1
|
Olea-Ozuna RJ, Campbell MJ, Quintanilla SY, Nandy S, Brodbelt JS, Boll JM. Alternative lipid synthesis in response to phosphate limitation promotes antibiotic tolerance in Gram-negative ESKAPE pathogens. PLoS Pathog 2025; 21:e1012933. [PMID: 39919117 PMCID: PMC11828411 DOI: 10.1371/journal.ppat.1012933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/14/2025] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that can form lipid bilayers, particularly in the presence of other lipids. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing.
Collapse
Affiliation(s)
- Roberto Jhonatan Olea-Ozuna
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Melanie J. Campbell
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Samantha Y. Quintanilla
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Sinjini Nandy
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Joseph M. Boll
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
2
|
Olea-Ozuna RJ, Campbell MJ, Quintanilla SY, Nandy S, Brodbelt JS, Boll JM. Alternative lipid synthesis in response to phosphate limitation promotes antibiotic tolerance in Gram-negative ESKAPE pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612458. [PMID: 39314339 PMCID: PMC11419095 DOI: 10.1101/2024.09.11.612458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that can form lipid bilayers, particularly in the presence of other lipids. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing.
Collapse
Affiliation(s)
| | | | | | - Sinjini Nandy
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Joseph M. Boll
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Bedoya-Pérez LP, Aguilar-Vera A, Sánchez-Pérez M, Utrilla J, Sohlenkamp C. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Appl Microbiol Biotechnol 2024; 108:288. [PMID: 38587638 PMCID: PMC11001654 DOI: 10.1007/s00253-024-13130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.
Collapse
Affiliation(s)
- Leidy Patricia Bedoya-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Alejandro Aguilar-Vera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - José Utrilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| |
Collapse
|
4
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
López-Lara IM, Geiger O. Membrane lipid composition defines membrane protein spectrum. Trends Microbiol 2023; 31:323-325. [PMID: 36813608 DOI: 10.1016/j.tim.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
In addition to glycerophospholipids, bacterial membranes often include amino acid-containing acyloxyacyl lipids. The functional implications of these aminolipids are largely unknown. However, a recent study by Stirrup et al. expands our understanding and shows that they are major determinants for membrane properties and the relative abundance of distinct membrane proteins in bacterial membranes.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi. THE ISME JOURNAL 2023; 17:315-325. [PMID: 36477724 PMCID: PMC9938194 DOI: 10.1038/s41396-022-01346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Lipids play a crucial role in maintaining cell integrity and homeostasis with the surrounding environment. Cosmopolitan marine roseobacter clade (MRC) and SAR11 clade bacteria are unique in that, in addition to glycerophospholipids, they also produce an array of amino acid-containing lipids that are conjugated with beta-hydroxy fatty acids through an amide bond. Two of these aminolipids, the ornithine aminolipid (OL) and the glutamine aminolipid (QL), are synthesized using the O-acetyltransferase OlsA. Here, we demonstrate that OL and QL are present in both the inner and outer membranes of the Gram-negative MRC bacterium Ruegeria pomeroyi DSS-3. In an olsA mutant, loss of these aminolipids is compensated by a concurrent increase in glycerophospholipids. The inability to produce aminolipids caused significant changes in the membrane proteome, with the membrane being less permeable and key nutrient transporters being downregulated while proteins involved in the membrane stress response were upregulated. Indeed, the import of 14C-labelled choline and dimethylsulfoniopropionate, as a proxy for the transport of key marine nutrients across membranes, was significantly impaired in the olsA mutant. Moreover, the olsA mutant was significantly less competitive than the wild type (WT) being unable to compete with the WT strain in co-culture. However, the olsA mutant unable to synthesize these aminolipids is less susceptible to phage attachment. Together, these data reveal a critical role for aminolipids in the ecophysiology of this important clade of marine bacteria and a trade-off between growth and avoidance of bacteriophage attachment.
Collapse
|
8
|
Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut. Nat Microbiol 2023; 8:424-440. [PMID: 36759753 PMCID: PMC9981464 DOI: 10.1038/s41564-023-01326-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes.
Collapse
|
9
|
The Proteobacterial Methanotroph Methylosinus trichosporium OB3b Remodels Membrane Lipids in Response to Phosphate Limitation. mBio 2022; 13:e0024722. [PMID: 35575546 PMCID: PMC9239053 DOI: 10.1128/mbio.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires plcP-agt genes since the plcP-agt mutant is unable to produce this glycolipid. This plcP-agt-mediated lipid remodeling pathway appears to be important for M. trichosporium OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, plcP is found in all proteobacterial methanotroph genomes, and plcP transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria.
Collapse
|
10
|
Czolkoss S, Borgert P, Poppenga T, Hölzl G, Aktas M, Narberhaus F. Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. Environ Microbiol 2021; 23:6993-7008. [PMID: 34528360 DOI: 10.1111/1462-2920.15777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.
Collapse
Affiliation(s)
- Simon Czolkoss
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Pia Borgert
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Tessa Poppenga
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
11
|
A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME JOURNAL 2021; 15:2440-2453. [PMID: 33750904 PMCID: PMC8319176 DOI: 10.1038/s41396-021-00933-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.
Collapse
|
12
|
Lejeune C, Abreu S, Chaminade P, Dulermo T, David M, Werten S, Virolle MJ. Impact of Phosphate Availability on Membrane Lipid Content of the Model Strains, Streptomyces lividans and Streptomyces coelicolor. Front Microbiol 2021; 12:623919. [PMID: 33692768 PMCID: PMC7937720 DOI: 10.3389/fmicb.2021.623919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023] Open
Abstract
In this issue we demonstrated that the phospholipid content of Streptomyces lividans varies greatly with Pi availability being was much lower in Pi limitation than in Pi proficiency whereas that of Streptomyces coelicolor varied little with Pi availability. In contrast the content in phosphate free ornithine lipids was enhanced in both strains in condition of phosphate limitation. Ornithine lipids biosynthesis starts with the N-acylation of ornithine to form lyso-ornithine that is then O-acylated to yield ornithine lipid. The operon sco1222-23 was proposed to be involved in the conversion of specific amino acids into ornithine in condition of phosphate limitation whereas the sco0921-20 operon encoding N- and O-acyltransferase, respectively, was shown to be involved in the biosynthesis of these lipids. The expression of these two operons was shown to be under the positive control of the two components system PhoR/PhoP and thus induced in phosphate limitation. The expression of phoR/phoP being weak in S. coelicolor, the poor expression of these operons resulted into a fivefold lower ornithine lipids content in this strain compared to S. lividans. In the deletion mutant of the sco0921-20 operon of S. lividans, lyso-ornithine and ornithine lipids were barely detectable and TAG content was enhanced. The complementation of this mutant by the sco0921-20 operon or by sco0920 alone restored ornithine lipids and TAG content to wild type level and was correlated with a twofold increase in the cardiolipin content. This suggested that SCO0920 bears, besides its broad O-acyltransferase activity, an N-acyltransferase activity and this was confirmed by the detection of lyso-ornithine in this strain. In contrast, the complementation of the mutant by sco0921 alone had no impact on ornithine lipids, TAG nor cardiolipin content but was correlated with a high lyso-ornithine content. This confirmed that SCO0921 is a strict N-acyltransferase. However, interestingly, the over-expression of the sco0921-20 operon or of sco0921 alone in S. coelicolor, led to an almost total disappearance of phosphatidylinositol that was correlated with an enhanced DAG and TAG content. This suggested that SCO0921 also acts as a phospholipase C, degrading phosphatidylinositol to indirectly supply of phosphate in condition of phosphate limitation.
Collapse
Affiliation(s)
- Clara Lejeune
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sonia Abreu
- Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pierre Chaminade
- Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, Châtenay-Malabry, France
| | - Thierry Dulermo
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.,Lesaffre International, Marcq-en-Baroeul, France
| | - Michelle David
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marie-Joelle Virolle
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Trimethylornithine Membrane Lipids: Discovered in Planctomycetes and Identified in Diverse Environments. Metabolites 2021; 11:metabo11010049. [PMID: 33445571 PMCID: PMC7828035 DOI: 10.3390/metabo11010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intact polar membrane lipids (IPLs) are the building blocks of all cell membranes. There is a wide range of phosphorus-free IPL structures, including amino acid containing IPLs, that can be taxonomically specific. Trimethylornithine membrane lipids (TMOs) were discovered in northern wetland Planctomycete species that were isolated and described in the last decade. The trimethylated terminal nitrogen moiety of the ornithine amino acid in the TMO structure gives the lipid a charged polar head group, similar to certain phospholipids. Since their discovery, TMOs have been identified in various other recently described northern latitude Planctomycete species, and in diverse environments including tundra soil, a boreal eutrophic lake, meso-oligotrophic lakes, and hot springs. The majority of environments or enrichment cultures in which TMOs have been observed include predominately heterotrophic microbial communities involved in the degradation of recalcitrant material and/or low oxygen methanogenic conditions at primarily northern latitudes. Other ecosystems occupied with microbial communities that possess similar metabolic pathways, such as tropical peatlands or coastal salt marshes, may include TMO producing Planctomycetes as well, further allowing these lipids to potentially be used to understand microbial community responses to environmental change in a wide range of systems. The occurrence of TMOs in hot springs indicates that these unique lipids could have broad environmental distribution with different specialized functions. Opportunities also exist to investigate the application of TMOs in microbiome studies, including forensic necrobiomes. Further environmental and microbiome lipidomics research involving TMOs will help reveal the evolution, functions, and applications of these unique membrane lipids.
Collapse
|
14
|
Córdoba-Castro LA, Salgado-Morales R, Torres M, Martínez-Aguilar L, Lozano L, Vences-Guzmán MÁ, Guan Z, Dantán-González E, Serrano M, Sohlenkamp C. Ornithine Lipids in Burkholderia spp. Pathogenicity. Front Mol Biosci 2021; 7:610932. [PMID: 33469548 PMCID: PMC7814305 DOI: 10.3389/fmolb.2020.610932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Burkholderia sensu lato is composed of a diverse and metabolically versatile group of bacterial species. One characteristic thought to be unique for the genus Burkholderia is the presence of two forms each (with and without 2-hydroxylation) of the membrane lipids phosphatidylethanolamine (PE) and ornithine lipids (OLs). Here, we show that only Burkholderia sensu stricto strains constitutively form OLs, whereas all other analyzed strains belonging to the Burkholderia sensu lato group constitutively form the two forms of PE, but no OLs. We selected two model bacteria to study the function of OL in Burkholderia sensu lato: (1) Burkholderia cenocepacia wild-type which constitutively forms OLs and its mutant deficient in the formation of OLs and (2) Robbsia andropogonis (formerly Burkholderia andropogonis) which does not form OL constitutively, and a derived strain constitutively forming OLs. Both were characterized under free-living conditions and during pathogenic interactions with their respective hosts. The absence of OLs in B. cenocepacia slightly affected bacterial growth under specific abiotic stress conditions such as high temperature and low pH. B. cenocepacia lacking OLs caused lower mortality in Galleria mellonella larvae while R. andropogonis constitutively forming OLs triggers an increased formation of reactive oxygen species immediately after infection of maize leaves, suggesting that OLs can have an important role during the activation of the innate immune response of eukaryotes.
Collapse
Affiliation(s)
- Luz América Córdoba-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca, Mexico
| | - Rosalba Salgado-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Luis Lozano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Edgar Dantán-González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
15
|
Lynch A, Tammireddy SR, Doherty MK, Whitfield PD, Clarke DJ. The Glycine Lipids of Bacteroides thetaiotaomicron Are Important for Fitness during Growth In Vivo and In Vitro. Appl Environ Microbiol 2019; 85:e02157-18. [PMID: 30367006 PMCID: PMC6498176 DOI: 10.1128/aem.02157-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Acylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by the N-acylation of the amino acid, and this is followed by subsequent O-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced in Bacteroides thetaiotaomicron We, and others, have previously reported the identification of a gene, named glsB in this study, that encodes an N-acyltransferase activity responsible for the production of a monoacylated glycine called N-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of the Bacteroidales genomes sequenced so far, the glsB gene is located immediately downstream from a gene, named glsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression of glsB and glsA results in the production of GL in Escherichia coli We constructed a deletion mutant of the glsB gene in B. thetaiotaomicron, and we confirm that glsB is required for the production of GL in B. thetaiotaomicron Moreover, we show that glsB is important for the ability of B. thetaiotaomicron to adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacterium B. thetaiotaomicronIMPORTANCE The gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from the Bacteroidales, an order that includes Bacteroides and Prevotella In this study, we have identified an acylated amino acid, called glycine lipid, produced by Bacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation of B. thetaiotaomicron to a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut by B. thetaiotaomicron This work identifies glycine lipids as an important fitness determinant in B. thetaiotaomicron and therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.
Collapse
Affiliation(s)
- Alli Lynch
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Seshu R Tammireddy
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Disease, University of the Highlands and Islands, Inverness, United Kingdom
| | - Mary K Doherty
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Disease, University of the Highlands and Islands, Inverness, United Kingdom
| | - Phillip D Whitfield
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Disease, University of the Highlands and Islands, Inverness, United Kingdom
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Kim SK, Park SJ, Li XH, Choi YS, Im DS, Lee JH. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ Microbiol 2018; 20:3992-4008. [PMID: 30252196 DOI: 10.1111/1462-2920.14430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Ornithine lipids (OLs) are bacteria-specific lipids that are found in the outer membrane of Gram (-) bacteria and increase as surrogates of phospholipids under phosphate-limited environmental conditions. We investigated the effects of OL increase in bacterial membranes on pathogen virulence and the host immune response. In Pseudomonas aeruginosa, we increased OL levels in membranes by overexpressing the OL-synthesizing operon (olsBA). These increases changed the bacterial surface charge and hydrophobicity, which reduced bacterial susceptibility to antibiotics and antimicrobial peptides (AMPs), interfered with the binding of macrophages to bacterial cells and enhanced bacterial biofilm formation. When grown under low phosphate conditions, P. aeruginosa became more persistent in the treatment of antibiotics and AMPs in an olsBA-dependent manner. While OLs increased persistence, they attenuated P. aeruginosa virulence; in host cells, they reduced the production of inflammatory factors (iNOS, COX-2, PGE2 and nitric oxide) and increased intracellular Ca2+ release. Exogenously added OL had similar effects on P. aeruginosa and host cells. Our results suggest that bacterial OL plays important roles in bacteria-host interaction in a way that enhances bacterial persistence and develops chronic adaptation to infection.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Soo-Jin Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Yu-Sang Choi
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Dong-Soon Im
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|
17
|
Smith AF, Rihtman B, Stirrup R, Silvano E, Mausz MA, Scanlan DJ, Chen Y. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae. ISME JOURNAL 2018; 13:39-49. [PMID: 30108306 PMCID: PMC6298996 DOI: 10.1038/s41396-018-0249-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/09/2022]
Abstract
Marine microorganisms employ multiple strategies to cope with transient and persistent nutrient limitation, one of which, for alleviating phosphorus (P) stress, is to substitute membrane glycerophospholipids with non-P containing surrogate lipids. Such a membrane lipid remodelling strategy enables the most abundant marine phytoplankton and heterotrophic bacteria to adapt successfully to nutrient scarcity in marine surface waters. An important group of non-P lipids, the aminolipids which lack a diacylglycerol backbone, are poorly studied in marine microbes. Here, using a combination of genetic, lipidomics and metagenomics approaches, we reveal for the first time the genes (glsB, olsA) required for the formation of the glutamine-containing aminolipid. Construction of a knockout mutant in either glsB or olsA in the model marine bacterium Ruegeria pomeroyi DSS-3 completely abolished glutamine lipid production. Moreover, both mutants showed a considerable growth cost under P-deplete conditions and the olsA mutant, that is unable to produce the glutamine and ornithine aminolipids, ceased to grow under P-deplete conditions. Analysis of sequenced microbial genomes show that glsB is primarily confined to the Rhodobacteraceae family, which includes the ecologically important marine Roseobacter clade that are key players in the marine sulphur and nitrogen cycles. Analysis of the genes involved in glutamine lipid biosynthesis in the Tara ocean metagenome dataset revealed the global occurrence of glsB in marine surface waters and a positive correlation between glsB abundance and N* (a measure of the deviation from the canonical Redfield ratio), suggesting glutamine lipid plays an important role in the adaptation of marine Rhodobacteraceae to P limitation.
Collapse
Affiliation(s)
- Alastair F Smith
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rachel Stirrup
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Michaela A Mausz
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
18
|
Scala V, Reverberi M, Salustri M, Pucci N, Modesti V, Lucchesi S, Loreti S. Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Front Microbiol 2018; 9:1839. [PMID: 30154768 PMCID: PMC6102392 DOI: 10.3389/fmicb.2018.01839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones.
Collapse
Affiliation(s)
- Valeria Scala
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Vanessa Modesti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Simone Lucchesi
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Stefania Loreti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| |
Collapse
|
19
|
Hölzl G, Sohlenkamp C, Vences-Guzmán MA, Gisch N. Headgroup hydroxylation by OlsE occurs at the C4 position of ornithine lipid and is widespread in proteobacteria and bacteroidetes. Chem Phys Lipids 2018. [PMID: 29524395 DOI: 10.1016/j.chemphyslip.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amino acid-containing acyloxyacyl lipids are composed of a 3-hydroxy fatty acid amide-bound to the α-amino group of an amino acid. A second fatty acid is ester-linked to the 3-hydroxy group of the first fatty acid. Most commonly, ornithine is the headgroup of these lipids, but glycine, serineglycine, glutamine and lysine have also been described in bacteria. Ornithine lipids (OL) can be synthesized by about 50% of the sequenced bacterial species, and several covalent modifications of its basic structure have been described. The OL hydroxylase OlsE is widespread in Rhizobium and Agrobacterium species and is responsible for introducing a hydroxyl group at a hence unknown position within the ornithine headgroup causing the formation of the OL named S2. Using NMR on purified OL S2, we show that the OlsE-mediated hydroxylation takes place at the C-4 position of the ornithine headgroup. Furthermore, we identify a hydroxylase in the genome of Pseudopedobacter saltans, distantly related to OlsE from α-proteobacteria, able to hydroxylate the headgroup of both ornithine lipids and lysine lipids. A homology search with the amino acid sequence of this hydroxylase allows us to predict that OL headgroup hydroxylation is not restricted to a few α-proteobacteria, but is apparently also common in many genera belonging to the Cytophaga-Flavobacterium-Bacteroidetes (CFB) group of bacteria.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos, Mexico.
| | - Miguel Angel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| |
Collapse
|
20
|
Barbosa LC, Goulart CL, Avellar MM, Bisch PM, von Kruger WMA. Accumulation of ornithine lipids in Vibrio cholerae under phosphate deprivation is dependent on VC0489 (OlsF) and PhoBR system. MICROBIOLOGY-SGM 2018; 164:395-399. [PMID: 29458678 DOI: 10.1099/mic.0.000607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ornithine lipids (OLs) are phosphorus-free lipids found in many bacteria grown under phosphate deprivation, a condition that activates the PhoBR system and leads to phosphate uptake and metabolism. Two OL synthesis pathways have already been described. One depends on OlsB and OlsA acyltransferases to add, respectively, the first and second acyl chains to an ornithine molecule. The other pathway is carried out by OlsF, a bifunctional enzyme responsible for both acylation steps. Although Vibrio cholerae lacks olsBA genes, an olsF homologue (vc0489) was identified in its genome. In this work we demonstrated that V. cholerae produces OLs and expresses vc0489 in response to phosphate depletion, in a PhoBR-dependent manner. In Escherichia coli, under similar condition, vc0489 expression leads to OL accumulation. These results indicate a strong connection between OL synthesis and VC0489 from V. cholerae and, for the first time, a direct regulation of an olsF homologue by the PhoBR system.
Collapse
Affiliation(s)
- Livia C Barbosa
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina L Goulart
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela M Avellar
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Kruger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287-1299. [DOI: 10.1016/j.bbalip.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
22
|
The Bacteroidales produce an N-acylated derivative of glycine with both cholesterol-solubilising and hemolytic activity. Sci Rep 2017; 7:13270. [PMID: 29038461 PMCID: PMC5643525 DOI: 10.1038/s41598-017-13774-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023] Open
Abstract
The contribution of the gut microbiota to the metabolism of cholesterol is not well understood. In this study, we identify 21 fosmid clones from a human gut microbiome metagenomic library that, when expressed in Escherichia coli, produce halos on LB agar supplemented with 0.01% (w/v) cholesterol (LBC agar). Analysis of 14 of these clones revealed that they all share a fragment of DNA with homology to the genome of Bacteroides vulgatus. The gene responsible for halo production on LBC agar, named choA, was identified as an N-acyltransferase known to produce an acylated glycine molecule called commendamide. In this study we show that commendamide is capable of producing a halo on LBC agar suggesting that this molecule is solubilizing the cholesterol micelles in LBC agar. We also show that commendamide is responsible for the previously described hemolytic activity associated with the choA orthologue in Bacteroides fragilis. A functional analysis of ChoA identified 2 amino acids that are important for commendamide biosynthesis and we present phylogenetic and functional data showing that orthologues of choA are found only in the order Bacteroidales. Therefore, the production of commendamide may be an adaptation to the environments colonized by the Bacteroidales, including the mammalian gut.
Collapse
|
23
|
Sandoval-Calderón M, Guan Z, Sohlenkamp C. Knowns and unknowns of membrane lipid synthesis in streptomycetes. Biochimie 2017; 141:21-29. [PMID: 28522365 DOI: 10.1016/j.biochi.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
Bacteria belonging to the genus Streptomyces are among the most prolific producers of antibiotics. Research on cellular membrane biosynthesis and turnover is lagging behind in Streptomyces compared to related organisms like Mycobacterium tuberculosis. While natural products discovery in Streptomyces is evidently a priority in order to discover new antibiotics to combat the increase in antibiotic resistant pathogens, a better understanding of this cellular compartment should provide insights into the interplay between core and secondary metabolism. However, some of the pathways for membrane lipid biosynthesis are still incomplete. In addition, while it has become clear that remodelling of the membrane is necessary for coping with environmental stress and for morphological differentiation, the detailed mechanisms of these adaptations remain elusive. Here, we aim to provide a summary of what is known about the polar lipid composition in Streptomyces, the biosynthetic pathways of polar lipids, and to highlight current gaps in understanding function, dynamics and biosynthesis of these essential molecules.
Collapse
Affiliation(s)
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
24
|
Bosak T, Schubotz F, de Santiago-Torio A, Kuehl JV, Carlson HK, Watson N, Daye M, Summons RE, Arkin AP, Deutschbauer AM. System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions. PLoS One 2016; 11:e0168719. [PMID: 28030630 PMCID: PMC5193443 DOI: 10.1371/journal.pone.0168719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analyses of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing ∂-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.
Collapse
Affiliation(s)
- Tanja Bosak
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Ana de Santiago-Torio
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Nicki Watson
- W.M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - Mirna Daye
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roger E Summons
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
25
|
Sayqal A, Xu Y, Trivedi DK, AlMasoud N, Ellis DI, Rattray NJW, Goodacre R. Metabolomics Analysis Reveals the Participation of Efflux Pumps and Ornithine in the Response of Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol. PLoS One 2016; 11:e0156509. [PMID: 27331395 PMCID: PMC4917112 DOI: 10.1371/journal.pone.0156509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Efflux pumps are critically important membrane components that play a crucial role in strain tolerance in Pseudomonas putida to antibiotics and aromatic hydrocarbons that result in these toxicants being expelled from the bacteria. Here, the effect of propranolol on P. putida was examined by sudden addition of 0.2, 0.4 and 0.6 mg mL-1 of this β-blocker to several strains of P. putida, including the wild type DOT-T1E and the efflux pump knockout mutants DOT-T1E-PS28 and DOT-T1E-18. Bacterial viability measurements reveal that the efflux pump TtgABC plays a more important role than the TtgGHI pump in strain tolerance to propranolol. Mid-infrared (MIR) spectroscopy was then used as a rapid, high-throughput screening tool to investigate any phenotypic changes resulting from exposure to varying levels of propranolol. Multivariate statistical analysis of these MIR data revealed gradient trends in resultant ordination scores plots, which were related to the concentration of propranolol. MIR illustrated phenotypic changes associated with the presence of this drug within the cell that could be assigned to significant changes that occurred within the bacterial protein components. To complement this phenotypic fingerprinting approach metabolic profiling was performed using gas chromatography mass spectrometry (GC-MS) to identify metabolites of interest during the growth of bacteria following toxic perturbation with the same concentration levels of propranolol. Metabolic profiling revealed that ornithine, which was only produced by P. putida cells in the presence of propranolol, presents itself as a major metabolic feature that has important functions in propranolol stress tolerance mechanisms within this highly significant and environmentally relevant species of bacteria.
Collapse
Affiliation(s)
- Ali Sayqal
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Yun Xu
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Najla AlMasoud
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - David I. Ellis
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicholas J. W. Rattray
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Damsté JSS. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:739-750. [PMID: 27281845 DOI: 10.1002/rcm.7503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs have been observed to be involved in response to changing environmental conditions in various species of bacteria. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has become the primary method for analysis of IPLs. Many glycerol-free amino acid containing membrane lipids (AA-IPLs), which are structurally different than abundant aminophospholipids, have not been characterized using HPLC/MS. This results in many lipids remaining unrecognized in IPL analysis of microbial cultures and environmental samples, hampering the study of their occurrence and functionality. METHODS We analyzed the amino acid containing IPLs of a number of bacteria (i.e. Gluconobacter cerinus, Cyclobacterium marinus, Rhodobacter sphaeroides, and Pedobacter heparinus) in order to decipher fragmentation pathways, and explore potential novel lipid structures using HPLC/electrospray ionization ion trap MS (HPLC/ESI-IT-MS) and HPLC/high-resolution MS (HPLC/HRMS). RESULTS We report differentiation between glutamine and lysine lipids with the same nominal masses, novel MS fragmentation pathways of cytolipin, the lipopeptides cerilipin and flavolipin, head group hydroxylated ornithine lipids, and the novel identification of cerilipin with a hydroxylated fatty acid. CONCLUSIONS Non-glycerol AA lipids can be readily recognized as their fragmentation follows a clear pattern with initial dehydration or other loss from the head group, followed by fatty acid losses resulting in a diagnostic fragment ion. Higher level MSn and HRMS are valuable tools in characterizing AA lipid head group structural components.
Collapse
|
27
|
Lipids in plant-microbe interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1379-1395. [PMID: 26928590 DOI: 10.1016/j.bbalip.2016.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.
Collapse
|
28
|
Sandoval-Calderón M, Nguyen DD, Kapono CA, Herron P, Dorrestein PC, Sohlenkamp C. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development. Front Microbiol 2015; 6:1465. [PMID: 26733994 PMCID: PMC4686642 DOI: 10.3389/fmicb.2015.01465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.
Collapse
Affiliation(s)
| | - Don D Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Clifford A Kapono
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Pieter C Dorrestein
- Department of Chemistry and Biochemistry, University of California, San Diego, La JollaCA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La JollaCA, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
29
|
Granafei S, Losito I, Trotta M, Italiano F, de Leo V, Agostiano A, Palmisano F, Cataldi TRI. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)). Anal Chim Acta 2015; 903:110-20. [PMID: 26709304 DOI: 10.1016/j.aca.2015.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 11/15/2022]
Abstract
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides.
Collapse
Affiliation(s)
- Sara Granafei
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Massimo Trotta
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesca Italiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Vincenzo de Leo
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Angela Agostiano
- Istituto Processi Chimico Fisici CNR, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi Aldo Moro di Bari, Via E. Orabona, 4 - 70126 Bari, Italy.
| |
Collapse
|
30
|
Moore EK, Villanueva L, Hopmans EC, Rijpstra WIC, Mets A, Dedysh SN, Sinninghe Damsté JS. Abundant Trimethylornithine Lipids and Specific Gene Sequences Are Indicative of Planctomycete Importance at the Oxic/Anoxic Interface in Sphagnum-Dominated Northern Wetlands. Appl Environ Microbiol 2015; 81:6333-44. [PMID: 26150465 PMCID: PMC4542221 DOI: 10.1128/aem.00324-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses. Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine (TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomycete isolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) and molecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) in order to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout the profiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundance of planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliated with the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group. Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoye peat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mosse peat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundant TMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest that planctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and the change in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redox conditions at the oxic/anoxic interface.
Collapse
Affiliation(s)
- Eli K Moore
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands
| | - Laura Villanueva
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands
| | - Ellen C Hopmans
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands
| | - Anchelique Mets
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands
| | - Svetlana N Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Texel, The Netherlands Utrecht University, Faculty of Geosciences, Utrecht, The Netherlands
| |
Collapse
|
31
|
Moore EK, Hopmans EC, Rijpstra WIC, Sánchez-Andrea I, Villanueva L, Wienk H, Schoutsen F, Stams AJM, Sinninghe Damsté JS. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Front Microbiol 2015; 6:637. [PMID: 26175720 PMCID: PMC4484230 DOI: 10.3389/fmicb.2015.00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023] Open
Abstract
Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress response of soil bacteria.
Collapse
Affiliation(s)
- Eli K. Moore
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | | | - Laura Villanueva
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
| | - Hans Wienk
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrecht, Netherlands
| | | | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea ResearchTexel, Netherlands
- Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
32
|
Escobedo-Hinojosa WI, Vences-Guzmán MÁ, Schubotz F, Sandoval-Calderón M, Summons RE, López-Lara IM, Geiger O, Sohlenkamp C. OlsG (Sinac_1600) Is an Ornithine Lipid N-Methyltransferase from the Planctomycete Singulisphaera acidiphila. J Biol Chem 2015; 290:15102-11. [PMID: 25925947 DOI: 10.1074/jbc.m115.639575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids widespread in bacteria but absent from archaea and eukaryotes. In addition to the unmodified OLs, a variety of OL derivatives hydroxylated in different structural positions has been reported. Recently, methylated derivatives of OLs were described in several planctomycetes isolated from a peat bog in Northern Russia, although the gene/enzyme responsible for the N-methylation of OL remained obscure. Here we identify and characterize the OL N-methyltransferase OlsG (Sinac_1600) from the planctomycete Singulisphaera acidiphila. When OlsG is co-expressed with the OL synthase OlsF in Escherichia coli, methylated OL derivatives are formed. An in vitro characterization shows that OlsG is responsible for the 3-fold methylation of the terminal δ-nitrogen of OL. Methylation is dependent on the presence of the detergent Triton X-100 and the methyldonor S-adenosylmethionine.
Collapse
Affiliation(s)
- Wendy Itzel Escobedo-Hinojosa
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Miguel Ángel Vences-Guzmán
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Florence Schubotz
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Mario Sandoval-Calderón
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Roger E Summons
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Isabel María López-Lara
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Otto Geiger
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Christian Sohlenkamp
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| |
Collapse
|
33
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
34
|
Schubotz F, Hays LE, Meyer-Dombard DR, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol 2015; 6:42. [PMID: 25699032 PMCID: PMC4318418 DOI: 10.3389/fmicb.2015.00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.
Collapse
Affiliation(s)
- Florence Schubotz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Lindsay E. Hays
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - D'Arcy R. Meyer-Dombard
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Earth and Environmental Sciences, University of Illinois at ChicagoChicago, IL, USA
| | - Aimee Gillespie
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Everett L. Shock
- School of Earth and Planetary Sciences, Arizona State UniversityTempe, AZ, USA
- Department of Chemistry and Biochemistry, Arizona State UniversityTempe, AZ, USA
| | - Roger E. Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|