1
|
Russell VV, Iavarone AT, Ozyamak E, Grant C, Komeili A. A network of coiled-coil and actin-like proteins controls the cellular organization of magnetosome organelles in deep-branching magnetotactic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639979. [PMID: 40060654 PMCID: PMC11888303 DOI: 10.1101/2025.02.24.639979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Magnetotactic Bacteria (MTB) are a diverse group of microorganisms that use magnetosomes, organelles composed of magnetite or greigite, to navigate along geomagnetic fields. While MTB span several phyla and exhibit diverse phenotypes, magnetosome formation has been mechanistically studied in only two species of Alphaproteobacteria. Here, we use Desulfovibrio magneticus RS-1 to uncover the mechanisms behind tooth-shaped magnetosome assembly in deep-branching MTB. Our findings reveal that RS-1 magnetic particles initially form randomly within the cell before localizing to the positive cell curvature. Genetic and proteomic analyses indicate that early biomineralization involves membrane-associated proteins found in all MTB, while later stages depend on coiled-coil (Mad20, 23, 25, and 26) and actin-like (MamK and Mad28) proteins, most of which are unique to deep-branching MTB. These findings suggest that while biomineralization originates from a common ancestor, magnetosome chain formation has diverged evolutionarily among different MTB lineages.
Collapse
Affiliation(s)
- Virginia V Russell
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California Berkeley, Berkeley, California, USA
| | - Ertan Ozyamak
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Bio-Rad Laboratories, Hercules, California, USA
| | - Carly Grant
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Entrepreneurship Program, UCSF Rosenman Institute, San Francisco, California, USA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
2
|
Wan J, Ji R, Liu J, Ma K, Pan Y, Lin W. Biomineralization in magnetotactic bacteria: From diversity to molecular discovery-based applications. Cell Rep 2024; 43:114995. [PMID: 39602309 DOI: 10.1016/j.celrep.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The synthesis of magnetic nanoparticles (Fe3O4 or Fe3S4) within the membrane-bound organelles known as magnetosomes in magnetotactic bacteria (MTB) is a remarkable example of microbial-controlled biomineralization. Studying MTB biomineralization is crucial not only for understanding the origin and evolution of magnetoreception and bacterial organelles but also for advancing biotechnological and biomedical applications of MTB cells and magnetosomes. After decades of research, MTB have revealed unexpected diversity and complexity. The mechanisms underlying magnetosome biomineralization in MTB have been continuously documented using a few model MTB strains. In this review, we provide an overview of recent findings related to MTB diversity and focus primarily on the current understanding of magnetosome biosynthesis. Additionally, we summarize the growing biotechnological and biomedical applications derived from molecular studies of MTB and their magnetosomes.
Collapse
Affiliation(s)
- Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kun Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ferrara KM, Gupta KR, Pi H. Bacterial Organelles in Iron Physiology. Mol Microbiol 2024; 122:914-928. [PMID: 39545931 DOI: 10.1111/mmi.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Collapse
Affiliation(s)
- Kristina M Ferrara
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Sun Q, Yu L, Donnelly SC, Fradin C, Thompson RT, Prato FS, Goldhawk DE. Essential magnetosome proteins MamI and MamL from magnetotactic bacteria interact in mammalian cells. Sci Rep 2024; 14:26292. [PMID: 39487238 PMCID: PMC11530650 DOI: 10.1038/s41598-024-77591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells. Localization and potential protein-protein interaction(s) were investigated using confocal microscopy and fluorescence correlation spectroscopy (FCS). Enhanced green fluorescent protein (EGFP)-MamI and the red fluorescent Tomato-MamL displayed distinct intracellular localization, with net-like and punctate fluorescence, respectively. Remarkably, co-expression revealed co-localization of both fluorescent fusion proteins in the same punctate pattern. An interaction between MamI and MamL was confirmed by co-immunoprecipitation. In addition, changes in EGFP-MamI distribution were accompanied by acquisition of intracellular mobility which all Tomato-MamL structures displayed. Analysis of extracts from these cells by FCS was consistent with an interaction between fluorescent fusion proteins, including an increase in particle radius. Co-localization and interaction of MamI and MamL demonstrate that select magnetosome proteins may associate in mammalian cells.
Collapse
Affiliation(s)
- Qin Sun
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
| | - Liu Yu
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
| | | | - Cécile Fradin
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
- Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - R Terry Thompson
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
- Physics & Astronomy, Western University, London, ON, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Research Institute, London, ON, Canada.
- Medical Biophysics, Western University, London, ON, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada.
- Imaging Program, Lawson Research Institute, 268 Grosvenor St. , PO Box 5777 Station B, London, ON, N6A 4V2, Canada.
| |
Collapse
|
5
|
Pang B, Zheng H, Ma S, Tian J, Wen Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res 2024; 52:2924-2941. [PMID: 38197240 PMCID: PMC11014258 DOI: 10.1093/nar/gkad1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haolan Zheng
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shijia Ma
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiesheng Tian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
7
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Awal RP, Müller FD, Pfeiffer D, Monteil CL, Perrière G, Lefèvre CT, Schüler D. Experimental analysis of diverse actin-like proteins from various magnetotactic bacteria by functional expression in Magnetospirillum gryphiswaldense. mBio 2023; 14:e0164923. [PMID: 37823629 PMCID: PMC10653835 DOI: 10.1128/mbio.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Frank D. Müller
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Daniel Pfeiffer
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Caroline L. Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | - Christopher T. Lefèvre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| |
Collapse
|
9
|
Awal RP, Lefevre CT, Schüler D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 2023; 14:e0328222. [PMID: 37318230 PMCID: PMC10470508 DOI: 10.1128/mbio.03282-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Christopher T. Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Nakano S, Furutani H, Kato S, Kouduka M, Yamazaki T, Suzuki Y. Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney. Front Microbiol 2023; 14:1174899. [PMID: 37440886 PMCID: PMC10335762 DOI: 10.3389/fmicb.2023.1174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetosome-producing microorganisms can sense and move toward the redox gradient and have been extensively studied in terrestrial and shallow marine sediment environments. However, given the difficulty of sampling, magnetotactic bacteria (MTB) are poorly explored in deep-sea hydrothermal fields. In this study, a deep-sea hydrothermal vent chimney from the Southern Mariana Trough was collected using a remotely operated submersible. The mineralogical and geochemical characterization of the vent chimney sample showed an internal iron redox gradient. Additionally, the electron microscopy of particles collected by magnetic separation from the chimney sample revealed MTB cells with bullet-shaped magnetosomes, and there were minor occurrences of cuboctahedral and hexagonal prismatic magnetosomes. Genome-resolved metagenomic analysis was performed to identify microorganisms that formed magnetosomes. A metagenome-assembled genome (MAG) affiliated with Nitrospinae had magnetosome genes such as mamA, mamI, mamM, mamP, and mamQ. Furthermore, a diagnostic feature of MTB genomes, such as magnetosome gene clusters (MGCs), including mamA, mamP, and mamQ, was also confirmed in the Nitrospinae-affiliated MAG. Two lines of evidence support the occurrence of MTB in a deep-sea, inactive hydrothermal vent environment.
Collapse
Affiliation(s)
- Shinsaku Nakano
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Furutani
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshitsugu Yamazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu LF, Lin W, Xiao T, Zhang W, Liu J. Insight into the metabolic potential and ecological function of a novel Magnetotactic Nitrospirota in coral reef habitat. Front Microbiol 2023; 14:1182330. [PMID: 37342564 PMCID: PMC10278575 DOI: 10.3389/fmicb.2023.1182330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.
Collapse
Affiliation(s)
- Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | | | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Aix Marseille University, CNRS, LCB, IM2B, IMM, Marseille, France
| | - Wei Lin
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Liu P, Zheng Y, Zhang R, Bai J, Zhu K, Benzerara K, Menguy N, Zhao X, Roberts AP, Pan Y, Li J. Key gene networks that control magnetosome biomineralization in magnetotactic bacteria. Natl Sci Rev 2022; 10:nwac238. [PMID: 36654913 PMCID: PMC9840458 DOI: 10.1093/nsr/nwac238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically and morphologically diverse prokaryotes that have the capability of sensing Earth's magnetic field via nanocrystals of magnetic iron minerals. These crystals are enclosed within intracellular membranes or organelles known as magnetosomes and enable a sensing function known as magnetotaxis. Although MTB were discovered over half a century ago, the study of the magnetosome biogenesis and organization remains limited to a few cultured MTB strains. Here, we present an integrative genomic and phenomic analysis to investigate the genetic basis of magnetosome biomineralization in both cultured and uncultured strains from phylogenetically diverse MTB groups. The magnetosome gene contents/networks of strains are correlated with magnetic particle morphology and chain configuration. We propose a general model for gene networks that control/regulate magnetosome biogenesis and chain assembly in MTB systems.
Collapse
Affiliation(s)
| | | | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
13
|
Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biominerals are extraordinary materials that provide organisms with a variety of functions to support life. The synthesis of biominerals and organization at the macroscopic level is a consequence of the interactions of these materials with proteins. The association of biominerals and proteins is very ancient and has sparked a wealth of research across biological, medical and material sciences. Calcium carbonate, hydroxyapatite, and silica represent widespread natural biominerals. The atomic details of the interface between macromolecules and these biominerals is very intriguing from a chemical perspective, considering the association of chemical entities that are structurally different. With this review I provide an overview of the available structural studies of biomineralization proteins, explored from the Protein Data Bank (wwPDB) archive and scientific literature, and of how these studies are inspiring the design and engineering of proteins able to synthesize novel biominerals. The progression of this review from classical template proteins to silica polymerization seeks to benefit researchers involved in various interdisciplinary aspects of a biomineralization project, who need background information and a quick update on advances in the field. Lessons learned from structural studies are exemplary and will guide new projects for the imaging of new hybrid biomineral/protein superstructures at the atomic level.
Collapse
|
14
|
Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol 2022; 13:945734. [PMID: 35979495 PMCID: PMC9376291 DOI: 10.3389/fmicb.2022.945734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023] Open
Abstract
Magnetosome synthesis in magnetotactic bacteria (MTB) is regarded as a very ancient evolutionary process that dates back to deep-branching phyla. Magnetotactic bacteria belonging to one of such phyla, Nitrospirota, contain the classical genes for the magnetosome synthesis (e.g., mam, mms) and man genes, which were considered to be specific for this group. However, the recent discovery of man genes in MTB from the Thermodesulfobacteriota phylum has raised several questions about the inheritance of these genes in MTB. In this work, three new man genes containing MTB genomes affiliated with Nitrospirota and Thermodesulfobacteriota, were obtained. By applying reconciliation with these and the previously published MTB genomes, we demonstrate that the last common ancestor of all Nitrospirota was most likely not magnetotactic as assumed previously. Instead, our findings suggest that the genes for magnetosome synthesis were transmitted to the phylum Nitrospirota by horizontal gene transfer (HGT), which is the first case of the interphylum transfer of magnetosome genes detected to date. Furthermore, we provide evidence for the HGT of magnetosome genes from the Magnetobacteriaceae to the Dissulfurispiraceae family within Nitrospirota. Thus, our results imply a more significant role of HGT in the MTB evolution than deemed before and challenge the hypothesis of the ancient origin of magnetosome synthesis.
Collapse
Affiliation(s)
- Maria Uzun
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Koziaeva
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marina Dziuba
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Marine Science, The University of Texas at Austin, Austin, TX, United States
| | | | - Denis Grouzdev
- SciBear OU, Tallinn, Estonia
- *Correspondence: Denis Grouzdev,
| |
Collapse
|
15
|
A Novel Isolate of Spherical Multicellular Magnetotactic Prokaryotes Has Two Magnetosome Gene Clusters and Synthesizes Both Magnetite and Greigite Crystals. Microorganisms 2022; 10:microorganisms10050925. [PMID: 35630369 PMCID: PMC9145555 DOI: 10.3390/microorganisms10050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Multicellular magnetotactic prokaryotes (MMPs) are a unique group of magnetotactic bacteria that are composed of 10–100 individual cells and show coordinated swimming along magnetic field lines. MMPs produce nanometer-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals—termed magnetosomes. Two types of magnetosome gene cluster (MGC) that regulate biomineralization of magnetite and greigite have been found. Here, we describe a dominant spherical MMP (sMMP) species collected from the intertidal sediments of Jinsha Bay, in the South China Sea. The sMMPs were 4.78 ± 0.67 μm in diameter, comprised 14–40 cells helical symmetrically, and contained bullet-shaped magnetite and irregularly shaped greigite magnetosomes. Two sets of MGCs, one putatively related to magnetite biomineralization and the other to greigite biomineralization, were identified in the genome of the sMMP, and two sets of paralogous proteins (Mam and Mad) that may function separately and independently in magnetosome biomineralization were found. Phylogenetic analysis indicated that the sMMPs were affiliated with Deltaproteobacteria. This is the first direct report of two types of magnetosomes and two sets of MGCs being detected in the same sMMP. The study provides new insights into the mechanism of biomineralization of magnetosomes in MMPs, and the evolutionary origin of MGCs.
Collapse
|
16
|
Comparative Metagenomics of Anaerobic Digester Communities Reveals Sulfidogenic and Methanogenic Microbial Subgroups in Conventional and Plug Flow Residential Septic Tank Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
On-site wastewater treatment systems (OWTS) are primarily monitored using physiochemical factors, including chemical oxygen demand (COD) and residual total suspended solids (TSS), which are indirect measures of the microbial action during the anaerobic digestion process. Changes in anaerobic digester microbial communities can alter the digester performance, but this information cannot be directly obtained from traditional physicochemical indicators. The potential of metagenomic DNA sequencing as a tool for taxonomic and functional profiling of microbial communities was examined in both common conventional and plug flow-type anaerobic digesters (single-pass and recirculating). Compared to conventional digesters, plug flow-type digesters had higher relative levels of sulfate-reducing bacteria (Desulfovibrio spp.) and hydrogenotrophic methanogens (Methanospirillum spp.). In contrast, recirculating anaerobic digesters were enriched with denitrifier bacteria and hydrogenotrophic methanogens, and both were significantly correlated with physicochemical factors such as COD and TSS. Stratification of microbial communities was observed along the digester treatment process according to hydrolytic, acidogenic, acetogenic, and methanogenic subgroups. These results indicate that the high-throughput DNA sequencing may be useful as a monitoring tool to characterize the changes in bacterial communities and the functional profile due to differences in digester design in on-site systems.
Collapse
|
17
|
Barr CR, Bedrossian M, Lohmann KJ, Nealson KH. Magnetotactic bacteria: concepts, conundrums, and insights from a novel in situ approach using digital holographic microscopy (DHM). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:107-124. [DOI: 10.1007/s00359-022-01543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
|
18
|
Bellinger MR, Wei J, Hartmann U, Cadiou H, Winklhofer M, Banks MA. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc Natl Acad Sci U S A 2022; 119:e2108655119. [PMID: 35012979 PMCID: PMC8784154 DOI: 10.1073/pnas.2108655119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Animals use geomagnetic fields for navigational cues, yet the sensory mechanism underlying magnetic perception remains poorly understood. One idea is that geomagnetic fields are physically transduced by magnetite crystals contained inside specialized receptor cells, but evidence for intracellular, biogenic magnetite in eukaryotes is scant. Certain bacteria produce magnetite crystals inside intracellular compartments, representing the most ancient form of biomineralization known and having evolved prior to emergence of the crown group of eukaryotes, raising the question of whether magnetite biomineralization in eukaryotes and prokaryotes might share a common evolutionary history. Here, we discover that salmonid olfactory epithelium contains magnetite crystals arranged in compact clusters and determine that genes differentially expressed in magnetic olfactory cells, contrasted to nonmagnetic olfactory cells, share ancestry with an ancient prokaryote magnetite biomineralization system, consistent with exaptation for use in eukaryotic magnetoreception. We also show that 11 prokaryote biomineralization genes are universally present among a diverse set of eukaryote taxa and that nine of those genes are present within the Asgard clade of archaea Lokiarchaeota that affiliates with eukaryotes in phylogenomic analysis. Consistent with deep homology, we present an evolutionary genetics hypothesis for magnetite formation among eukaryotes to motivate convergent approaches for examining magnetite-based magnetoreception, molecular origins of matrix-associated biomineralization processes, and eukaryogenesis.
Collapse
Affiliation(s)
- M Renee Bellinger
- Coastal Oregon Marine Experiment Station, Department Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365;
| | - Jiandong Wei
- Experimental Physics Department, Saarland University, D-66041 Saarbruecken, Germany
| | - Uwe Hartmann
- Experimental Physics Department, Saarland University, D-66041 Saarbruecken, Germany
| | - Hervé Cadiou
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique UPR3212, F-67100 Strasbourg, France
| | - Michael Winklhofer
- Institute of Biology and Environmental Science, University of Oldenburg, D-26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Michael A Banks
- Coastal Oregon Marine Experiment Station, Department Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365
| |
Collapse
|
19
|
Park Y, Faivre D. Diversity of Microbial Metal Sulfide Biomineralization. Chempluschem 2021; 87:e202100457. [PMID: 34898036 DOI: 10.1002/cplu.202100457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Indexed: 01/30/2023]
Abstract
Since the emergence of life on Earth, microorganisms have contributed to biogeochemical cycles. Sulfate-reducing bacteria are an example of widespread microorganisms that participate in the metal and sulfur cycles by biomineralization of biogenic metal sulfides. In this work, we review the microbial biomineralization of metal sulfide particles and summarize distinctive features from exemplary cases. We highlight that metal sulfide biomineralization is highly metal- and organism-specific. The properties of metal sulfide biominerals depend on the degree of cellular control and on environmental factors, such as pH, temperature, and concentration of metals. Moreover, biogenic macromolecules, including peptides and proteins, help cells control their extracellular and intracellular environments that regulate biomineralization. Accordingly, metal sulfide biominerals exhibit unique features when compared to abiotic minerals or biominerals produced by dead cell debris.
Collapse
Affiliation(s)
- Yeseul Park
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108, Saint-Paul-lez-Durance, France
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
20
|
Sesbanimide R, a Novel Cytotoxic Polyketide Produced by Magnetotactic Bacteria. mBio 2021; 12:mBio.00591-21. [PMID: 34006654 PMCID: PMC8262917 DOI: 10.1128/mbio.00591-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.
Collapse
|
21
|
Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A, Maekawa T. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLoS One 2021; 16:e0248313. [PMID: 33705469 PMCID: PMC7951924 DOI: 10.1371/journal.pone.0248313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| |
Collapse
|
22
|
Genome-Wide Identification of Essential and Auxiliary Gene Sets for Magnetosome Biosynthesis in Magnetospirillum gryphiswaldense. mSystems 2020; 5:5/6/e00565-20. [PMID: 33203687 PMCID: PMC7676999 DOI: 10.1128/msystems.00565-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Magnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far. Magnetotactic bacteria (MTB) stand out by their ability to manufacture membrane-enclosed magnetic organelles, so-called magnetosomes. Previously, it has been assumed that a genomic region of approximately 100 kbp, the magnetosome island (MAI), harbors all genetic determinants required for this intricate biosynthesis process. Recent evidence, however, argues for the involvement of additional auxiliary genes that have not been identified yet. In the present study, we set out to delineate the full gene complement required for magnetosome production in the alphaproteobacterium Magnetospirillum gryphiswaldense using a systematic genome-wide transposon mutagenesis approach. By an optimized procedure, a Tn5 insertion library of 80,000 clones was generated and screened, yielding close to 200 insertants with mild to severe impairment of magnetosome biosynthesis. Approximately 50% of all Tn5 insertion sites mapped within the MAI, mostly leading to a nonmagnetic phenotype. In contrast, in the majority of weakly magnetic Tn5 insertion mutants, genes outside the MAI were affected, which typically caused lower numbers of magnetite crystals with partly aberrant morphology, occasionally combined with deviant intracellular localization. While some of the Tn5-struck genes outside the MAI belong to pathways that have been linked to magnetosome formation before (e.g., aerobic and anaerobic respiration), the majority of affected genes are involved in so far unsuspected cellular processes, such as sulfate assimilation, oxidative protein folding, and cytochrome c maturation, or are altogether of unknown function. We also found that signal transduction and redox functions are enriched in the set of Tn5 hits outside the MAI, suggesting that such processes are particularly important in support of magnetosome biosynthesis. IMPORTANCEMagnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far.
Collapse
|
23
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
24
|
Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data 2020; 7:252. [PMID: 32737307 PMCID: PMC7449369 DOI: 10.1038/s41597-020-00593-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that possess genes for the synthesis of membrane-bounded crystals of magnetite or greigite, called magnetosomes. Despite over half a century of studying MTB, only about 60 genomes have been sequenced. Most belong to Proteobacteria, with a minority affiliated with the Nitrospirae, Omnitrophica, Planctomycetes, and Latescibacteria. Due to the scanty information available regarding MTB phylogenetic diversity, little is known about their ecology, evolution and about the magnetosome biomineralization process. This study presents a large-scale search of magnetosome biomineralization genes and reveals 38 new MTB genomes. Several of these genomes were detected in the phyla Elusimicrobia, Candidatus Hydrogenedentes, and Nitrospinae, where magnetotactic representatives have not previously been reported. Analysis of the obtained putative magnetosome biomineralization genes revealed a monophyletic origin capable of putative greigite magnetosome synthesis. The ecological distributions of the reconstructed MTB genomes were also analyzed and several patterns were identified. These data suggest that open databases are an excellent source for obtaining new information of interest.
Collapse
Affiliation(s)
- Maria Uzun
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Lolita Alekseeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Maria Krutkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Veronika Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Denis Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| |
Collapse
|
25
|
Koziaeva VV, Alekseeva LM, Uzun MM, Leão P, Sukhacheva MV, Patutina EO, Kolganova TV, Grouzdev DS. Biodiversity of Magnetotactic Bacteria in the Freshwater Lake Beloe Bordukovskoe, Russia. Microbiology (Reading) 2020. [DOI: 10.1134/s002626172003008x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Abstract
Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.
Collapse
Affiliation(s)
- Hayley C. McCausland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Arash Komeili
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Pohl A, Berger F, Sullan RMA, Valverde-Tercedor C, Freindl K, Spiridis N, Lefèvre CT, Menguy N, Klumpp S, Blank KG, Faivre D. Decoding Biomineralization: Interaction of a Mad10-Derived Peptide with Magnetite Thin Films. NANO LETTERS 2019; 19:8207-8215. [PMID: 31565946 DOI: 10.1021/acs.nanolett.9b03560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling, and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nanoparticles in magnetotactic bacteria has become an excellent model system. Most interestingly, nanoparticle morphologies have been discovered that defy crystallographic rules (e.g., in the species Desulfamplus magnetovallimortis strain BW-1). In certain conditions, this strain mineralizes bullet-shaped magnetite nanoparticles, which exhibit defined (111) crystal faces and are elongated along the [100] direction. We hypothesize that surface-specific protein interactions break the nanoparticle symmetry, inhibiting the growth of certain crystal faces and thereby favoring the growth of others. Screening the genome of BW-1, we identified Mad10 (Magnetosome-associated deep-branching) as a potential magnetite-binding protein. Using atomic force microscope (AFM)-based single-molecule force spectroscopy, we show that a Mad10-derived peptide, which represents the most conserved region of Mad10, binds strongly to (100)- and (111)-oriented single-crystalline magnetite thin films. The peptide-magnetite interaction is thus material- but not crystal-face-specific. It is characterized by broad rupture force distributions that do not depend on the retraction speed of the AFM cantilever. To account for these experimental findings, we introduce a three-state model that incorporates fast rebinding. The model suggests that the peptide-surface interaction is strong in the absence of load, which is a direct result of this fast rebinding process. Overall, our study sheds light on the kinetic nature of peptide-surface interactions and introduces a new magnetite-binding peptide with potential use as a functional coating for magnetite nanoparticles in biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Anna Pohl
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Florian Berger
- Laboratory of Sensory Neuroscience , The Rockefeller University , 1230 York Avenue , New York 10065 , United States
| | - Ruby M A Sullan
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Carmen Valverde-Tercedor
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Kinga Freindl
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | - Nika Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | | | - Nicolas Menguy
- Sorbonne Université , UMR CNRS 7590, IRD. MNHN, Institut de Minéralogie, Physique des Matériaux et Cosmochimie - IMPMC , 4 Place Jussieu , 75005 Paris , France
| | - Stefan Klumpp
- Department of Theory & Bio-Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Institute for the Dynamics of Complex Systems , University of Göttingen , Friedrich Hund Platz 1 , 37077 Göttingen , Germany
| | - Kerstin G Blank
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Damien Faivre
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Aix-Marseille Université , CEA, CNRS, BIAM, 13108 Saint Paul lez Durance , France
| |
Collapse
|
28
|
Phylogenetic and Structural Identification of a Novel Magnetotactic Deltaproteobacteria Strain, WYHR-1, from a Freshwater Lake. Appl Environ Microbiol 2019; 85:AEM.00731-19. [PMID: 31053584 DOI: 10.1128/aem.00731-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that are able to biomineralize intracellular, magnetic chains of magnetite or greigite nanocrystals called magnetosomes. Simultaneous characterization of MTB phylogeny and biomineralization is crucial but challenging because most MTB are extremely difficult to culture. We identify a large rod, bean-like MTB (tentatively named WYHR-1) from freshwater sediments of Weiyang Lake, Xi'an, China, using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Phylogenetic analysis of 16S rRNA gene sequences indicates that WYHR-1 is a novel genus from the Deltaproteobacteria class. Transmission electron microscope observations reveal that WYHR-1 cells contain tens of magnetite magnetosomes that are organized into a single chain bundle along the cell long axis. Mature WYHR-1 magnetosomes are bullet-shaped, straight, and elongated along the [001] direction, with a large flat end terminated by a {100} face at the base and a conical top. This crystal morphology is distinctively different from bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum. This indicates that WYHR-1 may have a different crystal growth process and mechanism from other species, which results from species-specific magnetosome biomineralization in MTB.IMPORTANCE Magnetotactic bacteria (MTB) represent a model system for understanding biomineralization and are also studied intensively in biogeomagnetic and paleomagnetic research. However, many uncultured MTB strains have not been identified phylogenetically or investigated structurally at the single-cell level, which limits comprehensive understanding of MTB diversity and their role in biomineralization. We have identified a novel MTB strain, WYHR-1, from a freshwater lake using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Our analyses further indicate that strain WYHR-1 represents a novel genus from the Deltaproteobacteria class. In contrast to bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum, WYHR-1 magnetosomes are bullet-shaped, straight, and highly elongated along the [001] direction, are terminated by a large {100} face at their base, and have a conical top. Our findings imply that, consistent with phylogenetic diversity of MTB, bullet-shaped magnetosomes have diverse crystal habits and growth patterns.
Collapse
|
29
|
Koziaeva VV, Rusakova SA, Slobodova NV, Uzun M, Kolganova TV, Skryabin KG, Grouzdev DS. Magnetospirillum kuznetsovii sp. nov., a novel magnetotactic bacterium isolated from a lake in the Moscow region. Int J Syst Evol Microbiol 2019; 69:1953-1959. [DOI: 10.1099/ijsem.0.003408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Veronika V. Koziaeva
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| | - Svetlana A. Rusakova
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| | - Natalia V. Slobodova
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| | - Maria Uzun
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
- 2Faculty of Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-12, Moscow, Russia
| | - Tatiana V. Kolganova
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| | - Konstantin G. Skryabin
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| | - Denis S. Grouzdev
- 1Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Leninsky Ave 33, bld. 2, Moscow, Russia
| |
Collapse
|
30
|
Genome Editing Method for the Anaerobic Magnetotactic Bacterium Desulfovibrio magneticus RS-1. Appl Environ Microbiol 2018; 84:AEM.01724-18. [PMID: 30194101 PMCID: PMC6210102 DOI: 10.1128/aem.01724-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of organisms that form intracellular nanometer-scale magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membranes, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization and are potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from that of the cubooctahedral-shaped magnetite crystals of the genetically tractable MTB within the Alphaproteobacteria. Here, we present a method for genome editing in Desulfovibrio magneticus RS-1, a cultured representative of the deeply branching MTB of the class Deltaproteobacteria. This marks a crucial step in developing D. magneticus as a model for studying diverse mechanisms of magnetic particle formation by MTB. Magnetosomes are complex bacterial organelles that serve as model systems for studying bacterial cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely related Alphaproteobacteria of the genus Magnetospirillum that form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood. Desulfovibrio magneticus RS-1 is an anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified 10 genes in the conserved magnetosome gene island of D. magneticus that are essential for its magnetic phenotype. However, this screen likely missed mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration have not been feasible due to the low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis in D. magneticus using a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacing kupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective in D. magneticus and may also be applied to other genetically recalcitrant bacteria. IMPORTANCE Magnetotactic bacteria (MTB) are a group of organisms that form intracellular nanometer-scale magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membranes, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization and are potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from that of the cubooctahedral-shaped magnetite crystals of the genetically tractable MTB within the Alphaproteobacteria. Here, we present a method for genome editing in Desulfovibrio magneticus RS-1, a cultured representative of the deeply branching MTB of the class Deltaproteobacteria. This marks a crucial step in developing D. magneticus as a model for studying diverse mechanisms of magnetic particle formation by MTB.
Collapse
|
31
|
Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, Xiao T, Wu LF. Diversity and Characterization of Multicellular Magnetotactic Prokaryotes From Coral Reef Habitats of the Paracel Islands, South China Sea. Front Microbiol 2018; 9:2135. [PMID: 30271390 PMCID: PMC6142882 DOI: 10.3389/fmicb.2018.02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023] Open
Abstract
While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.
Collapse
Affiliation(s)
- Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, France.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| |
Collapse
|
32
|
Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME JOURNAL 2018; 12:1508-1519. [PMID: 29581530 PMCID: PMC5955933 DOI: 10.1038/s41396-018-0098-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth's magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and "Candidatus Lambdaproteobacteria" classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Origin of magnetotaxis: Vertical inheritance or horizontal transfer? Proc Natl Acad Sci U S A 2017; 114:E5016-E5018. [PMID: 28607039 DOI: 10.1073/pnas.1706937114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
35
|
Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol 2017; 12:13-22. [PMID: 27930882 DOI: 10.1021/acschembio.6b01000] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
36
|
Araujo ACV, Morillo V, Cypriano J, Teixeira LCRS, Leão P, Lyra S, Almeida LGD, Bazylinski DA, Ribeiro de Vasconcelos AT, Abreu F, Lins U. Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment. BMC Genomics 2016; 17:726. [PMID: 27801294 PMCID: PMC5088516 DOI: 10.1186/s12864-016-3064-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. RESULTS Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4) magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 μm s-1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. CONCLUSION Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively large number of genes encoding transporters as well as chemotaxis receptors in the genome of Mf. australis strain IT-1 combined with its rapid swimming velocities, indicate that cells respond rapidly to environmental changes.
Collapse
Affiliation(s)
- Ana Carolina Vieira Araujo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.,Current institution: Departamento de Biologia, Universidade Federal de São Carlos, 18052-780, Sorocaba, SP, Brazil
| | - Viviana Morillo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.,School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sidcley Lyra
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Luiz Gonzaga de Almeida
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, 25651-070, Petrópolis, RJ, Brazil
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Ana Tereza Ribeiro de Vasconcelos
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, 25651-070, Petrópolis, RJ, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
37
|
Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genet 2016; 12:e1006101. [PMID: 27286560 PMCID: PMC4902198 DOI: 10.1371/journal.pgen.1006101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. One of the most intriguing examples for membrane-bounded prokaryotic organelles are magnetosomes which consist of well-ordered chains of perfectly shaped magnetic nanocrystals that in many aquatic bacteria serve as geomagnetic field sensors to direct their swimming towards microoxic zones at the bottom of natural waters. In the model bacterium Magnetospirillum gryphiswaldense and related magnetotactic microorganisms, magnetosomes are formed by a complex pathway that is orchestrated by more than 30 genes. However, the initial and most crucial step of magnetosome biosynthesis, formation and differentiation of a dedicated intracellular membrane compartment for controlled biomineralization of magnetite crystals, remained only poorly understood. By ultrastructural analysis of several mutants and genetic induction of de novo magnetosome synthesis, we identified the key determinants and early steps of magnetosome membrane biogenesis. Our results suggest that formation of intracellular membranes in bacteria is mediated by a cumulative action of several factors, but apparently is differently controlled than intracellular membrane remodeling in eukaryotic cells.
Collapse
|
38
|
Hershey DM, Ren X, Melnyk RA, Browne PJ, Ozyamak E, Jones SR, Chang MCY, Hurley JH, Komeili A. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria. PLoS Biol 2016; 14:e1002402. [PMID: 26981620 PMCID: PMC4794232 DOI: 10.1371/journal.pbio.1002402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.
Collapse
Affiliation(s)
- David M. Hershey
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Xuefeng Ren
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Ryan A. Melnyk
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Patrick J. Browne
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Ertan Ozyamak
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Stephanie R. Jones
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Michelle C. Y. Chang
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - James H. Hurley
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| |
Collapse
|
39
|
Abstract
Magnetotactic bacteria produce chains of membrane-bound organelles that direct the biomineralization of magnetic nanoparticles. These magnetosome compartments are a model for studying the biogenesis and subcellular organization of bacterial organelles. Previous studies have suggested that discrete gene products build and assemble magnetosomes in a stepwise fashion. Here, using an inducible system, we show that the stages of magnetosome formation are highly dynamic and interconnected. During de novo formation, magnetosomes first organize into discontinuous chain fragments that are subsequently connected by the bacterial actin-like protein MamK. We also find that magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. In the absence of biomineralization, magnetosome membranes stall at a diameter of ~50 nm. Those that have initiated biomineralization then expand to significantly larger sizes and accommodate mature magnetic particles. We speculate that such a biomineralization-dependent checkpoint for membrane growth establishes the appropriate conditions within the magnetosome to ensure successful nucleation and growth of magnetic particles. Magnetotactic bacteria make magnetic nanoparticles inside membrane-bound organelles called magnetosomes; however, it is unclear how the magnetosome membrane controls the biomineralization that occurs within this bacterial organelle. We placed magnetosome formation under inducible control in Magnetospirillum magneticum AMB-1 and used electron cryo-tomography to capture magnetosomes in their near-native state as they form de novo. An inducible system provided the key evidence that magnetosome membranes grow continuously unless they have not properly initiated biomineralization. Our finding that the size of a bacterial organelle impacts its biochemical function is a fundamental advance that impacts our perception of organelle formation and can inform future attempts aimed at creating designer magnetic particles.
Collapse
|
40
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
41
|
Lefèvre CT, Bennet M, Landau L, Vach P, Pignol D, Bazylinski DA, Frankel RB, Klumpp S, Faivre D. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J 2015; 107:527-538. [PMID: 25028894 DOI: 10.1016/j.bpj.2014.05.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 11/15/2022] Open
Abstract
Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells' motility in an oxygen gradient.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; CEA/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| | - Mathieu Bennet
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Livnat Landau
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Vach
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - David Pignol
- CEA/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| | - Dennis A Bazylinski
- University of Nevada at Las Vegas, School of Life Sciences, Las Vegas, Nevada
| | - Richard B Frankel
- Department of Physics, California Polytechnic State University, San Luis Obispo, California
| | - Stefan Klumpp
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
42
|
Li J, Menguy N, Gatel C, Boureau V, Snoeck E, Patriarche G, Leroy E, Pan Y. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum. J R Soc Interface 2015; 12:rsif.2014.1288. [PMID: 25566884 DOI: 10.1098/rsif.2014.1288] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum.
Collapse
Affiliation(s)
- Jinhua Li
- Paleomagnetism and Geochronology Lab, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle (MNHN), IRD UMR 206, 4 Place Jussieu, Paris 75005, France France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle (MNHN), IRD UMR 206, 4 Place Jussieu, Paris 75005, France
| | | | | | | | | | - Eric Leroy
- France Chimie Métallurgique des Terres Rares, ICMPE, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex 94320, France
| | - Yongxin Pan
- Paleomagnetism and Geochronology Lab, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| |
Collapse
|
43
|
Zeytuni N, Cronin S, Lefèvre CT, Arnoux P, Baran D, Shtein Z, Davidov G, Zarivach R. MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria. PLoS One 2015; 10:e0130394. [PMID: 26114501 PMCID: PMC4482739 DOI: 10.1371/journal.pone.0130394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Samuel Cronin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Christopher T. Lefèvre
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Pascal Arnoux
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Dror Baran
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zvi Shtein
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
44
|
Faivre D, Baumgartner J. The combination of random mutagenesis and sequencing highlight the role of unexpected genes in an intractable organism. PLoS Genet 2015; 11:e1004895. [PMID: 25569789 PMCID: PMC4287431 DOI: 10.1371/journal.pgen.1004895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Damien Faivre
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
- * E-mail:
| | - Jens Baumgartner
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| |
Collapse
|
45
|
Rahn-Lee L, Byrne ME, Zhang M, Le Sage D, Glenn DR, Milbourne T, Walsworth RL, Vali H, Komeili A. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet 2015; 11:e1004811. [PMID: 25569806 PMCID: PMC4287615 DOI: 10.1371/journal.pgen.1004811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.
Collapse
Affiliation(s)
- Lilah Rahn-Lee
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Meghan E. Byrne
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Manjing Zhang
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - David Le Sage
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
| | - David R. Glenn
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Timothy Milbourne
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ronald L. Walsworth
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Eder SHK, Gigler AM, Hanzlik M, Winklhofer M. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 2014; 9:e107356. [PMID: 25233081 PMCID: PMC4169400 DOI: 10.1371/journal.pone.0107356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW) to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1)) against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1)) is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae), we identified the sole presence of cyclo-octasulfur (S8: 151, 219, 467 cm(-1)), using green (532 nm), red (638 nm) and near-infrared excitation (785 nm). The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state.
Collapse
Affiliation(s)
- Stephan H. K. Eder
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander M. Gigler
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
| | - Marianne Hanzlik
- Department of Chemistry, Elektronenmikroskopie, Technical University Munich, Munich, Germany
| | - Michael Winklhofer
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
47
|
Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00741-14. [PMID: 25081260 PMCID: PMC4118063 DOI: 10.1128/genomea.00741-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments.
Collapse
|
48
|
Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J Bacteriol 2014; 196:3111-21. [PMID: 24957623 DOI: 10.1128/jb.01674-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many bacterial species contain multiple actin-like proteins tasked with the execution of crucial cell biological functions. MamK, an actin-like protein found in magnetotactic bacteria, is important in organizing magnetosome organelles into chains that are used for navigation along geomagnetic fields. MamK and numerous other magnetosome formation factors are encoded by a genetic island termed the magnetosome island. Unlike most magnetotactic bacteria, Magnetospirillum magneticum AMB-1 (AMB-1) contains a second island of magnetosome-related genes that was named the magnetosome islet. A homologous copy of mamK, mamK-like, resides within this islet and encodes a protein capable of filament formation in vitro. Previous work had shown that mamK-like is expressed in vivo, but its function, if any, had remained unknown. Though MamK-like is highly similar to MamK, it contains a mutation that in MamK and other actins blocks ATPase activity in vitro and filament dynamics in vivo. Here, using genetic analysis, we demonstrate that mamK-like has an in vivo role in assisting organelle alignment. In addition, MamK-like forms filaments in vivo in a manner that is dependent on the presence of MamK and the two proteins interact in a yeast two-hybrid assay. Surprisingly, despite the ATPase active-site mutation, MamK-like is capable of ATP hydrolysis in vitro and promotes MamK filament turnover in vivo. Taken together, these experiments suggest that direct interactions between MamK and MamK-like contribute to magnetosome alignment in AMB-1.
Collapse
|
49
|
Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae. ISME JOURNAL 2014; 8:2463-77. [PMID: 24914800 DOI: 10.1038/ismej.2014.94] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/27/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria (MTB) of the genus 'Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named 'Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood-Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood 'Ca. Magnetobacterium' genus.
Collapse
|
50
|
Dufour SC, Laurich JR, Batstone RT, McCuaig B, Elliott A, Poduska KM. Magnetosome-containing bacteria living as symbionts of bivalves. ISME JOURNAL 2014; 8:2453-62. [PMID: 24914799 DOI: 10.1038/ismej.2014.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic-anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic-anoxic interfaces likely develop due to the host's bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids.
Collapse
Affiliation(s)
- Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Jason R Laurich
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Rebecca T Batstone
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Bonita McCuaig
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Alexander Elliott
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Kristin M Poduska
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|