisa Yamakita
- Project Team for Analyses of Changes in East Japan Marine Ecosystems Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - Katsumasa Yamada
- Aitsu Marine Station, Center for Water Cycle, Marine Environment and Disaster Management Kumamoto University Kumamoto Japan
| | - Hiroyuki Yokooka
- IDEA Consultants, Inc. Institute of Environmental Ecology Yaizu Japan
| | - Gen Kanaya
- Center for Regional Environmental Research National Institute for Environmental Studies (NIES) Tsukuba Japan
| |
Collapse
|