1
|
Qi YL, Chen YT, Xie YG, Li YX, Rao YZ, Li MM, Xie QJ, Cao XR, Chen L, Qu YN, Yuan ZX, Xiao ZC, Lu L, Jiao JY, Shu WS, Li WJ, Hedlund BP, Hua ZS. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat Commun 2024; 15:4066. [PMID: 38744885 PMCID: PMC11094006 DOI: 10.1038/s41467-024-48498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.
Collapse
Affiliation(s)
- Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ting Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qi-Jun Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Ru Cao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Xuan Yuan
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Chao Xiao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Zhang Z, Liu T, Li X, Ye Q, Bangash HI, Zheng J, Peng N. Metagenome-assembled genomes reveal carbohydrate degradation and element metabolism of microorganisms inhabiting Tengchong hot springs, China. ENVIRONMENTAL RESEARCH 2023; 238:117144. [PMID: 37716381 DOI: 10.1016/j.envres.2023.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.
Collapse
Affiliation(s)
- Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
4
|
Wang J, Qu YN, Evans PN, Guo Q, Zhou F, Nie M, Jin Q, Zhang Y, Zhai X, Zhou M, Yu Z, Fu QL, Xie YG, Hedlund BP, Li WJ, Hua ZS, Wang Z, Wang Y. Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs. SCIENCE ADVANCES 2023; 9:eadg6004. [PMID: 37379385 DOI: 10.1126/sciadv.adg6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Recent discoveries of methyl-coenzyme M reductase-encoding genes (mcr) in uncultured archaea beyond traditional euryarchaeotal methanogens have reshaped our view of methanogenesis. However, whether any of these nontraditional archaea perform methanogenesis remains elusive. Here, we report field and microcosm experiments based on 13C-tracer labeling and genome-resolved metagenomics and metatranscriptomics, revealing that nontraditional archaea are predominant active methane producers in two geothermal springs. Archaeoglobales performed methanogenesis from methanol and may exhibit adaptability in using methylotrophic and hydrogenotrophic pathways based on temperature/substrate availability. A five-year field survey found Candidatus Nezhaarchaeota to be the predominant mcr-containing archaea inhabiting the springs; genomic inference and mcr expression under methanogenic conditions strongly suggested that this lineage mediated hydrogenotrophic methanogenesis in situ. Methanogenesis was temperature-sensitive , with a preference for methylotrophic over hydrogenotrophic pathways when incubation temperatures increased from 65° to 75°C. This study demonstrates an anoxic ecosystem wherein methanogenesis is primarily driven by archaea beyond known methanogens, highlighting diverse nontraditional mcr-containing archaea as previously unrecognized methane sources.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, QLD, Australia
| | - Qinghai Guo
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Fengwu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- College of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiangmei Zhai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhiguo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qing-Long Fu
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
5
|
Power JF, Lowe CL, Carere CR, McDonald IR, Cary SC, Stott MB. Temporal dynamics of geothermal microbial communities in Aotearoa-New Zealand. Front Microbiol 2023; 14:1094311. [PMID: 37020721 PMCID: PMC10068964 DOI: 10.3389/fmicb.2023.1094311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Microbial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60–70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.
Collapse
Affiliation(s)
- Jean F. Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Caitlin L. Lowe
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, Aotearoa-New Zealand
| | - Ian R. McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - S. Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
- S. Craig Cary,
| | - Matthew B. Stott
- Biomolecular Interaction Centre, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, Aotearoa-New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
- *Correspondence: Matthew B. Stott,
| |
Collapse
|
6
|
Rasmussen KL, Stamps BW, Vanzin GF, Ulrich SM, Spear JR. Spatial and temporal dynamics at an actively silicifying hydrothermal system. Front Microbiol 2023; 14:1172798. [PMID: 37206339 PMCID: PMC10188993 DOI: 10.3389/fmicb.2023.1172798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.
Collapse
Affiliation(s)
- Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Blake W. Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Gary F. Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | | | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- *Correspondence: John R. Spear,
| |
Collapse
|
7
|
Liu Z, Yang F, Chen Y. Interspecific and intraspecific Taylor's laws for frog skin microbes. Comput Struct Biotechnol J 2022; 21:251-259. [PMID: 36544471 PMCID: PMC9755231 DOI: 10.1016/j.csbj.2022.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Amphibians are known to have an abundance of microorganisms colonizing their skin, and these symbionts often protect the host from disease. There are now many comprehensive studies on amphibian skin microbes, but the interspecific and intraspecific abundance distributions (or abundance heterogeneity) of amphibian skin microbes remain unclear. Furthermore, we have a very limited understanding of how the abundance and heterogeneity of microbial communities relate to the body size (or more specifically, skin surface area) of amphibian hosts. In this study, we evaluated the interspecific and intraspecific abundance distribution patterns of amphibian skin microbes and evaluated whether the symbiotic skin microbes of different anuran species share a fundamental heterogeneity scaling parameter. If scaling invariance exists, we hypothesize that a fundamental heterogeneity scaling value also exists. A total of 358 specimens of 10 amphibian host species were collected, and we used Type-I and III Taylor's power law expansions (TPLE) to assess amphibian skin microbial heterogeneity at the community and mixed-species population levels, respectively. The obtained results showed that, at the community scale, a high aggregation of the microbial abundance distribution on the skin barely changed with host size. In a mixed-species population (i.e., a community context), the abundance distribution pattern of mixed microbial species populations also does not change with host size and always remains highly aggregated. These findings suggest that while amphibian skin microbiomes located in different hosts may have different environmental conditions, they share a fundamental heterogeneity scaling parameter, and thus, scale invariance exists. Finally, we found that microhabitat area provided by the host skin is vital to the stability of the symbiotic microbial community.
Collapse
Affiliation(s)
- Zhidong Liu
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China,Corresponding author.
| |
Collapse
|
8
|
Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, Orlić S. Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia. Syst Appl Microbiol 2022; 45:126359. [PMID: 36150364 DOI: 10.1016/j.syapm.2022.126359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
In Croatia, a variety of geothermal springs with a wide temperature range and varied hydrochemical conditions exist, and they may harbor different niches for the distribution of microbial communities. In this study, 19 different sites, mainly located in central and eastern Croatia, were selected for primary characterization of spring hydrochemistry and microbial community composition. Using 16S rRNA gene amplicon sequencing, it was found that the bacterial communities that dominated most geothermal waters were related to Proteobacteria and Campylobacteria, while most archaeal sequences were related to Crenarchaeota. At the genus level, the prokaryotic community was highly site-specific and was often dominated by a single genus, including sites dominated by Hydrogenophilus, Sulfuricurvum, Sulfurovum, Thiofaba and Nitrospira, while the most abundant archaeal genera were affiliated to the ammonia-oxidizing archaea, Candidatus Nitrosotenuis and Candidatus Nitrososphaera. Whereas the microbial communities were overall highly location-specific, temperature, pH, ammonia, nitrate, total nitrogen, sulfate and hydrogen sulfide, as well as dissolved organic and inorganic carbon, were the abiotic factors that significantly affected microbial community composition. Furthermore, an aquifer-type effect was observed in the community composition, but there was no pronounced seasonal variability for geothermal spring communities (i.e. the community structure was mainly stable during the three seasons sampled). These results surprisingly pointed to stable and geographically unique microbial communities that were adapted to different geothermal water environments throughout Croatia. Knowing which microbial communities are present in these extreme habitats is essential for future research. They will allow us to explore further the microbial metabolisms prevailing at these geothermal sites that have high potential for biotechnological uses, as well as the establishment of the links between microbial community structure and the physicochemical environment of geothermal waters.
Collapse
Affiliation(s)
- Maja Mitrović
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ema Kostešić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Tamara Marković
- Croatian Geological Survey, Milan Sachs 2 Street, 10 000 Zagreb, Croatia
| | - Lorena Selak
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Vienna, Department of Microbiology and Ecosystem Science, Divison of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia.
| |
Collapse
|
9
|
Sterling JJ, Sakihara TS, Brannock PM, Pearson ZG, Maclaine KD, Santos SR, Havird JC. Primary microbial succession in the anchialine ecosystem. Integr Comp Biol 2022; 62:275-287. [PMID: 35687002 DOI: 10.1093/icb/icac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected ∼2 years after their formation and at later time points spanning ∼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.
Collapse
Affiliation(s)
- James J Sterling
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Troy S Sakihara
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawaii Hilo, HI, USA
| | | | - Zoe G Pearson
- Dept. of Biology, Rollins College, Winter Park, FL, USA
| | - Kendra D Maclaine
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Scott R Santos
- Dept. of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Justin C Havird
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
10
|
Minerals Determined a Special Ecological Niche and Selectively Enriched Microbial Species from Bulk Water Communities in Hot Springs. Microorganisms 2021; 9:microorganisms9051020. [PMID: 34068582 PMCID: PMC8151621 DOI: 10.3390/microorganisms9051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Minerals provide physical niches and supply nutrients or serve as electron donors/acceptors for microorganism survival and growth, and thus minerals and microbes co-evolved. Yet, little is known about how sediment minerals impact microbial community assembly in hot springs and to what extent mineralogical composition influences microbial community composition and diversity. Here the influences of minerals on thermophiles in Tengchong hot springs were revealed by network analysis of field samples, as well as in-situ microcosm experiments with minerals. A molecular ecological network was constructed based on high throughput sequencing data of 16S rRNA gene, with a combination of water geochemistry and sedimentary mineralogical compositions. Six modules were identified and this highly modular network structure represents the microbial preference to different abiotic factors, consequently resulting in niche partitioning in sedimentary communities in hot springs. Diverse mineralogical compositions generated special niches for microbial species. Subsequently, the in-situ microcosm experiments with four minerals (aragonite, albite, K-feldspar, and quartz) and spring water were conducted in a silicate-hosted alkaline spring (i.e., Gmq) and a carbonate-hosted neutral hot spring (i.e., Gxs) for 70 days. Different microbial preferences were observed among different mineral types (carbonate versus silicate). Aragonite microcosms in Gmq spring enriched archaeal genera Sulfophobococcus and Aeropyrum within the order Desulfurococcales by comparison with both in-situ water and silicate microcosms. Sulfophobococcus was also accumulated in Gxs aragonite microcosms, but the contribution to overall dissimilarity is much lower than that in Gmq spring. Besides, Caldimicrobium was a bacterial genus enriched in Gxs aragonite microcosms, in contrast to in-situ water and silicate microcosms, whereas Candidatus Kryptobacter and Thermus were more abundant in silicate microcosms. The differences in microbial accumulations among different mineral types in the same spring implied that mineral chemistry may exert extra deterministic selective pressure in drawing certain species from the bulk water communities, in addition to stochastic absorption on mineral surface. Taken together, our results highlight the special niche partitioning determined by mineralogical compositions and further confirm that minerals could be used as “fishing bait” to enrich certain rare microbial species.
Collapse
|
11
|
Mueller RC, Peach JT, Skorupa DJ, Copié V, Bothner B, Peyton BM. An emerging view of the diversity, ecology and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol Ecol 2021; 97:6021323. [PMID: 33501490 DOI: 10.1093/femsec/fiaa246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA
| | - Dana J Skorupa
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| |
Collapse
|
12
|
The Effect of Spring Water Geochemistry on Copper Proteins in Tengchong Hot Springs, China. Appl Environ Microbiol 2020; 86:AEM.00581-20. [PMID: 32358007 DOI: 10.1128/aem.00581-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022] Open
Abstract
Copper (Cu) is an essential trace metal cofactor for a variety of proteins; however, excess Cu is toxic to most organisms. Cu homeostasis is maintained by a complex machinery of Cu binding proteins that control the uptake, transport, sequestration, and efflux of Cu ions. Despite the importance of Cu binding proteins in electron transfer, substrate oxidation, superoxide dismutation, and denitrification, little information exists about microbial Cu utilization in extreme environments, where the geochemical conditions may affect Cu bioavailability. Using metagenomic data from 9 hot springs in Tengchong, China, which range in temperature from 42°C to 96°C and in pH from 2.3 to 9, the effects of pH, temperature, and spring geochemistry on the distribution of Cu binding domains of proteins and oxidoreductases were studied. Dissolved Cu and Cu binding domains were detected across all temperature and pH gradients. Cu binding domains of cytochrome c oxidase subunits, heavy-metal-associated domains, and nitrous oxide reductase were detected at all sites. DoxB, a quinol oxidase, and other quinol oxidase subunits were the dominant Cu binding oxidoreductase subunits present at low-pH and high-temperature sites, whereas cbb 3-type cytochrome c oxidase subunits were dominant at high-pH and high-temperature sites. Additionally, aa 3-type cytochrome c oxidase was more prominent than cbb 3-type cytochrome c oxidase under circumneutral-pH conditions. This suggests that the type of cytochrome c oxidase pathway and the Cu proteins employed by microbes to carry out important functions such as energy acquisition and efflux of excess Cu are affected by the physicochemical conditions of the springs.IMPORTANCE Copper is present in a variety of proteins and is required to carry out essential functions by all organisms. However, in hot spring environments, copper availability may be limited due to the high temperatures and the wide range in pH. The significance of our research is in relating the physicochemical environment to the distribution of copper proteins across hot spring environments, which provides increased understanding of primary functions and adaptions in these environments.
Collapse
|
13
|
Guo L, Wang G, Sheng Y, Sun X, Shi Z, Xu Q, Mu W. Temperature governs the distribution of hot spring microbial community in three hydrothermal fields, Eastern Tibetan Plateau Geothermal Belt, Western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137574. [PMID: 32145630 DOI: 10.1016/j.scitotenv.2020.137574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The eastern Tibetan Plateau geothermal belt in the southwest of China hosts a number of hot springs with a wide range of temperature and hydrogeochemical conditions, which may harbor different niches for the distribution of microbial communities. In this study, we investigated hydrochemical characteristics and microbial community composition in 16 hot springs with a temperature range of 34.6 to 88.2 °C within and across three typical hydrothermal fields (Kangding, Litang, and Batang). According to aquifer lithologic and tectonic differences, the hydrochemical compositions of hot springs displayed an apparent regional-specific pattern with distinct distributions of major and trace elements (e.g., Ca2+, Mg2+, F-/B) and were primarily formed by water-rock interaction across the three hydrothermal fields. Nonetheless, microbial communities significantly assembled with the temperature rather than the geographic locations with distinct hydrogeological features. Low temperature (<45 °C), moderate temperature (55-70 °C) and high temperature (>70 °C) groups were identified based on their community compositions. Proteobacteria and Nitrospirae were the predominant phyla in low-temperature hot springs, while in moderate to high-temperature springs they were mainly composed of Aquificae, Deinococcus-Thermus, Thermodesulfobacteria, Thermotogae and Cyanobacteria. Variation partition analysis suggested a higher explanation of temperature (29.6%) than spatial variable (1.8%) and other geochemical variables (2.5%) on the microbial distribution. Microbial co-occurrence network showed >80% negative associations hinting a low co-existence pattern and highlighted the driving force of temperature as well as F- or total organic carbon (TOC) for microbial interactions. Microbial dissimilarity displayed significant linear correlations with environmental (temperature) and geographic distance in Batang but only with temperature in Kangding area, which might be attributed to the regional-specific hydrogeochemistry. This study may help us to better understand the distribution of the microbial community in hot spring across different hydrothermal fields.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Yizhi Sheng
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA.
| | - Xiaoyi Sun
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zheming Shi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Qingyu Xu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Wenqing Mu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
14
|
Li L, Ma ZS. Comparative power law analysis for the spatial heterogeneity scaling of the hot-spring microbiomes. Mol Ecol 2019; 28:2932-2943. [PMID: 31066936 DOI: 10.1111/mec.15124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2019] [Accepted: 05/01/2019] [Indexed: 01/15/2023]
Abstract
Spatial heterogeneity is a fundamental property of any natural ecosystems, including hot spring and human microbiomes. Two important scales that spatial heterogeneity exhibits are population and community scales, and Taylor's power law (PL) and its extensions (PLEs) offer ideal quantitative models to assess population- and community-level heterogeneities. Here we analyse 165 hot spring microbiome samples at the global scale that cover a wide range of temperatures (7.5-99°C) and pH levels (3.3-9). We explore a question of fundamental importance for measuring the spatial heterogeneity of the hot-spring microbiome and further discuss their ecological implications: How do critical environmental factors such as temperature and pH influence the scaling of community spatial heterogeneity? We are particularly interested in the existence of a universal scaling model that is independent of environmental gradients. By applying PL and PLEs, we were able to obtain such scaling parameters of the hot spring at both community and population levels, which are temperature- and pH-invariant. These findings suggest that while the hot-spring microbiomes located at different regions may have different environmental conditions, they share a fundamental heterogeneity scaling parameter, analogically similar to the gravitational acceleration on Earth, which may vary slightly depending on altitude and latitude, but is invariant overall. In contrast, similar to the physics of the Moon and Earth, which have different gravitational accelerations, the hot spring and human microbiomes can have different scaling parameters as demonstrated in this study.
Collapse
Affiliation(s)
- Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Zhang Q, Wang M, Ma X, Gao Q, Wang T, Shi X, Zhou J, Zuo J, Yang Y. High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. ENVIRONMENT INTERNATIONAL 2019; 126:543-551. [PMID: 30852441 DOI: 10.1016/j.envint.2019.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic digestion is one of the most successful waste management strategies worldwide, wherein microorganisms play an essential role in reducing organic pollutants and producing renewable energy. However, variations of microbial community in full-scale anaerobic digesters, particularly functional groups relevant to biogas production, remain elusive. Here, we examined microbial community in a year-long monthly time series of 3 full-scale anaerobic digesters. We observed substantial diversification in community composition, with only a few abundant OTUs (e.g. Clostridiales, Anaerolineaceae and Methanosaeta) persistently present across different samples. Similarly, there were high variations in relative abundance of methanogenic archaea and methanogenic genes, which were positively correlated (r2 = 0.530, P < 0.001). Variations of methanogens explained 55.7% of biogas producing rates, much higher than the explanatory percentage of environmental parameters (16.4%). Hydrogenotrophic methanogens, especially abundant Methanomicrobiales taxa, were correlated with biogas production performance (r = 0.665, P < 0.001) and nearly all methanogenic genes (0.430 < r < 0.735, P < 0.012). Given that methanogenic archaea or genes are well established for methanogenesis, we conclude that high variations in methanogenic traits (e.g. taxa or genes) are responsible for biogas production variations in full-scale anaerobic digesters.
Collapse
Affiliation(s)
- Qiuting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Mengmeng Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China; School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xingyu Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Qun Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Tengxu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Xuchuan Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
16
|
Zheng T, Deng Y, Wang Y, Jiang H, O'Loughlin EJ, Flynn TM, Gan Y, Ma T. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:109-119. [PMID: 30594709 DOI: 10.1016/j.jhazmat.2018.12.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Determining the temporal variation of microbial communities in groundwater systems is essential to improve our understanding of hydrochemical dynamics in aquifers, particularly as it relates to the fate of redox-sensitive contaminants like arsenic (As). Therefore, a high-resolution hydrobiogeochemical investigation was conducted in the As-affected alluvial aquifer systems of the Jianghan Plain. In two 25 m-deep monitoring wells, the seasonal variation in the composition of groundwater microbial communities was positively correlated with the change in groundwater level (R = 0.47 and 0.39 in NH03B and NH05B, respectively, P < 0.01), implying that the latter could be a primary driver of the seasonal microbial dynamics. In response to the fluctuating groundwater level, iron (Fe) reducers within the Desulfuromonadales were dominant (9.9 ± 4.7% among different sampling sites) in groundwater microbial communities during the monsoon season and associated with high concentrations of Fe(II) and As, while the predominance (16.7 ± 15.2% among different sampling sites) of iron-oxidizers the Gallionellaceae was accompanied by low Fe(II) and As in the non-monsoon season. These results suggest that microbially-mediated iron reduction/oxidation may have governed the seasonal mobilization/scavenging of As in groundwater. Our results provide new insights into mechanisms responsible for seasonal variations in groundwater As concentrations in similar aquifer systems.
Collapse
Affiliation(s)
- Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, 430074, PR China
| | - Yamin Deng
- Geological Survey, China University of Geosciences, Wuhan, 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439-4843, United States
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439-4843, United States
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
17
|
Tang J, Liang Y, Jiang D, Li L, Luo Y, Shah MMR, Daroch M. Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiol 2018; 18:134. [PMID: 30332987 PMCID: PMC6191902 DOI: 10.1186/s12866-018-1271-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ganzi Prefecture in Western China is situated geographically at the transition regions between Tibetan Plateau and Sichuan Basin in a highly tectonically active boundary area between the India and Eurasia plates. The region hosts various hot springs that span a wide range of temperature from 30 to 98 °C and are located at high altitude (up to 4200 m above sea level) in the region of large geothermal anomalies and active Xianshuihe slip-fault that has been active since Holocene. The site represents a biodiversity reservoir for thermophiles, yet their diversity and relationship to geochemical parameters are largely unknown. In the present work, bacterial diversity and community structure in 14 hot springs of Ganzi were investigated using Illumina MiSeq sequencing. Results Bacterial community compositions were evidently distinct among the 14 hot springs, and the bacterial communities in hot springs were majorly abundant in phyla Aquificae, Cyanobacteria and Proteobacteria. Both clustering and PCoA analysis suggested the existence of four bacterial community patterns in these hot springs. Temperature contributed to shaping bacterial community structure of hot springs as revealed by correlation analysis. Abundant unassigned-genus sequences detected in this study strongly implied the presence of novel genera or genetic resources in these hot springs. Conclusion The diversity of hot springs of Ganzi prefecture in Western Sichuan, China is evidently shaped by temperature. Interestingly disproportionally abundant unassigned-genus sequences detected in this study show indicate potential of novel genera or phylotypes. We hypothesize that frequent earthquakes and rapidly changing environment might have contributed to evolution of these potentially new lineages. Overall, this study provided first insight into the bacterial diversity of hot springs located in Western Sichuan, China and its comparison with other similar communities worldwide. Electronic supplementary material The online version of this article (10.1186/s12866-018-1271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dong Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yifan Luo
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Md Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Jiang XT, Ye L, Ju F, Wang YL, Zhang T. Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8224-8232. [PMID: 29943968 DOI: 10.1021/acs.est.7b05579] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Temporal microbial community studies have broadened our knowledge of the dynamics and correlations among microbes in both natural and artificial engineering systems. Using activated sludge as a model system, we utilized the intensive longitudinal sampling method to identify overlooked diversity and the hidden dynamics of microbes, detect cross-associations among microbes after detrending, and reveal the central microbial dynamics during sludge bulking and foaming. We discovered that the accumulative alpha diversity in activated sludge sampled daily over 392 days could be as high as 14 000 OTUs, and that the bacterial community dynamics followed a gradual succession, drifting away from the initial observed day and displaying a significant time-dependent trend. Cross-associations among bacteria were modulated after removing potential spurious correlations based on autocorrelation in microbial time series. Moreover, clusters of bacteria displaying rapid turnover were discovered during the beginning, ongoing, and fading of sludge bulking and foaming, and their physicochemical parameters are resolved. These identified groups of bacteria and their related environmental factors could potentially supply clues to form hypotheses for treating operational problems, such as sludge bulking and foaming.
Collapse
Affiliation(s)
- Xiao-Tao Jiang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Lin Ye
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Feng Ju
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Yu-Lin Wang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| | - Tong Zhang
- Environmental Biotechnology Lab , The University of Hong Kong , Pokfulam , Hong Kong , SAR China
| |
Collapse
|
19
|
Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 2018; 9:2876. [PMID: 30038374 PMCID: PMC6056493 DOI: 10.1038/s41467-018-05020-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023] Open
Abstract
Geothermal springs are model ecosystems to investigate microbial biogeography as they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan interactions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.9–100.6 °C and pH < 1–9.7). We determined that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only having a significant effect for values >70 °C. Further, community dissimilarity increases with geographic distance, with niche selection driving assembly at a localised scale. Surprisingly, two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance (11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These findings provide an unprecedented insight into ecological behaviour in geothermal springs, and a foundation to improve the characterisation of microbial biogeographical processes. Power et al. catalogue the microbial biodiversity and physicochemistry of around 1000 hotsprings across New Zealand, providing insights into the ecological conditions that drive community assembly in these ecosystems.
Collapse
Affiliation(s)
- Jean F Power
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand.,Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Carlo R Carere
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand.,Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Charles K Lee
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Georgia L J Wakerley
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - David W Evans
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand
| | - Mathew Button
- Department of Computer Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Duncan White
- Wairakei Research Centre, GNS Science, Taupō, 3384, New Zealand
| | - Melissa D Climo
- Wairakei Research Centre, GNS Science, Taupō, 3384, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Annika M Hinze
- Department of Computer Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Ian R McDonald
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - S Craig Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand.
| | - Matthew B Stott
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand. .,School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand.
| |
Collapse
|
20
|
Srivastava S, Briggs BR, Dong H. Abundance and taxonomic affiliation of molybdenum transport and utilization genes in Tengchong hot springs, China. Environ Microbiol 2018; 20:2397-2409. [PMID: 29697181 DOI: 10.1111/1462-2920.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
The nitrogen, sulfur and carbon cycles all rely on critical microbial transformations that are carried out by enzymes that require molybdenum (Mo) as a cofactor. Despite Mo importance in these biogeochemical cycles, little information exists about microbial Mo utilization in extreme environments where, due to geochemical conditions, bioavailable Mo may be limited. Using metagenomic data from nine hot springs in Tengchong, Yunnan Province, China, which range in temperature from 42°C to 96°C and pH from 2.3 to 9, the effects of pH, temperature and spring geochemistry on the abundance and taxonomic affiliation of genes related to Mo were studied. Dissolved Mo was only detected at sites with circumneutral pH. However, processes and organisms that require Mo were detected at all sites across all temperature and pH gradients. All sites contained xanthine dehydrogenase, formate dehydrogenase, carbon-monoxide dehydrogenase, nitrate reductase, sulfite oxidase and methionine-sulfoxide reductase despite different community compositions. This suggests that different microbial communities, resulting from different physicochemical conditions, may be performing similar metabolic functions. Furthermore, the abundance and taxonomic diversity of Mo-related annotations increased with higher concentrations of Mo. This study shows that despite geochemical conditions that can limit Mo bioavailability, microbes require Mo for a variety of processes.
Collapse
Affiliation(s)
- Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA
| | - Brandon R Briggs
- Department of Biological Sciences, University of Alaska-Anchorage, Anchorage AK 99508, USA
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
21
|
Liang B, Zhang K, Wang LY, Liu JF, Yang SZ, Gu JD, Mu BZ. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs. Front Microbiol 2018; 9:841. [PMID: 29755446 PMCID: PMC5934436 DOI: 10.3389/fmicb.2018.00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.
Collapse
Affiliation(s)
- Bo Liang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Li-Ying Wang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Unexpected fungal communities in the Rehai thermal springs of Tengchong influenced by abiotic factors. Extremophiles 2018; 22:525-535. [DOI: 10.1007/s00792-018-1014-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
|
23
|
Topographical diversity of common skin microflora and its association with skin environment type: An observational study in Chinese women. Sci Rep 2017; 7:18046. [PMID: 29273721 PMCID: PMC5741767 DOI: 10.1038/s41598-017-18181-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
This study evaluated cutaneous microbial distribution, and microbial co-occurrence at different body sites and skin environments in Chinese women (39.6 ± 11.9 years, N = 100) during the winter season. Microbial distribution (Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus, Pseudomonadaceae, and Malassezia furfur), association with biomarkers (antimicrobial peptides: LL-37, β-defensins [HBD-2, HBD-3]), and claudin-1) and skin biophysical parameters (transepidermal water loss, pH, skin scaliness and roughness, sebum and hydration levels) were also determined. Skin sites (glabella [GL], hand-back [HB], interdigital web-space [IS], antecubital fossa [AF], volar forearm [VF], back [BA]) were classified as normal, oily or dry based on two-step cluster analysis and exposed or unexposed (uncovered or covered by clothes, respectively) based on seasonal apparel. Pseudomonadaceae and Staphylococcus aureus had the highest and lowest detection rate respectively at all sites. Cluster analysis identified skin sites as ‘normal’ (HB, BA, AF, VF), ‘dry’ (IS) and ‘oily’ (GL). Bacterial alpha diversity was higher in exposed (HB, IS, and GL) compared with unexposed sites (BA, AF and VF). Co-occurrence of Staphylococcus aureus with any of the other five microorganisms was lower in dry and oily skin versus normal skin. Skin exposure, biophysical/barrier profile and biomarkers were found to be associated with bacterial distribution and co-occurrence.
Collapse
|
24
|
Prieto-Barajas CM, Alfaro-Cuevas R, Valencia-Cantero E, Santoyo G. Effect of seasonality and physicochemical parameters on bacterial communities in two hot spring microbial mats from Araró, Mexico. REV MEX BIODIVERS 2017. [DOI: 10.1016/j.rmb.2017.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091070. [PMID: 28914802 PMCID: PMC5615607 DOI: 10.3390/ijerph14091070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.
Collapse
|
26
|
Wu G, Huang L, Jiang H, Peng Y, Guo W, Chen Z, She W, Guo Q, Dong H. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Front Microbiol 2017; 8:1336. [PMID: 28769902 PMCID: PMC5509915 DOI: 10.3389/fmicb.2017.01336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
Abstract
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.
Collapse
Affiliation(s)
- Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Yue’e Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Ziyu Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesBeijing, China
- Department of Geology and Environmental Earth Science, Miami University, OxfordOH, United States
| |
Collapse
|
27
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
28
|
Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring. Sci Rep 2016; 6:25262. [PMID: 27126380 PMCID: PMC4850476 DOI: 10.1038/srep25262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.
Collapse
|
29
|
Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci Rep 2016; 6:20174. [PMID: 26838035 PMCID: PMC4738313 DOI: 10.1038/srep20174] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023] Open
Abstract
To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.
Collapse
|
30
|
Jiang Z, Li P, Jiang D, Dai X, Zhang R, Wang Y, Wang Y. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China. PLoS One 2016; 11:e0146331. [PMID: 26761709 PMCID: PMC4711897 DOI: 10.1371/journal.pone.0146331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73–0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41–95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.
Collapse
Affiliation(s)
- Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- * E-mail: (PL); (YXW)
| | - Dawei Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Xinyue Dai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China
- * E-mail: (PL); (YXW)
| |
Collapse
|
31
|
Li H, Yang Q, Li J, Gao H, Li P, Zhou H. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci Rep 2015; 5:17056. [PMID: 26608685 PMCID: PMC4660298 DOI: 10.1038/srep17056] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50–90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3–74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60–80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6–90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2− per cell d−1 with a temperature change from 50 to 70 °C.
Collapse
Affiliation(s)
- Haizhou Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| | - Jian Li
- School of Engineering, Anhui Agricultural University, Hefei 230000, China
| | - Hang Gao
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| | - Ping Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Carbon source preference in chemosynthetic hot spring communities. Appl Environ Microbiol 2015; 81:3834-47. [PMID: 25819970 DOI: 10.1128/aem.00511-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73 °C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (K(m)) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available.
Collapse
|
33
|
Hedlund BP, Reysenbach AL, Huang L, Ong JC, Liu Z, Dodsworth JA, Ahmed R, Williams AJ, Briggs BR, Liu Y, Hou W, Dong H. Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China. Front Microbiol 2015; 6:157. [PMID: 25774153 PMCID: PMC4343020 DOI: 10.3389/fmicb.2015.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/11/2015] [Indexed: 11/28/2022] Open
Abstract
The order Aquificales (phylum Aquificae) consists of thermophilic and hyperthermophilic bacteria that are prominent in many geothermal systems, including those in Tengchong, Yunnan Province, China. However, Aquificales have not previously been isolated from Tengchong. We isolated five strains of Aquificales from diverse springs (temperature 45.2–83.3°C and pH 2.6–9.1) in the Rehai Geothermal Field from sites in which Aquificales were abundant. Phylogenetic analysis showed that four of the strains belong to the genera Hydrogenobacter, Hydrogenobaculum, and Sulfurihydrogenibium, including strains distant enough to likely justify new species of Hydrogenobacter and Hydrogenobaculum. The additional strain may represent a new genus in the Hydrogenothermaceae. All strains were capable of aerobic respiration under microaerophilic conditions; however, they had variable capacity for chemolithotrophic oxidation of hydrogen and sulfur compounds and nitrate reduction.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA ; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Anna-Louise Reysenbach
- Biology Department and Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Liuquin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, China
| | - John C Ong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zizhang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, China
| | - Jeremy A Dodsworth
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA ; Department of Biology, California State University San Bernardino San Bernardino, CA, USA
| | - Reham Ahmed
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda J Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brandon R Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Yitai Liu
- Biology Department and Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, China ; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| |
Collapse
|
34
|
Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci Rep 2014; 4:7479. [PMID: 25524763 PMCID: PMC5378992 DOI: 10.1038/srep07479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts.
Collapse
|
35
|
Xie W, Zhang CL, Wang J, Chen Y, Zhu Y, de la Torre JR, Dong H, Hartnett HE, Hedlund BP, Klotz MG. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables. Environ Microbiol 2014; 17:1600-14. [PMID: 25142282 DOI: 10.1111/1462-2920.12595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 08/08/2014] [Indexed: 11/26/2022]
Abstract
Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China; Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Krebs JE, Vaishampayan P, Probst AJ, Tom LM, Marteinsson VT, Andersen GL, Venkateswaran K. Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. ASTROBIOLOGY 2014; 14:229-240. [PMID: 24588539 DOI: 10.1089/ast.2013.1008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (∼100°C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (∼ 60°C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57°C to 64°C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H2S, and SO2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH.
Collapse
Affiliation(s)
- Jordan E Krebs
- 1 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory , California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | |
Collapse
|