1
|
Canellas ALB, de Oliveira Nithack Marques M, Lopes MV, Lage A, Klautau M, Muricy G, de Oliveira BFR, Laport MS. Functional and Genomic Insights into the Biotechnological Potential of Vibrio spp. Isolated from Deeply Polluted and Pristine Environments. Curr Microbiol 2024; 82:36. [PMID: 39661196 DOI: 10.1007/s00284-024-04013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Vibrio spp. are remarkably diverse bacteria, being worthy of investigation not only for their antibiotic resistance and virulence, but also for their biotechnological potential. Indeed, there is increasing evidence that these bacteria display industrially relevant traits, particularly as producers of antimicrobial substances, tensioactive/emulsifying compounds, and enzymes. Here, our aim was to investigate the potential of Vibrio strains isolated from two different marine sources to produce such biotechnologically applicable substances. From the eighteen analyzed strains, five were isolated from plastic particles from a heavily polluted urban estuary and 13 from calcareous sponges inhabiting submarine caves in an isolated volcanic archipelago in the Atlantic Ocean. Enzymatic screening revealed that most strains were agarolytic and cellulolytic. Overall, six strains showed antimicrobial activity against Staphylococcus aureus ATCC 29,213, with four of them active towards Escherichia coli ATCC 25,922 as well. Additionally, eight strains were positive for the production of bioemulsifiers. Genomic analyses of four strains further revealed insights regarding the enzymatic arsenal, as shown by the detection of several key gene clusters pertaining to the chitin degradation pathway, and also encoding diverse classes of antimicrobial-active metabolites. Our findings highlight the biotechnological potential of Vibrio spp., evidencing their functional diversity and the need for continued and sustained prospecting of this bacterial genus to uncover its potential high-value-added bioproducts.
Collapse
Affiliation(s)
- Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Matheus de Oliveira Nithack Marques
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Matheus Vieira Lopes
- TaxoN Laboratory, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 792, Cidade Universitária, Rio de Janeiro, 21941-599, Brazil
| | - Anaíra Lage
- TaxoN Laboratory, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 792, Cidade Universitária, Rio de Janeiro, 21941-599, Brazil
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/nº, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Michelle Klautau
- TaxoN Laboratory, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 792, Cidade Universitária, Rio de Janeiro, 21941-599, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/nº, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, 22460-030, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Shen J, Zhou M, Dan M, Zheng Y, Zhao G, Wang D. Eco-friendly production and probiotic purification of agarose degradation products: Oligosaccharides and 3,6-anhydro-L-galactose. Int J Biol Macromol 2024; 281:135682. [PMID: 39414527 DOI: 10.1016/j.ijbiomac.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Algal biomass offers a solution to global resource scarcity, with agarose, a key component of Gelidium amansii, containing valuable products like oligosaccharides and 3,6-anhydro-L-galactose. However, current purification methods limit their commercial viability. In this study, we utilized gel filtration chromatography to purify agaro-oligosaccharides and neoagaro-oligosaccharides with varying degrees of polymerization, achieving a novel purification of odd-numbered neoagaro-oligosaccharides. Additionally, by fermenting a mixture of 3,6-anhydro L-galactose and D-galactose with six probiotics, our results demonstrate that five probiotics-Lactobacillus plantarum, Bifidobacterium adolescentis, Streptococcus thermophilus, Lactobacillus acidophilus, and Lactobacillus rhamnosus effectively utilize D-galactose in mixed carbon sources while retaining 3,6-anhydro L-galactose. This approach enables efficient, low-cost, and eco-friendly purification of 3,6-anhydro L-galactose, opening avenues for its widespread utilization.
Collapse
Affiliation(s)
- Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin, Sichuan 644000, China.
| |
Collapse
|
3
|
Yun EJ, Lee SH, Kim S, Ryu HS, Kim KH. Catabolism of 2-keto-3-deoxy-galactonate and the production of its enantiomers. Appl Microbiol Biotechnol 2024; 108:403. [PMID: 38954014 PMCID: PMC11219438 DOI: 10.1007/s00253-024-13235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
2-Keto-3-deoxy-galactonate (KDGal) serves as a pivotal metabolic intermediate within both the fungal D-galacturonate pathway, which is integral to pectin catabolism, and the bacterial DeLey-Doudoroff pathway for D-galactose catabolism. The presence of KDGal enantiomers, L-KDGal and D-KDGal, varies across these pathways. Fungal pathways generate L-KDGal through the reduction and dehydration of D-galacturonate, whereas bacterial pathways produce D-KDGal through the oxidation and dehydration of D-galactose. Two distinct catabolic routes further metabolize KDGal: a nonphosphorolytic pathway that employs aldolase and a phosphorolytic pathway involving kinase and aldolase. Recent findings have revealed that L-KDGal, identified in the bacterial catabolism of 3,6-anhydro-L-galactose, a major component of red seaweeds, is also catabolized by Escherichia coli, which is traditionally known to be catabolized by specific fungal species, such as Trichoderma reesei. Furthermore, the potential industrial applications of KDGal and its derivatives, such as pyruvate and D- and L-glyceraldehyde, are underscored by their significant biological functions. This review comprehensively outlines the catabolism of L-KDGal and D-KDGal across different biological systems, highlights stereospecific methods for discriminating between enantiomers, and explores industrial application prospects for producing KDGal enantiomers. KEY POINTS: • KDGal is a metabolic intermediate in fungal and bacterial pathways • Stereospecific enzymes can be used to identify the enantiomeric nature of KDGal • KDGal can be used to induce pectin catabolism or produce functional materials.
Collapse
Affiliation(s)
- Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Subin Kim
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hae Seul Ryu
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Yun EJ, Yu S, Kim DH, Park NJ, Liu JJ, Jin YS, Kim KH. Identification of the enantiomeric nature of 2-keto-3-deoxy-galactonate in the catabolic pathway of 3,6-anhydro-L-galactose. Appl Microbiol Biotechnol 2023; 107:7427-7438. [PMID: 37812254 DOI: 10.1007/s00253-023-12807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
A novel metabolic pathway of 3,6-anhydro-L-galactose (L-AHG), the main sugar component in red macroalgae, was first discovered in the marine bacterium Vibrio sp. EJY3. L-AHG is converted to 2-keto-3-deoxy-galactonate (KDGal) in two metabolic steps. Here, we identified the enantiomeric nature of KDGal in the L-AHG catabolic pathway via stereospecific enzymatic reactions accompanying the biosynthesis of enantiopure L-KDGal and D-KDGal. Enantiopure L-KDGal and D-KDGal were synthesized by enzymatic reactions derived from the fungal galacturonate and bacterial oxidative galactose pathways, respectively. KDGal, which is involved in the L-AHG pathway, was also prepared. The results obtained from the reactions with an L-KDGal aldolase, specifically acting on L-KDGal, showed that KDGal in the L-AHG pathway exists in an L-enantiomeric form. Notably, we demonstrated the utilization of L-KDGal by Escherichia coli for the first time. E. coli cannot utilize L-KDGal as the sole carbon source. However, when a mixture of L-KDGal and D-galacturonate was used, E. coli utilized both. Our study suggests a stereoselective method to determine the absolute configuration of a compound. In addition, our results can be used to explore the novel L-KDGal catabolic pathway in E. coli and to construct an engineered microbial platform that assimilates L-AHG or L-KDGal as substrates. KEY POINTS: • Stereospecific enzyme reactions were used to identify enantiomeric nature of KDGal • KDGal in the L-AHG catabolic pathway exists in an L-enantiomeric form • E. coli can utilize L-KDGal as a carbon source when supplied with D-galacturonate.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Hyun Kim
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Jung Park
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
7
|
Pathiraja D, Park B, Kim B, Stougaard P, Choi IG. Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol 2023; 12:1782-1793. [PMID: 37265394 DOI: 10.1021/acssynbio.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Bogun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000, Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Yu S, Park SY, Kim DH, Yun EJ, Kim KH. Multi-Step Enzymatic Production and Purification of 2-Keto-3-Deoxy-Galactonate from Red-Macroalgae-Derived Agarose. Mar Drugs 2022; 20:md20050288. [PMID: 35621939 PMCID: PMC9147760 DOI: 10.3390/md20050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products.
Collapse
Affiliation(s)
- Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
| | - So Young Park
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
| | - Dong Hyun Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Korea;
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: (E.J.Y.); (K.H.K.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.Y.); (S.Y.P.)
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: (E.J.Y.); (K.H.K.)
| |
Collapse
|
10
|
Li G, Guo R, Wu S, Cheng S, Li J, Liu Z, Xie W, Sun X, Zhang Q, Li Z, Xu J, Wu J, Wei Z, Hu F. Characterization of Agarolytic Pathway in a Terrestrial Bacterium Cohnella sp. LGH. Front Microbiol 2022; 13:828687. [PMID: 35432256 PMCID: PMC9008576 DOI: 10.3389/fmicb.2022.828687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have reported that an endo-type β-agarase AgaW was responsible for the hydrolysis of agarose into the major product neoagarotetraose in a terrestrial agar-degrading bacterium Cohnella sp. LGH. Here, we identify and characterize the following depolymerization pathway in strain LGH through the genomic and enzymatic analysis. In the pathway, neoagarotetraose was depolymerized by a novel α-neoagarooligosaccharide (NAOS) hydrolase CL5012 into 3,6-anhydro-α-L-galactose (L-AHG) and agarotriose; Agarotriose was further depolymerized by a novel agarolytic β-galactosidase CL4994 into D-galactose and neoagarobiose; Neoagarobiose was finally depolymerized by CL5012 into L-AHG and D-galactose. Although α-agarase has not been identified in strain LGH, the combined action of CL5012 and CL4994 unexpectedly plays a critical role in the depolymerization of agarotetraose, one theoretical product of α-agarase hydrolysis of agarose. In this pathway, agarotetraose was depolymerized by CL4994 into D-galactose and neoagarotriose; Neoagarotriose was then depolymerized by CL5012 into L-AHG and agarobiose. Furthermore, another novel endo-type β-agarase CL5055 was identified as an isozyme of AgaW with different pH preference in the hydrolysis of agarose into α-NAOSs. Strain LGH seemed to lack a common exo-type β-agarase responsible for the direct depolymerization of agarose or neoagarooligosaccharide into neoagarobiose. These results highlight the diversity of agarolytic manner in bacteria and provide a novel insight on the diversity of agarolytic pathways.
Collapse
Affiliation(s)
- Gen Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Rui Guo
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si Cheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wangliang Xie
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiuyi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - JiaZheng Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jun Wu,
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Enzymatic Verification and Comparative Analysis of Carrageenan Metabolism Pathways in Marine Bacterium Flavobacterium algicola. Appl Environ Microbiol 2022; 88:e0025622. [PMID: 35293779 DOI: 10.1128/aem.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria usually contain polysaccharide utilization loci (PUL) for metabolizing red algae polysaccharides. They are of great significance in the carbon cycle of the marine ecosystem, as well as in supporting marine heterotrophic bacterial growth. Here, we described the whole κ-carrageenan (KC), ι-carrageenan (IC), and partial λ-carrageenan (LC) catabolic pathways in a marine Gram-negative bacterium, Flavobacterium algicola, which is involved carrageenan polysaccharide hydrolases, oligosaccharide sulfatases, oligosaccharide glycosidases, and the 3,6-anhydro-d-galactose (d-AHG) utilization-related enzymes harbored in the carrageenan-specific PUL. In the pathways, the KC and IC were hydrolyzed into 4-sugar-unit oligomers by specific glycoside hydrolases. Then, the multifunctional G4S sulfatases would remove their nonreducing ends' G4S sulfate groups, while the ι-neocarratetrose (Nι4) product would further lose the nonreducing end of its DA2S group. Furthermore, the neocarrageenan oligosaccharides (NCOSs) with no G4S and DA2S groups in their nonreducing ends would completely be decomposed into d-Gal and d-AHG. Finally, the released d-AHG would enter the cytoplasmic four-step enzymatic process, and an l-rhamnose-H+ transporter (RhaT) was preliminarily verified for the function for transportation of d-AHG. Moreover, comparative analysis with the reported carrageenan metabolism pathways further implied the diversity of microbial systems for utilizing the red algae carrageenan. IMPORTANCE Carrageenan is the main polysaccharide of red macroalgae and is composed of d-AHG and d-Gal. The carrageenan PUL (CarPUL)-encoded enzymes exist in many marine bacteria for decomposing carrageenan to provide self-growth. Here, the related enzymes in Flavobacterium algicola for metabolizing carrageenan were characterized for describing the catabolic pathways, notably, although the specific polysaccharide hydrolases existed that were like previous studies. A multifunctional G4S sulfatase also existed, which was devoted to the removal of G4S or G2S sulfate groups from three kinds of NCOSs. Additionally, the transformation of three types of carrageenans into two monomers, d-Gal and d-AHG, occurred outside the cell with no periplasmic reactions that existed in previously reported pathways. These results help to clarify the diversity of marine bacteria using macroalgae polysaccharides.
Collapse
|
12
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
13
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
de Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Jackson SA, Dobson ADW, Laport MS. Genomic and in silico protein structural analyses provide insights into marine polysaccharide-degrading enzymes in the sponge-derived Pseudoalteromonas sp. PA2MD11. Int J Biol Macromol 2021; 191:973-995. [PMID: 34555402 DOI: 10.1016/j.ijbiomac.2021.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Active heterotrophic metabolism is a critical metabolic role performed by sponge-associated microorganisms, but little is known about their capacity to metabolize marine polysaccharides (MPs). Here, we investigated the genome of the sponge-derived Pseudoalteromonas sp. strain PA2MD11 focusing on its macroalgal carbohydrate-degrading potential. Carbohydrate-active enzymes (CAZymes) for the depolymerization of agar and alginate were found in PA2MD11's genome, including glycoside hydrolases (GHs) and polysaccharide lyases (PLs) belonging to families GH16, GH50 and GH117, and PL6 and PL17, respectively. A gene potentially encoding a sulfatase was also identified, which may play a role in the strain's ability to consume carrageenans. The complete metabolism of agar and alginate by PA2MD11 could also be predicted and was consistent with the results obtained in physiological assays. The polysaccharide utilization locus (PUL) potentially involved in the metabolism of agarose contained mobile genetic elements from other marine Gammaproteobacteria and its unusual larger size might be due to gene duplication events. Homology modelling and structural protein analyses of the agarases, alginate lyases and sulfatase depicted clear conservation of catalytic machinery and protein folding together with suitable industrially-relevant features. Pseudoalteromonas sp. PA2MD11 is therefore a source of potential MP-degrading biocatalysts for biorefinery applications and in the preparation of pharmacologically-active oligosaccharides.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil; School of Microbiology, University College Cork, T12 Y960 Cork, Ireland
| | - Isabelle Rodrigues Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n°, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Stephen Anthony Jackson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Fast filtration with a vacuum manifold system as a rapid and robust metabolome sampling method for Saccharomyces cerevisiae. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
17
|
Bäumgen M, Dutschei T, Bornscheuer UT. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. Chembiochem 2021; 22:2247-2256. [PMID: 33890358 PMCID: PMC8360166 DOI: 10.1002/cbic.202100078] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| |
Collapse
|
18
|
Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. NADP +-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-L-Galactose Catabolism in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 2021; 31:756-763. [PMID: 33820885 PMCID: PMC9706016 DOI: 10.4014/jmb.2103.03030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Agarose is a linear polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-L-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-L-galactonate, and SCO3480 is a 3,6-anhydro-L-galactonate cycloisomerase that converts 3,6-anhydro-L-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50°C, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.
Collapse
Affiliation(s)
- Maral Tsevelkhorloo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Chang-Ro Lee
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea,Corresponding author Phone: 82-31-330-6198 Fax: 82-31-335-8249 E-mail:
| |
Collapse
|
19
|
A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 T. Appl Environ Microbiol 2021; 87:e0023021. [PMID: 33811026 DOI: 10.1128/aem.00230-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCE Colwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core β-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.
Collapse
|
20
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Trincone A. Application-Oriented Marine Isomerases in Biocatalysis. Mar Drugs 2020; 18:md18110580. [PMID: 33233366 PMCID: PMC7700177 DOI: 10.3390/md18110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned. Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment with this specialized in-depth analysis conducted using a literature search without time limit constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis that are not numerous confirming the general view previously reported. However, from this overall literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been long-standing. However, the major fields in which application examples are framed are placed at the cutting edge of current biotechnological development. Since these enzymes can offer properties of industrial interest, this will act as a promoter for future studies of marine-originating isomerases in applied biocatalysis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
22
|
Singh RP, Bhaiyya R, Khandare K, Tingirikari JMR. Macroalgal dietary glycans: potential source for human gut bacteria and enhancing immune system for better health. Crit Rev Food Sci Nutr 2020; 62:1674-1695. [PMID: 33190530 DOI: 10.1080/10408398.2020.1845605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macroalgae are the diverse group of photosynthetic algae found at the intertidal regions of oceans. Recent advances suggest that macroalgal derived glycans have tremendous potential to maintain gut microbiome and immune system. The human gut bacteria harbor unique arsenals for utilizing a variety of macroalgal glycans, and produce a variety of oligosaccharides in vivo. Those oligosaccharides interact with immune cell receptors, and also are available for microbial fermentation, thus play magnificent roles in balancing the gut homeostasis. However, this area of research is still in infancy condition in term to understand their molecular interactions. For wooing this area, we urge to emphasize more studies on mechanistic level sympathetic of depolymerizing marine dietary glycans by gut bacteria and elucidating molecular aspect of glycans to cell receptors interactions. This will invent new nutraceutical strategies to purposefully manipulate the microbial composition to improve health. Therefore, review focuses on the recent development of mechanistic understanding of human gut bacterial communities for utilizing macroalgal derived glycans. Recent trends of application of glycans in modulating immune system at mechanistic level and their available evidences are discussed.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Raja Bhaiyya
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Kiran Khandare
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | | |
Collapse
|
23
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
24
|
Liu Y, Jin X, Wu C, Zhu X, Liu M, Call DR, Zhao Z. Genome-Wide Identification and Functional Characterization of β-Agarases in Vibrio astriarenae Strain HN897. Front Microbiol 2020; 11:1404. [PMID: 32670245 PMCID: PMC7326809 DOI: 10.3389/fmicb.2020.01404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023] Open
Abstract
The genus Vibrio is a genetically and metabolically versatile group of heterotrophic bacteria that are important contributors to carbon cycling within marine and estuarine ecosystems. HN897, a Vibrio strain isolated from the coastal seawater of South China, was shown to be agarolytic and capable of catabolizing D-galactose. Herein, we used Illumina and PacBio sequencing to assemble the whole genome sequence for the strain HN897, which was comprised of two circular chromosomes (Vas1 and Vas2). Genome-wide phylogenetic analysis with 140 other Vibrio sequences firmly placed the strain HN897 into the Marisflavi clade, with Vibrio astriarenae strain C7 being the closest relative. Of all types of carbohydrate-active enzyme classes, glycoside hydrolases (GH) were the most common in the HN897 genome. These included eight GHs identified as putative β-agarases belonging to GH16 and GH50 families in equal proportions. Synteny analysis showed that GH16 and GH50 genes were tandemly arrayed on two different chromosomes consistent with gene duplication. Gene knockout and complementation studies and phenotypic assays confirmed that Vas1_1339, a GH16_16 subfamily gene, exhibits an agarolytic phenotype of the strain. Collectively, these findings explained the agar-decomposing of strain HN897, but also provided valuable resources to gain more detailed insights into the evolution and physiological capability of the strain HN897, which was a presumptive member of the species V. astriarenae.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Chao Wu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Xinyuan Zhu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Min Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Douglas R Call
- Paul G Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
25
|
Tanaka M, Kumakura D, Mino S, Doi H, Ogura Y, Hayashi T, Yumoto I, Cai M, Zhou YG, Gomez-Gil B, Araki T, Sawabe T. Genomic characterization of closely related species in the Rumoiensis clade infers ecogenomic signatures to non-marine environments. Environ Microbiol 2020; 22:3205-3217. [PMID: 32383332 DOI: 10.1111/1462-2920.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
Members of the family Vibrionaceae are generally found in marine and brackish environments, playing important roles in nutrient cycling. The Rumoiensis clade is an unconventional group in the genus Vibrio, currently comprising six species from different origins including two species isolated from non-marine environments. In this study, we performed comparative genome analysis of all six species in the clade using their complete genome sequences. We found that two non-marine species, Vibrio casei and Vibrio gangliei, lacked the genes responsible for algal polysaccharide degradation, while a number of glycoside hydrolase genes were enriched in these two species. Expansion of insertion sequences was observed in V. casei and Vibrio rumoiensis, which suggests ongoing genomic changes associated with niche adaptations. The genes responsible for the metabolism of glucosylglycerate, a compound known to play a role as compatible solutes under nitrogen limitation, were conserved across the clade. These characteristics, along with genes encoding species-specific functions, may reflect the habit expansion which has led to the current distribution of Rumoiensis clade species. Genome analysis of all species in a single clade give us valuable insights into the genomic background of the Rumoiensis clade species and emphasize the genomic diversity and versatility of Vibrionaceae.
Collapse
Affiliation(s)
- Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Daiki Kumakura
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Hidetaka Doi
- R&D Strategic Group, R&D Planning Department, Ajinomoto Co., Inc., Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Man Cai
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bruno Gomez-Gil
- CIAD, AC Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, Sinaloa, AP 711, Mexico
| | - Toshiyoshi Araki
- Iga Community-based Research Institute, Mie University, Iga, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| |
Collapse
|
26
|
Kim DH, Liu JJ, Lee JW, Pelton JG, Yun EJ, Yu S, Jin YS, Kim KH. Biological upgrading of 3,6-anhydro-L-galactose from agarose to a new platform chemical. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020; 22:1776-1785. [PMID: 33790689 PMCID: PMC8009285 DOI: 10.1039/c9gc04265b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, the utilization of renewable biomass instead of fossil fuels for producing fuels and chemicals is receiving much attention due to the global climate change. Among renewable biomass, marine algae are gaining importance as third generation biomass feedstocks owing to their advantages over lignocellulose. Particularly, red macroalgae have higher carbohydrate contents and simpler carbohydrate compositions than other marine algae. In red macroalgal carbphydrates, 3,6-anhydro-L-galactose (AHG) is the main sugar composing agarose along with D-galactose. However, AHG is not a common sugar and is chemically unstable. Thus, not only AHG but also red macroalgal biomass itself cannot be efficiently converted or utilized. Here, we biologically upgraded AHG to a new platform chemical, its sugar alcohol form, 3,6-anhydro-l-galactitol (AHGol), an anhydrohexitol. To accomplish this, we devised an integrated process encompassing a chemical hydrolysis process for producing agarobiose (AB) from agarose and a biological process for converting AB to AHGol using metabolically engineered Saccharomyces cerevisiae to efficiently produce AHGol from agarose with high titers and yields. AHGol was also converted to an intermediate chemical for plastics, isosorbide. To our knowledge, this is the first demonstration of upgrading a red macroalgal biomass component to a platform chemical via a new biological route, by using an engineered microorganism.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| |
Collapse
|
27
|
Dual Agarolytic Pathways in a Marine Bacterium, Vibrio sp. Strain EJY3: Molecular and Enzymatic Verification. Appl Environ Microbiol 2020; 86:AEM.02724-19. [PMID: 31924614 DOI: 10.1128/aem.02724-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Vibrio sp. strain EJY3 is an agarolytic marine bacterium that catabolizes 3,6-anhydro-l-galactose (AHG), a monomeric sugar unit of agarose. While the AHG catabolic pathway in EJY3 has been discovered recently, the complete agarolytic system of EJY3 remains unclear. We have identified five enzymes, namely, the β-agarases VejGH50A, VejGH50B, VejGH50C, and VejGH50D and the α-neoagarooligosaccharide (NAOS) hydrolase VejGH117, involved in the agarolytic system of EJY3. Based on the characterization of recombinant enzymes and intracellular metabolite analysis, we found that EJY3 catabolizes agarose via two different agarolytic pathways. Among the four β-agarases of EJY3, VejGH50A, VejGH50B, and VejGH50C were found to be extracellular agarases, producing mainly neoagarotetraose (NeoDP4) and neoagarobiose. By detecting intracellular NeoDP4 in EJY3 grown on agarose, NeoDP4 was observed being taken up by cells. Intriguingly, intracellular NeoDP4 acted as a branching point for the two different downstream agarolytic pathways. First, via the well-known agarolytic pathway, NeoDP4 was depolymerized into monomeric sugars by the exo-type β-agarase VejGH50D and the α-NAOS hydrolase VejGH117. Second, via the newly found alternative agarolytic pathway, NeoDP4 was depolymerized into AHG and agarotriose (AgaDP3) by VejGH117, and AgaDP3 then was completely depolymerized into monomeric sugars by sequential reactions of the agarolytic β-galactosidases (ABG) VejABG and VejGH117. Therefore, by experimentally verifying agarolytic enzymatic activity and transport of NeoDP4 into EJY3 cells, we revealed that EJY3 possesses both the known pathway and the newly discovered alternative pathway that involves α-NAOS hydrolase and ABG.IMPORTANCE Agarose is the main polysaccharide of red macroalgae and is composed of galactose and 3,6-anhydro-l-galactose. Many marine bacteria possess enzymes capable of depolymerizing agarose into oligomers and then depolymerizing the oligomers into monomers. Here, we experimentally verified that both a well-known agarolytic pathway and a novel agarolytic pathway exist in a marine bacterium, Vibrio sp. strain EJY3. In agarolytic pathways, agarose is depolymerized mainly into 4-sugar-unit oligomers by extracellular enzymes, which are then transported into cells. The imported oligomers are intracellularly depolymerized into galactose and 3,6-anhydro-l-galactose by two different agarolytic pathways, using different combinations of intracellular enzymes. These results elucidate the depolymerization routes of red macroalgal biomass in the ocean by marine bacteria and provide clues for developing industrial processes for efficiently producing sugars from red macroalgae.
Collapse
|
28
|
Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, Wang P, Su HN, Chen Y, Chen XL, Zhang YZ. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248. J Mol Biol 2020; 432:2186-2203. [PMID: 32087198 DOI: 10.1016/j.jmb.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
29
|
Park SH, Lee CR, Hong SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 2020; 104:2815-2832. [PMID: 32036436 DOI: 10.1007/s00253-020-10412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.
Collapse
Affiliation(s)
- Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
30
|
Jiang C, Liu Z, Sun J, Mao X. Characterization of a Novel α-Neoagarobiose Hydrolase Capable of Preparation of Medium- and Long-Chain Agarooligosaccharides. Front Bioeng Biotechnol 2020; 7:470. [PMID: 32064255 PMCID: PMC7000632 DOI: 10.3389/fbioe.2019.00470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
α-Neoagarobiose hydrolase plays an important role in saccharification processes of marine biomass. In this study, an α-neoagarobiose hydrolase from Streptomyces coelicolor A3(2), designated as ScJC117, was identified, purified, and characterized. It has a sequence of 370 amino acids and belongs to the GH117 family. ScJC117 exhibited good activity under optimal hydrolysis conditions of pH 6.0 and 30°C, where it showed the Km and kcat for neoagarobiose of 11.57 mM and 0.48 s–1, respectively. ScJC117 showed the ability to hydrolyze neoagarooligosaccharides with the polymerization degrees of 2–14. A basis of catalytic activity toward the first α-1,3-glycosidic bond of the neoagarooligosaccharides from the non-reducing end, ScJC117 can be classified as an exo-type α-neoagarobiose hydrolase. These results suggested that ScJC117 could be used in the preparation of odd agarooligosaccharides (especially agaroheptaose-agaroundecaose) and 3,6-anhydro-L-galactose, which has a functional food additive potential. Moreover, ScJC117 can be used for comprehensive utilization of red algae.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Zhang J, Wang P, Tian H, Tao Z, Guo T. Transcriptome Analysis of Ice Plant Growth-Promoting Endophytic Bacterium Halomonas sp. Strain MC1 to Identify the Genes Involved in Salt Tolerance. Microorganisms 2020; 8:E88. [PMID: 31936448 PMCID: PMC7022971 DOI: 10.3390/microorganisms8010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022] Open
Abstract
Salt stress is an important adverse condition encountered during plant and microbe growth in terrestrial soil ecosystems. Currently, how ice plant (Mesembryanthemum crystallinum) growth-promoting endophytic bacteria (EB) cope with salt stress and regulate growth and the genes responsible for salt tolerance remain unknown. We applied RNA-Seq technology to determine the growth mechanism of the EB Halomonas sp. MC1 strain and the genes involved in salt tolerance. A total of 893 genes were significantly regulated after salt treatment. These genes included 401 upregulated and 492 downregulated genes. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched genes included those related to the outer membrane-bounded periplasmic space, ATPase activity, catabolic process, and proton transmembrane transport. The quantitative real-time polymerase chain reaction data were similar to those obtained from RNA-Seq. The MC1 strain maintained survival under salt stress by regulating cellular and metabolic processes and pyruvate metabolism pathways such as organic and carboxylic acid catabolic pathways. We highlighted the response mechanism of Halomonas sp. MC1 to fully understand the dynamics of complex salt-microbe interactions.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui, China
| | - Zhen Tao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China (Z.T.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
32
|
Yu WN, Du ZZ, Chang YQ, Mu DS, Du ZJ. Marinomonas agarivorans sp. nov., an agar-degrading marine bacterium isolated from red algae. Int J Syst Evol Microbiol 2020; 70:100-104. [DOI: 10.1099/ijsem.0.003723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wen-Nan Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zhao-Zhong Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Ya-Qi Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Da-Shuai Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
33
|
Characterization of a novel alkaline β-agarase and its hydrolysates of agar. Food Chem 2019; 295:311-319. [DOI: 10.1016/j.foodchem.2019.05.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
|
34
|
Lee CH, Lee CR, Hong SK. Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Appl Microbiol Biotechnol 2019; 103:8403-8411. [PMID: 31375882 DOI: 10.1007/s00253-019-10056-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Abstract
Although many β-agarases that hydrolyze the β-1,4 linkages of agarose have been biochemically characterized, only three α-agarases that hydrolyze the α-1,3 linkages are reported to date. In this study, a new α-agarase, AgaWS5, from Catenovulum sediminis WS1-A, a new agar-degrading marine bacterium, was biochemically characterized. AgaWS5 belongs to the glycoside hydrolase (GH) 96 family. AgaWS5 consists of 1295 amino acids (140 kDa) and has the 65% identity to an α-agarase, AgaA33, obtained from an agar-degrading bacterium Thalassomonas agarivorans JAMB-A33. AgaWS5 showed the maximum activity at a pH and temperature of 8 and 40 °C, respectively. AgaWS5 showed a cold-tolerance, and it retained more than 40% of its maximum enzymatic activity at 10 °C. AgaWS5 is predicted to have several calcium-binding sites. Thus, its activity was slightly enhanced in the presence of Ca2+, and was strongly inhibited by EDTA. The Km and Vmax of AgaWS5 for agarose were 10.6 mg/mL and 714.3 U/mg, respectively. Agarose-liquefication, thin layer chromatography, and mass and NMR spectroscopic analyses demonstrated that AgaWS5 is an endo-type α-agarase that degrades agarose and mainly produces agarotetraose. Thus, in this study, a novel cold-adapted GH96 agarotetraose-producing α-agarase was identified.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea.
| |
Collapse
|
35
|
Gao B, Li L, Wu H, Zhu D, Jin M, Qu W, Zeng R. A Novel Strategy for Efficient Agaro-Oligosaccharide Production Based on the Enzymatic Degradation of Crude Agarose in Flammeovirga pacifica WPAGA1. Front Microbiol 2019; 10:1231. [PMID: 31244790 PMCID: PMC6581685 DOI: 10.3389/fmicb.2019.01231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
To avoid conflict between biofuel and food resource production, marine macroalgae (main algal polysaccharides) have been suggested as potent feedstock for biofuel production. Flammeovirga pacifica WPAGA1, a typical marine polysaccharide-degrading bacterium, can utilize crude agarose as the sole carbon source. Transcriptomic analysis was performed to further investigate the metabolic pathway of environmental-friendly utilization of crude agarose in F. pacifica WPAGA1. All these enzymes were overexpressed in Escherichia coli BL21(DE3), and the purified enzymes were characterized in vitro. As a result, the pathway of crude agarose which is desulfurized and hydrolyzed by enzymes to produce fermentable sugar is clear. Interestingly, sole neoagarobiose (~450 mg/L) was produced from crude agarose as a feedstock using engineered E. coli BL21(DE3). This study firstly reveals the metabolic pathway of crude agarose in strain WPAGA1 and establishes a novel and environmental-friendly strategy for neoagarobiose production using crude agarose as cost-effective and non-food-based feedstock.
Collapse
Affiliation(s)
- Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, China
| | - Li Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Du Zhu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, China
| | - Wu Qu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen, China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
36
|
Kim SH, Mudhoo A, Pugazhendhi A, Saratale RG, Surroop D, Jeetah P, Park JH, Saratale GD, Kumar G. A perspective on galactose-based fermentative hydrogen production from macroalgal biomass: Trends and opportunities. BIORESOURCE TECHNOLOGY 2019; 280:447-458. [PMID: 30777703 DOI: 10.1016/j.biortech.2019.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
This review analyses the relevant studies which focused on hydrogen synthesis by dark fermentation of galactose from macroalgal biomass by discussing the inoculum-related pretreatments, batch fermentation and inhibition, continuous fermentation systems, bioreactor designs for continuous operation and ionic liquid-assisted catalysis. The potential for process development is also revisited and the challenges towards suppressing glucose dominance over a galactose-based hydrogen production system are presented. The key challenges in the pretreatment process aiming to achieve a maximum recovery of upgradable (fermentable) sugars from the hydrolysates and promoting the concomitant detoxification of the hydrolysates have also been highlighted. The research avenues for bioprocess intensification connected to enhance selective sugar recovery and effective detoxification constitute the critical steps to develop future red macroalgae-derived galactose-based robust biohydrogen production system.
Collapse
Affiliation(s)
- Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Dinesh Surroop
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
37
|
Choi U, Jung S, Hong SK, Lee CR. Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2019; 189:1-12. [DOI: 10.1007/s12010-019-02992-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
|
38
|
Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM. Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 2019; 9:25. [PMID: 30622863 DOI: 10.1007/s13205-018-1549-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.
Collapse
|
39
|
Qu W, Lin D, Zhang Z, Di W, Gao B, Zeng R. Metagenomics Investigation of Agarlytic Genes and Genomes in Mangrove Sediments in China: A Potential Repertory for Carbohydrate-Active Enzymes. Front Microbiol 2018; 9:1864. [PMID: 30177916 PMCID: PMC6109693 DOI: 10.3389/fmicb.2018.01864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Monosaccharides and oligosaccharides produced by agarose degradation exhibit potential in the fields of bioenergy, medicine, and cosmetics. Mangrove sediments (MGSs) provide a special environment to enrich enzymes for agarose degradation. However, representative investigations of the agarlytic genes in MGSs have been rarely reported. In this study, agarlytic genes in MGSs were researched in detail from the aspects of diversity, abundance, activity, and location through deep metagenomics sequencing. Functional genes in MGSs were usually incomplete but were shown as results, which could cause virtually high number of results in previous studies because multiple fragmented sequences could originate from the same genes. In our work, only complete and nonredundant (CNR) genes were analyzed to avoid virtually high amount of the results. The number of CNR agarlytic genes in our datasets was significantly higher than that in the datasets of previous studies. Twenty-one recombinant agarases with agarose-degrading activity were detected using heterologous expression based on numerous complete open-reading frames, which are rarely obtained in metagenomics sequencing of samples with complex microbial communities, such as MGSs. Aga2, which had the highest crude enzyme activity among the 21 recombinant agarases, was further purified and subjected to enzymatic characterization. With its high agarose-degrading activity, resistance to temperature changes and chemical agents, Aga2 could be a suitable option for industrial production. The agarase ratio with signal peptides to that without signal peptides in our MGS datasets was lower than that of other reported agarases. Six draft genomes, namely, Clusters 1-6, were recovered from the datasets. The taxonomic annotation of these genomes revealed that Clusters 1, 3, 5, and 6 were annotated as Desulfuromonas sp., Treponema sp., Ignavibacteriales spp., and Polyangiaceae spp., respectively. Meanwhile, Clusters 2 and 4 were potential new species. All these genomes were first reported and found to have abilities of degrading various important polysaccharides. The metabolic pathway of agarose in Cluster 4 was also speculated. Our results showed the capacity and activity of agarases in the MGS microbiome, and MGSs exert potential as a repertory for mining not only agarlytic genes but also almost all genes of the carbohydrate-active enzyme family.
Collapse
Affiliation(s)
- Wu Qu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Dan Lin
- Novogene Bioinformatics Technology Co. Ltd., Tianjin, China
| | - Zhouhao Zhang
- Novogene Bioinformatics Technology Co. Ltd., Tianjin, China
| | - Wenjie Di
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Boliang Gao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Runying Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China.,Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
40
|
Wang Q, Sun J, Liu Z, Huang W, Xue C, Mao X. Coimmobilization of β-Agarase and α-Neoagarobiose Hydrolase for Enhancing the Production of 3,6-Anhydro-l-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7087-7095. [PMID: 29893561 DOI: 10.1021/acs.jafc.8b01974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we report a simple and efficient method to produce 3,6-anhydro-l-galactose (l-AHG) and agarotriose (AO3) in one step by a multienzyme system with the coimmobilized β-agarase AgWH50B and α-neoagarobiose hydrolase K134D. K134D was obtained by AgaWH117 mutagenesis and showed improved thermal stability when immobilized via covalent bonds on functionalized magnetic nanoparticles. The obtained multienzyme biocatalyst was characterized by Fourier transform infrared spectroscopy (FTIR). Compared with free agarases, the coimmobilized agarases exhibited a relatively higher agarose-to-l-AHG conversion efficiency. The yield of l-AHG obtained with the coimmobilized agarases was 40.6%, which was 6.5% higher than that obtained with free agarases. After eight cycles, the multienzyme biocatalyst still preserved 46.4% of the initial activity. To the best of our knowledge, this is the first report where two different agarases were coimmobilized. These results demonstrated the feasibility of the new method to fabricate a new multienzyme system onto magnetic nanoparticles via covalent bonds to produce l-AHG.
Collapse
Affiliation(s)
- Qidong Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Jianan Sun
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Wencan Huang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
41
|
Landry ZC, Vergin K, Mannenbach C, Block S, Yang Q, Blainey P, Carlson C, Giovannoni S. Optofluidic Single-Cell Genome Amplification of Sub-micron Bacteria in the Ocean Subsurface. Front Microbiol 2018; 9:1152. [PMID: 29937754 PMCID: PMC6003095 DOI: 10.3389/fmicb.2018.01152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/14/2018] [Indexed: 12/03/2022] Open
Abstract
Optofluidic single-cell genome amplification was used to obtain genome sequences from sub-micron cells collected from the euphotic and mesopelagic zones of the northwestern Sargasso Sea. Plankton cells were visually selected and manually sorted with an optical trap, yielding 20 partial genome sequences representing seven bacterial phyla. Two organisms, E01-9C-26 (Gammaproteobacteria), represented by four single cell genomes, and Opi.OSU.00C, an uncharacterized Verrucomicrobia, were the first of their types retrieved by single cell genome sequencing and were studied in detail. Metagenomic data showed that E01-9C-26 is found throughout the dark ocean, while Opi.OSU.00C was observed to bloom transiently in the nutrient-depleted euphotic zone of the late spring and early summer. The E01-9C-26 genomes had an estimated size of 4.76-5.05 Mbps, and contained "O" and "W"-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes. Metabolic reconstruction indicated E01-9C-26 are likely versatile methylotrophs capable of scavenging C1 compounds, methylated compounds, reduced sulfur compounds, and a wide range of amines, including D-amino acids. The genome sequences identified E01-9C-26 as a source of "O" and "W"-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes, but are of unknown function. In contrast, Opi.OSU.00C genomes encode genes for catabolizing carbohydrate compounds normally associated with eukaryotic phytoplankton. This exploration of optofluidics showed that it was effective for retrieving diverse single-cell bacterioplankton genomes and has potential advantages in microbiology applications that require working with small sample volumes or targeting cells by their morphology.
Collapse
Affiliation(s)
- Zachary C. Landry
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
- Institut für Umweltingenieurwissenschaften, ETH Zurich, Zurich, Switzerland
| | - Kevin Vergin
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Stephen Block
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Qiao Yang
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
- East China Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Paul Blainey
- Department of Biological Engineering, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Craig Carlson
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
42
|
Rajkumar P, Venkatesan R, Sasikumar S, Ramprasath T, Karuppiah PS, Ramu A, Selvam GS. Characterization of agarolytic enzymes of Arthrobacter spp. AG-1 for the whole cell conversion of agar into 3,6-anhydro-α- l -galactose in one pot. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Schultz-Johansen M, Bech PK, Hennessy RC, Glaring MA, Barbeyron T, Czjzek M, Stougaard P. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66 T Encoded in a Sizeable Polysaccharide Utilization Locus. Front Microbiol 2018; 9:839. [PMID: 29774012 PMCID: PMC5943477 DOI: 10.3389/fmicb.2018.00839] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.
Collapse
Affiliation(s)
- Mikkel Schultz-Johansen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pernille K Bech
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rosanna C Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel A Glaring
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Peter Stougaard
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
44
|
Oh YR, Jung KA, Lee HJ, Jung GY, Park JM. A Novel 3,6-anhydro-L-galactose Dehydrogenase Produced by a Newly Isolated Raoultella ornithinolytica B6-JMP12. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Valdehuesa KNG, Ramos KRM, Moron LS, Lee I, Nisola GM, Lee WK, Chung WJ. Draft Genome Sequence of Newly Isolated Agarolytic Bacteria Cellulophaga omnivescoria sp. nov. W5C Carrying Several Gene Loci for Marine Polysaccharide Degradation. Curr Microbiol 2018. [PMID: 29536113 DOI: 10.1007/s00284-018-1467-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The continued research in the isolation of novel bacterial strains is inspired by the fact that native microorganisms possess certain desired phenotypes necessary for recombinant microorganisms in the biotech industry. Most studies have focused on the isolation and characterization of strains from marine ecosystems as they present a higher microbial diversity than other sources. In this study, a marine bacterium, W5C, was isolated from red seaweed collected from Yeosu, South Korea. The isolate can utilize several natural polysaccharides such as agar, alginate, carrageenan, and chitin. Genome sequence and comparative genomics analyses suggest that strain W5C belongs to a novel species of the Cellulophaga genus, from which the name Cellulophaga omnivescoria sp. nov. is proposed. Its genome harbors 3,083 coding sequences and 146 carbohydrate-active enzymes (CAZymes). Compared to other reported Cellulophaga species, the genome of W5C contained a higher proportion of CAZymes (4.7%). Polysaccharide utilization loci (PUL) for agar, alginate, and carrageenan were identified in the genome, along with other several putative PULs. These PULs are excellent sources for discovering novel hydrolytic enzymes and pathways with unique characteristics required for biorefinery applications, particularly in the utilization of marine renewable biomass. The type strain is JCM 32108T (= KCTC 13157BPT).
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Llewelyn S Moron
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
- Biology Department, College of Science, De La Salle University, Manila, Philippines
| | - Imchang Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Grace M Nisola
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea.
| |
Collapse
|
46
|
Abstract
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Collapse
|
47
|
Yun EJ, Yu S, Kim S, Kim KH. Metabolomic response of a marine bacterium to 3,6-anhydro- l -galactose, the rare sugar from red macroalgae, as the sole carbon source. J Biotechnol 2018; 270:12-20. [DOI: 10.1016/j.jbiotec.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
48
|
Yu S, Choi IG, Yun EJ, Kim KH. High substrate specificity of 3,6-anhydro- l -galactose dehydrogenase indicates its essentiality in the agar catabolism of a marine bacterium. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Campbell K, Xia J, Nielsen J. The Impact of Systems Biology on Bioprocessing. Trends Biotechnol 2017; 35:1156-1168. [DOI: 10.1016/j.tibtech.2017.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
|
50
|
Ramos KRM, Valdehuesa KNG, Maza PAMM, Nisola GM, Lee WK, Chung WJ. Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|