1
|
Vlachou P, Tsafantakis N, Milic N, Polyzois A, Baira E, Termentzi A, Le Goff G, Ouazzani J, Fokialakis N. Chemical Investigation of the Mediterranean Sponge Crambe crambe by UHPLC-HRMS/MS via Manual and Computational Dereplication Approaches. Mar Drugs 2024; 22:522. [PMID: 39590802 PMCID: PMC11595807 DOI: 10.3390/md22110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The CH2Cl2-MeOH extract of the Mediterranean sponge Crambe crambe was investigated via UHPLC-HRMS/MS employing manual dereplication and in silico mass spectrometry tools. A deconvolution approach was implemented for the extensive metabolic characterization of the sample, resulting in the annotation of 53 compounds. The analysis of data-dependent HRMS/MS scans was conducted to establish fragmentation patterns characteristic of each crambescin A, B, and C sub-families. Among the 39 compounds identified from these groups, 22 analogues were reported for the first time including 4 new homologous series that differed by the ratio of methylene units in the upper (n + 2) and lower (m + 2) alkyl side chains. More specifically, crambescins presenting m = 5 or 6 and n = 5 (compounds 7, 11, 22 and 24) as well as m = 5 or 6 and n = 4 (compounds 5, 6, 8, 9, 12 and 14) were characterized. Additionally, four new features, potentially corresponding to new crambescidin analogues (compounds 13, 15, 35, and 39), were also reported. The identity of the dereplicated features was further validated by studying crambescins' spectral similarities through a feature-based molecular networking approach. Overall, this study suggests UHPLC-HRMS/MS-through the integration of manual and computational dereplication approaches-as a valuable tool for the investigation and high-throughput characterization of the C. crambe metabolome.
Collapse
Affiliation(s)
- Pinelopi Vlachou
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
| | - Nikolaos Tsafantakis
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
| | - Nikola Milic
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
| | - Alexandros Polyzois
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
| | - Eirini Baira
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control & Phytopharmacy, Benaki Phytopathological Institute, 14561 Kifissia, Greece;
| | - Aikaterini Termentzi
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control & Phytopharmacy, Benaki Phytopathological Institute, 14561 Kifissia, Greece;
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.O.)
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.O.)
| | - Nikolas Fokialakis
- Laboratory of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.M.); (A.P.); (E.B.)
| |
Collapse
|
2
|
Delleuze M, Schwob G, Orlando J, Gerard K, Saucède T, Brickle P, Poulin E, Cabrol L. Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. FEMS Microbiol Ecol 2024; 100:fiae134. [PMID: 39363207 PMCID: PMC11523047 DOI: 10.1093/femsec/fiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.
Collapse
Affiliation(s)
- Mélanie Delleuze
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Marine Biology Lab, CP160/15, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Karin Gerard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas 6210427, Chile
- Cape Horn Investigation Center, Puerto Williams 6350054, Chile
| | - Thomas Saucède
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 21000 Dijon, France
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Port Stanley FIQQ 1ZZ, Falkland Islands
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Aix-Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (M.I.O.) UM 110, 13009 Marseille, France
| |
Collapse
|
3
|
Paix B, van der Valk E, de Voogd NJ. Dynamics, diversity, and roles of bacterial transmission modes during the first asexual life stages of the freshwater sponge Spongilla lacustris. ENVIRONMENTAL MICROBIOME 2024; 19:37. [PMID: 38851755 PMCID: PMC11162577 DOI: 10.1186/s40793-024-00580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Sponge-associated bacteria play important roles in the physiology of their host, whose recruitment processes are crucial to maintain symbiotic associations. However, the acquisition of bacterial communities within freshwater sponges is still under explored. Spongilla lacustris is a model sponge widely distributed in European rivers and lakes, producing dormant cysts (named gemmules) for their asexual reproduction, before winter. Through an in vitro experiment, this study aims to describe the dynamics of bacterial communities and their transmission modes following the hatching of these gemmules. RESULTS An overall change of bacterial β-diversity was observed through the ontology of the juvenile sponges. These temporal differences were potentially linked, first to the osculum acquisition and the development of a canal system, and then, the increasing colonization of the Chlorella-like photosymbionts. Gemmules hatching with a sterilized surface were found to have a more dispersed and less diverse microbiome, revealing the importance of gemmule epibacteria for the whole holobiont stability. These epibacteria were suggested to be vertically transmitted from the maternal tissues to the gemmule surface. Vertical transmission through the incorporation of bacterial communities inside of the gemmule, was also found as a dominant transmission mode, especially with the nitrogen fixers Terasakiellaceae. Finally, we showed that almost no ASVs were shared between the free-living community and the juveniles, suggesting that horizontal recruitment is unlikely to happen during the first stages of development. However, the free-living bacteria filtered are probably used as a source of nutrients, allowing an enrichment of copiotrophic bacteria already present within its microbiome. CONCLUSIONS This study brings new insight for a better understanding of the microbiome acquisition during the first stages of freshwater sponge development. We showed the importance of epibacterial communities on gemmules for the whole holobiont stability, and demonstrated the near absence of recruitment of free-living bacteria during the first stages.
Collapse
Affiliation(s)
- Benoit Paix
- Naturalis Biodiversity Center, Leiden, The Netherlands.
- UMR CARRTEL, INRAE - Université Savoie Mont-Blanc, Thonon-les-Bains, France.
| | - Elodie van der Valk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology (IBL), Leiden University, PO Box 9505, Leiden, 2333BE, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute of Biology (IBL), Leiden University, PO Box 9505, Leiden, 2333BE, The Netherlands.
| |
Collapse
|
4
|
Mazzella V, Dell'Anno A, Etxebarría N, González-Gaya B, Nuzzo G, Fontana A, Núñez-Pons L. High microbiome and metabolome diversification in coexisting sponges with different bio-ecological traits. Commun Biol 2024; 7:422. [PMID: 38589605 PMCID: PMC11001883 DOI: 10.1038/s42003-024-06109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Marine Porifera host diverse microbial communities, which influence host metabolism and fitness. However, functional relationships between sponge microbiomes and metabolic signatures are poorly understood. We integrate microbiome characterization, metabolomics and microbial predicted functions of four coexisting Mediterranean sponges -Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula. Microscopy observations reveal anatomical differences in microbial densities. Microbiomes exhibit strong species-specific trends. C. crambe shares many rare amplicon sequence variants (ASV) with the surrounding seawater. This suggests important inputs of microbial diversity acquired by selective horizontal acquisition. Phylum Cyanobacteria is mainly represented in C. nucula and C. crambe. According to putative functions, the microbiome of P. ficiformis and C. reniformis are functionally heterotrophic, while C. crambe and C. nucula are autotrophic. The four species display distinct metabolic profiles at single compound level. However, at molecular class level they share a "core metabolome". Concurrently, we find global microbiome-metabolome association when considering all four sponge species. Within each species still, sets of microbe/metabolites are identified driving multi-omics congruence. Our findings suggest that diverse microbial players and metabolic profiles may promote niche diversification, but also, analogous phenotypic patterns of "symbiont evolutionary convergence" in sponge assemblages where holobionts co-exist in the same area.
Collapse
Affiliation(s)
- Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, 80077, Ischia, Naples, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy
| | - Antonio Dell'Anno
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Néstor Etxebarría
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Belén González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia-Bld. 7, 80126, Napoli, Italy
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
5
|
Turon M, Ford M, Maldonado M, Sitjà C, Riesgo A, Díez-Vives C. Microbiome changes through the ontogeny of the marine sponge Crambe crambe. ENVIRONMENTAL MICROBIOME 2024; 19:15. [PMID: 38468324 DOI: 10.1186/s40793-024-00556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood. Here, we investigated the microbiome composition of a common, low-microbial-abundance, Atlantic-Mediterranean sponge, Crambe crambe, throughout its ontogeny, including adult individuals, brooded larvae, lecithotrophic free-swimming larvae, newly settled juveniles still lacking osculum, and juveniles with a functional osculum for filter feeding. RESULTS Using 16S rRNA gene analysis, we detected distinct microbiome compositions in each ontogenetic stage, with variations in composition, relative abundance, and diversity of microbial species. However, a particular dominant symbiont, Candidatus Beroebacter blanensis, previously described as the main symbiont of C. crambe, consistently occurred throughout all stages, an omnipresence that suggests vertical transmission from parents to offspring. This symbiont fluctuated in relative abundance across developmental stages, with pronounced prevalence in lecithotrophic stages. A major shift in microbial composition occurred as new settlers completed osculum formation and acquired filter-feeding capacity. Candidatus Beroebacter blanensis decreased significatively at this point. Microbial diversity peaked in filter-feeding stages, contrasting with the lower diversity of lecithotrophic stages. Furthermore, individual specific transmission patterns were detected, with greater microbial similarity between larvae and their respective parents compared to non-parental conspecifics. CONCLUSIONS These findings suggest a putative vertical transmission of the dominant symbiont, which could provide some metabolic advantage to non-filtering developmental stages of C. crambe. The increase in microbiome diversity with the onset of filter-feeding stages likely reflects enhanced interaction with environmental microbes, facilitating horizontal transmission. Conversely, lower microbiome diversity in lecithotrophic stages, prior to filter feeding, suggests incomplete symbiont transfer or potential symbiont digestion. This research provides novel information on the dynamics of the microbiome through sponge ontogeny, on the strategies for symbiont acquisition at each ontogenetic stage, and on the potential importance of symbionts during larval development.
Collapse
Affiliation(s)
- Marta Turon
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Madeline Ford
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Manuel Maldonado
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Cèlia Sitjà
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Cristina Díez-Vives
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- Department of Systems Biology, Centro Nacional de Biotecnología, c/Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
7
|
Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nat Commun 2022; 13:3804. [PMID: 35778405 PMCID: PMC9249911 DOI: 10.1038/s41467-022-31350-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
At the current rate of climate change, it is unlikely that multicellular organisms will be able to adapt to changing environmental conditions through genetic recombination and natural selection alone. Thus, it is critical to understand alternative mechanisms that allow organisms to cope with rapid environmental changes. Here, we use the sea anemone Nematostella vectensis, which has evolved the capability of surviving in a wide range of temperatures and salinities, as a model to investigate the microbiota as a source of rapid adaptation. We long-term acclimate polyps of Nematostella to low, medium, and high temperatures, to test the impact of microbiota-mediated plasticity on animal acclimation. Using the same animal clonal line, propagated from a single polyp, allows us to eliminate the effects of the host genotype. The higher thermal tolerance of animals acclimated to high temperature can be transferred to non-acclimated animals through microbiota transplantation. The offspring fitness is highest from F0 females acclimated to high temperature and specific members of the acclimated microbiota are transmitted to the next generation. These results indicate that microbiota plasticity can contribute to animal thermal acclimation and its transmission to the next generation may represent a rapid mechanism for thermal adaptation. This study shows that sea anemones acclimated to high temperatures exhibit increased resistance to thermal stress and that this improved fitness can be transferred by microbiome transplantation. These results indicate that plasticity mediated by the microbiota might be an important factor facilitating thermal adaptations in animals.
Collapse
|
8
|
Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep 2022; 12:3356. [PMID: 35233042 PMCID: PMC8888554 DOI: 10.1038/s41598-022-07292-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Marine sponges (phylum Porifera) are leading organisms for the discovery of bioactive compounds from nature. Their often rich and species-specific microbiota is hypothesised to be producing many of these compounds. Yet, environmental influences on the sponge-associated microbiota and bioactive compound production remain elusive. Here, we investigated the changes of microbiota and metabolomes in sponges along a depth range of 1232 m. Using 16S rRNA gene amplicon sequencing and untargeted metabolomics, we assessed prokaryotic and chemical diversities in three deep-sea sponge species: Geodia barretti, Stryphnus fortis, and Weberella bursa. Both prokaryotic communities and metabolome varied significantly with depth, which we hypothesized to be the effect of different water masses. Up to 35.5% of microbial ASVs (amplicon sequence variants) showed significant changes with depth while phylum-level composition of host microbiome remained unchanged. The metabolome varied with depth, with relative quantities of known bioactive compounds increasing or decreasing strongly. Other metabolites varying with depth were compatible solutes regulating osmolarity of the cells. Correlations between prokaryotic community and the bioactive compounds in G. barretti suggested members of Acidobacteria, Proteobacteria, Chloroflexi, or an unclassified prokaryote as potential producers.
Collapse
|
9
|
Cerrano C, Giovine M, Steindler L. Petrosia ficiformis (Poiret, 1789): an excellent model for holobiont and biotechnological studies. Curr Opin Biotechnol 2021; 74:61-65. [PMID: 34800848 DOI: 10.1016/j.copbio.2021.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
The aggregation of prokaryotic and eukaryotic cells has resulted in evolution of organisms with remarkable abilities to synthetize natural bioactive compounds of biotechnological relevance. Marine sponges such as Petrosia ficiformis are examples of this evolutionary strategy. The P. ficiformis microbiome, which produces a diversity of chemical compounds, plays a fundamental role in this sponge's extraordinary adaptation to various ecological conditions. The microbial community of P. ficiformis seems representative of sponge microbiomes, but it has an unusual exclusively horizontal transmission. This uncommon feature, together with its wide environmental distribution, its ability to generate 3D cell cultures that host symbionts, and the availability of meta-omics and physiology information make this sponge an effective model to study the complexity of holobionts.
Collapse
Affiliation(s)
- Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Stazione Zoologica Anthon Dohrn, 80121 Napoli, Italy; Fano Marine Center, 61032 Fano, Italy
| | - Marco Giovine
- DISTAV-Department of Sciences of Earth, Environment and Life, University of Genoa, Genova, Italy
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
10
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Baldassarre L, Levy S, Bar-Shalom R, Steindler L, Lotan T, Fraune S. Contribution of Maternal and Paternal Transmission to Bacterial Colonization in Nematostella vectensis. Front Microbiol 2021; 12:726795. [PMID: 34707584 PMCID: PMC8544946 DOI: 10.3389/fmicb.2021.726795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial communities confer multiple beneficial effects to their multicellular hosts. To evaluate the evolutionary and ecological implications of the animal-microbe interactions, it is essential to understand how bacterial colonization is secured and maintained during the transition from one generation to the next. However, the mechanisms of symbiont transmission are poorly studied for many species, especially in marine environments, where the surrounding water constitutes an additional source of microbes. Nematostella vectensis, an estuarine cnidarian, has recently emerged as model organism for studies on host-microbes interactions. Here, we use this model organism to study the transmission of bacterial colonizers, evaluating the contribution of parental and environmental transmission to the establishment of bacterial communities of the offspring. We induced spawning in adult male and female polyps of N. vectensis and used their gametes for five individual fertilization experiments. While embryos developed into primary polyps, we sampled each developmental stage and its corresponding medium samples. By analyzing the microbial community compositions of all samples through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor microbiota significantly different from the surrounding medium. Interestingly, oocytes and sperms are associated with distinct bacterial communities, indicating the specific vertical transmission of bacterial colonizers by the gametes. These differences were consistent among all the five families analyzed. By overlapping the identified bacterial ASVs associated with gametes, offspring and parents, we identified specific bacterial ASVs that are well supported candidates for vertical transmission via mothers and fathers. This is the first study investigating bacteria transmission in N. vectensis, and among few on marine spawners that do not brood larvae. Our results shed light on the consistent yet distinct maternal and paternal transfer of bacterial symbionts along the different life stages and generations of an aquatic invertebrate.
Collapse
Affiliation(s)
- Laura Baldassarre
- Institute for Zoology and Organismic Interactions, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Sezione di Oceanografia, Trieste, Italy
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tamar Lotan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Mutalipassi M, Riccio G, Mazzella V, Galasso C, Somma E, Chiarore A, de Pascale D, Zupo V. Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Mar Drugs 2021; 19:227. [PMID: 33923826 PMCID: PMC8074062 DOI: 10.3390/md19040227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Mazzella
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Emanuele Somma
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 34127 Trieste, Italy;
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Antonia Chiarore
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| |
Collapse
|
13
|
Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Front Microbiol 2021; 11:622824. [PMID: 33537022 PMCID: PMC7848895 DOI: 10.3389/fmicb.2020.622824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Dobson ADW, Laport MS. Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea. Microorganisms 2020; 8:E1978. [PMID: 33322780 PMCID: PMC7764410 DOI: 10.3390/microorganisms8121978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.
Collapse
Affiliation(s)
- Bruno F. R. Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Guilherme Muricy
- Laboratório de Biologia de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940040, Brazil;
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| |
Collapse
|
15
|
de Oliveira BFR, Freitas-Silva J, Sánchez-Robinet C, Laport MS. Transmission of the sponge microbiome: moving towards a unified model. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:619-638. [PMID: 33048474 DOI: 10.1111/1758-2229.12896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Claudia Sánchez-Robinet
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Díez‐Vives C, Taboada S, Leiva C, Busch K, Hentschel U, Riesgo A. On the way to specificity - Microbiome reflects sponge genetic cluster primarily in highly structured populations. Mol Ecol 2020; 29:4412-4427. [PMID: 32931063 PMCID: PMC7756592 DOI: 10.1111/mec.15635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Most animals, including sponges (Porifera), have species-specific microbiomes. Which genetic or environmental factors play major roles structuring the microbial community at the intraspecific level in sponges is, however, largely unknown. In this study, we tested whether geographic location or genetic structure of conspecific sponges influences their microbial assembly. For that, we used three sponge species with different rates of gene flow, and collected samples along their entire distribution range (two from the Mediterranean and one from the Southern Ocean) yielding a total of 393 samples. These three sponge species have been previously analysed by microsatellites or single nucleotide polymorphisms, and here we investigate their microbiomes by amplicon sequencing of the microbial 16S rRNA gene. The sponge Petrosia ficiformis, with highly isolated populations (low gene flow), showed a stronger influence of the host genetic distance on the microbial composition than the spatial distance. Host-specificity was therefore detected at the genotypic level, with individuals belonging to the same host genetic cluster harbouring more similar microbiomes than distant ones. On the contrary, the microbiome of Ircinia fasciculata and Dendrilla antarctica - both with weak population structure (high gene flow) - seemed influenced by location rather than by host genetic distance. Our results suggest that in sponge species with high population structure, the host genetic cluster influence the microbial community more than the geographic location.
Collapse
Affiliation(s)
| | - Sergi Taboada
- Departamento de Ciencias de la VidaEU‐US Marine Biodiversity GroupUniversidad de AlcaláAlcalá de HenaresSpain
- Departamento de Biología (Zoología)Universidad Autónoma de MadridFacultad de CienciasMadridSpain
| | - Carlos Leiva
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Genetics, Microbiology and StatisticsFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research KielResearch Unit Marine SymbiosesKielGermany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research KielResearch Unit Marine SymbiosesKielGermany
| | - Ana Riesgo
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de Madrid (CSIC)MadridSpain
| |
Collapse
|
17
|
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME JOURNAL 2020; 15:503-519. [PMID: 33011742 DOI: 10.1038/s41396-020-00791-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan-bacteria symbiosis.
Collapse
|
18
|
Thinesh T, Meenatchi R, Lipton AN, Anandham R, Jose PA, Tang SL, Seghal Kiran G, Selvin J. Metagenomic sequencing reveals altered bacterial abundance during coral-sponge interaction: Insights into the invasive process of coral-killing sponge Terpios hoshinota. Microbiol Res 2020; 240:126553. [PMID: 32711340 DOI: 10.1016/j.micres.2020.126553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
The coral-killing invasive sponge, Terpios hoshinota, causes extensive mortality to live corals and is a potential threat to reefs at different geographical locations. However, to date, the invasive mechanism remains largely unknown. In this study, we aimed to understand the bacterial competition between sponge and coral hosted bacteria when sponge outcompetes corals. We analysed the bacterial community of Terpios-invaded coral tissue, and the adjacent healthy tissue of sponge-invaded Favites colonies from Palk bay reef (South East Asia) of the Indian Ocean by using next-generation sequencing. Comparative analysis revealed similar bacterial diversity in both healthy and sponge covered coral tissues. However, relative abundance found to be differed between the groups. Terpios covered coral tissue had higher bacterial abundance than the healthy coral tissue. Bacterial phyla such as Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Verrucomicrobia live both in sponge covered and healthy coral tissue. Notably, many of the lower abundant bacteria in healthy coral tissue (abundance <1%) became the most abundant in sponge-invaded tissue. In particular, the genus Neisseria, Bacteroides, and members of Pseudoalteromonas predominant in sponge-invaded tissue. Similar bacterial diversity between normal and and sponge-invaded coral tissues suggest that bacteria follow an exploitative competition, which might favoured sponge growth over corals.
Collapse
Affiliation(s)
- T Thinesh
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - R Meenatchi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Anuj Nishanth Lipton
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104, India
| | - Polpass Arul Jose
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104, India
| | - Sen-Lin Tang
- Biodiversity Research Centre, Academia sinica, Taiwan
| | - G Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
19
|
Helber SB, Steinert G, Wu YC, Rohde S, Hentschel U, Muhando CA, Schupp PJ. Sponges from Zanzibar host diverse prokaryotic communities with potential for natural product synthesis. FEMS Microbiol Ecol 2020; 95:5369420. [PMID: 30830220 DOI: 10.1093/femsec/fiz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/02/2019] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most dominant organisms in marine ecosystems. One reason for their success is their association with microorganisms that are besides the host itself responsible for the chemical defence. Sponge abundances have been increasing on coral reefs in the Western Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts on coral reefs. However, there is a paucity of information on chemical ecology of sponges from the WIO and their prokaryotic community composition. We used a combination of Illumina sequencing and a predictive metagenomic analysis to (i) assess the prokaryotic community composition of sponges from Zanzibar, (ii) predict the presence of KEGG metabolic pathways responsible for bioactive compound production and (iii) relate their presence to the degree of observed chemical defence in their respective sponge host. We found that sponges from Zanzibar host diverse prokaryotic communities that are host species-specific. Sponge-species and respective specimens that showed strong chemical defences in previous studies were also predicted to be highly enriched in various pathways responsible for secondary metabolite production. Hence, the combined sequencing and predictive metagenomic approach proved to be a useful indicator for the metabolic potential of sponge holobionts.
Collapse
Affiliation(s)
- Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Leibniz Center for Tropical Marine Research (ZMT) GmbH, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Yu-Chen Wu
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Christopher A Muhando
- Institute of Marine Sciences (IMS), Mizingani Road, P.O Box 668, Stonetown, Zanzibar, Tanzania
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University of Oldenburg, Ammerländer Heeerstr. 231, 26129 Oldenburg, Germany
| |
Collapse
|
20
|
Bovio E, Sfecci E, Poli A, Gnavi G, Prigione V, Lacour T, Mehiri M, Varese GC. The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior. FEMS Microbiol Lett 2019; 366:5710934. [PMID: 31960895 DOI: 10.1093/femsle/fnaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.
Collapse
Affiliation(s)
- Elena Bovio
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy.,University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Estelle Sfecci
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giorgio Gnavi
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | | | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
21
|
Griffiths SM, Antwis RE, Lenzi L, Lucaci A, Behringer DC, Butler MJ, Preziosi RF. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J Anim Ecol 2019; 88:1684-1695. [PMID: 31325164 PMCID: PMC6899969 DOI: 10.1111/1365-2656.13065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Marine sponges are hosts to large, diverse communities of microorganisms. These microbiomes are distinct among sponge species and from seawater bacterial communities, indicating a key role of host identity in shaping its resident microbial community. However, the factors governing intraspecific microbiome variability are underexplored and may shed light on the evolutionary and ecological relationships between host and microbiome. Here, we examined the influence of genetic variation and geographic location on the composition of the Ircinia campana microbiome. We developed new microsatellite markers to genotype I. campana from two locations in the Florida Keys, USA, and characterized their microbiomes using V4 16S rRNA amplicon sequencing. We show that microbial community composition and diversity is influenced by host genotype, with more genetically similar sponges hosting more similar microbial communities. We also found that although I. campana was not genetically differentiated between sites, microbiome composition differed by location. Our results demonstrate that both host genetics and geography influence the composition of the sponge microbiome. Host genotypic influence on microbiome composition may be due to stable vertical transmission of the microbial community from parent to offspring, making microbiomes more similar by descent. Alternatively, sponge genotypic variation may reflect variation in functional traits that influence the acquisition of environmental microbes. This study reveals drivers of microbiome variation within and among locations, and shows the importance of intraspecific variability in mediating eco-evolutionary dynamics of host-associated microbiomes.
Collapse
Affiliation(s)
- Sarah M. Griffiths
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Rachael E. Antwis
- School of Environment and Life SciencesUniversity of SalfordSalfordUK
| | - Luca Lenzi
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Anita Lucaci
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Donald C. Behringer
- Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Mark J. Butler
- Department of Biological SciencesOld Dominion UniversityNorfolkVAUSA
| | - Richard F. Preziosi
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
22
|
Swierts T, Cleary DFR, de Voogd NJ. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol Ecol 2019; 94:5115559. [PMID: 30289448 PMCID: PMC6196991 DOI: 10.1093/femsec/fiy194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Sponges harbor complex communities of microorganisms that carry out essential roles for the functioning and survival of their hosts. In some cases, genetically related sponges from different geographic regions share microbes, while in other cases microbial communities are more similar in unrelated sponges collected from the same location. To better understand how geography and host phylogeny cause variation in the prokaryotic community of sponges, we compared the prokaryotic community of 44 giant barrel sponges (Xestospongia spp.). These sponges belonged to six reproductively isolated genetic groups from eight areas throughout the Indo-Pacific region. Using Illumina sequencing, we obtained 440 000 sequences of the 16S rRNA gene V3V4 variable region that were assigned to 3795 operational taxonomic units (OTUs). The prokaryotic community of giant barrel sponges was characterized by 71 core OTUs (i.e. OTUs present in each specimen) that represented 57.5% of the total number of sequences. The relative abundance of these core OTUs varied significantly among samples, and this variation was predominantly related to the geographic origin of the sample. These results show that in giant barrel sponges, the variation in the prokaryotic community is primarily associated with geography as opposed to phylogenetic relatedness.
Collapse
Affiliation(s)
- T Swierts
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.,Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - D F R Cleary
- Departamento de Biologia CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands.,Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
23
|
Cleary DFR, Swierts T, Coelho FJRC, Polónia ARM, Huang YM, Ferreira MRS, Putchakarn S, Carvalheiro L, van der Ent E, Ueng JP, Gomes NCM, de Voogd NJ. The sponge microbiome within the greater coral reef microbial metacommunity. Nat Commun 2019; 10:1644. [PMID: 30967538 PMCID: PMC6456735 DOI: 10.1038/s41467-019-09537-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/18/2019] [Indexed: 02/03/2023] Open
Abstract
Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan.
| | - Thomas Swierts
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| | - Francisco J R C Coelho
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
- Department of Marine Recreation, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
| | - Marina R S Ferreira
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Sumaitt Putchakarn
- Institute of Marine Science, Burapha University, Chon Buri, 20131, Thailand
| | - Luis Carvalheiro
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Esther van der Ent
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| | - Jinn-Pyng Ueng
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
- Department of Aquaculture, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
| | - Newton C M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
24
|
Wu S, Ou H, Liu T, Wang D, Zhao J. Structure and dynamics of microbiomes associated with the marine sponge Tedania sp. during its life cycle. FEMS Microbiol Ecol 2019; 94:4956761. [PMID: 29617990 DOI: 10.1093/femsec/fiy055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Tedania sp. is a dominant sponge that is ubiquitous along the southeast coast of China. High-throughput sequencing and transmission electron microscopy were used to describe a detailed profile of sponge-associated microbiomes at seven life stages: adult, embryo-containing spawning adult, embryo, pre-competent larva at 2 h and 4 h, competent larva at 8 h and post-larva within 1-2h after settlement, as well as the surrounding seawater. Among a total of 15098 operational taxonomic units (OTUs), 13 were present exclusively in all stages of the sponge life cycle and could thus be identified as sponge-specific bacteria. Many OTUs were shared between the sponge and seawater, though abundance differed. The relative abundance of β-Proteobacteria associated with sponges was much higher than found in seawater. The microbiomes from each life stage also exhibited a characteristic distribution. Synechococcales dominated in adults, and Enterobacteriaceae was prominent in larvae. The competent larva was notable, with sharp increases in the total OTUs, diversity indices, richness estimates and unique OTUs. Some bacterial groups that were rare in other sponge stages and seawater, such as Clostridia (5.6%), were markedly more abundant in competent larvae. In conclusion, this work greatly advances our understanding of the dynamics and persistence of the sponge-microbe association.
Collapse
Affiliation(s)
- Shufei Wu
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Huilong Ou
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Tan Liu
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Dexiang Wang
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Jing Zhao
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Sacristán‐Soriano O, Winkler M, Erwin P, Weisz J, Harriott O, Heussler G, Bauer E, West Marsden B, Hill A, Hill M. Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:249-261. [PMID: 30761773 PMCID: PMC6850349 DOI: 10.1111/1758-2229.12739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Marine sponges harbour diverse communities of microbes. Mechanisms used to establish microbial symbioses in sponges are poorly understood, and the relative contributions of horizontal and vertical transmission are unknown for most species. We examined microbial communities in adults and larvae of carotenoid-rich Clathria prolifera and Halichondria bowerbanki from the mid-Atlantic region of the eastern United States. We sequenced microbiomes from larvae and their mothers and seawater (16S rRNA gene sequencing), and compared microbial community characteristics between species and ambient seawater. The microbial communities in sponges were significantly different than those found in seawater, and each species harboured a distinctive microbiome. Larval microbiomes exhibited significantly lower richness compared with adults, with both sponges appearing to transfer to larvae a particular subset of the adult microbiome. We also surveyed culturable bacteria isolated from larvae of both species. Due to conspicuous coloration of adults and larvae, we focused on pigmented heterotrophic bacteria. We found that the densities of bacteria, in terms of colony-forming units and pigmented heterotrophic bacteria, were higher in larvae than in seawater. We identified a common mode of transmission (vertical and horizontal) of microbes in both sponges that might differ between species.
Collapse
Affiliation(s)
- Oriol Sacristán‐Soriano
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Marine Ecology DepartmentCentro de Estudios Avanzados de Blanes (CEAB, CSIC)BlanesSpain
| | - Marina Winkler
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Patrick Erwin
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North CarolinaWilmingtonNCUSA
| | - Jeremy Weisz
- Department of BiologyLinfield CollegeMcMinnvilleORUSA
| | | | - Gary Heussler
- Department of BiologyFairfield UniversityFairfieldCTUSA
| | - Emily Bauer
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | | | - April Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Malcolm Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| |
Collapse
|
26
|
Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 2019; 10:992. [PMID: 30824706 PMCID: PMC6397258 DOI: 10.1038/s41467-019-08925-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022] Open
Abstract
Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernd Wemheuer
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, 4816, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jose M Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France
| |
Collapse
|
27
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
28
|
García-Bonilla E, Brandão PFB, Pérez T, Junca H. Stable and Enriched Cenarchaeum symbiosum and Uncultured Betaproteobacteria HF1 in the Microbiome of the Mediterranean Sponge Haliclona fulva (Demospongiae: Haplosclerida). MICROBIAL ECOLOGY 2019; 77:25-36. [PMID: 29766224 DOI: 10.1007/s00248-018-1201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Sponges harbor characteristic microbiomes derived from symbiotic relationships shaping their lifestyle and survival. Haliclona fulva is encrusting marine sponge species dwelling in coralligenous accretions or semidark caves of the Mediterranean Sea and the near Atlantic Ocean. In this work, we characterized the abundance and core microbial community composition found in specimens of H. fulva by means of electron microscopy and 16S amplicon Illumina sequencing. We provide evidence of its low microbial abundance (LMA) nature. We found that the H. fulva core microbiome is dominated by sequences belonging to the orders Nitrosomonadales and Cenarchaeales. Seventy percent of the reads assigned to these phylotypes grouped in a very small number of high-frequency operational taxonomic units, representing niche-specific species Cenarchaeum symbiosum and uncultured Betaproteobacteria HF1, a new eubacterial ribotype variant found in H. fulva. The microbial composition of H. fulva is quite distinct from those reported in sponge species of the same Haliclona genus. We also detected evidence of an excretion/capturing loop between these abundant microorganisms and planktonic microbes by analyzing shifts in seawater planktonic microbial content exposed to healthy sponge specimens maintained in aquaria. Our results suggest that horizontal transmission is very likely the main mechanism for symbionts' acquisition by H. fulva. So far, this is the first shallow water sponge species harboring such a specific and predominant assemblage composed of these eubacterial and archaeal ribotypes. Our data suggests that this symbiotic relationship is very stable over time, indicating that the identified core microbial symbionts may play key roles in the holobiont functioning.
Collapse
Affiliation(s)
- Erika García-Bonilla
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia
| | - Pedro F B Brandão
- Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Avenida Carrera 30 No. 45-03, Bogotá, Colombia
| | - Thierry Pérez
- Station Marine d'Endoume SME - IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, Aix-Marseille Université, IRD, Avignon Université, Rue Batterie des Lions, 13007, Marseille, France
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia.
| |
Collapse
|
29
|
Batista D, Costa R, Carvalho AP, Batista WR, Rua CPJ, de Oliveira L, Leomil L, Fróes AM, Thompson FL, Coutinho R, Dobretsov S. Environmental conditions affect activity and associated microorganisms of marine sponges. MARINE ENVIRONMENTAL RESEARCH 2018; 142:59-68. [PMID: 30274716 DOI: 10.1016/j.marenvres.2018.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/09/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Changes in environmental conditions can influence sponges and their holobionts. The present study investigated the effect of upwelling and anthropogenic pollution on the bioactivity of marine sponges, microbial communities and functional genes, and composition of their chemical compounds. The species Dysidea etheria, Darwinella sp., Hymeniacidon heliophila and Tedania ignis were collected from areas with distinct influence of upwelling and low anthropogenic impact and from areas without influence of upwelling but affected by sewage and the port. In most cases, the same sponge species collected from areas with distinct environmental conditions had a different chemical composition, antifouling activity, composition and diversity of associated microorganisms. Antimicrobial, quorum sensing inhibitory and anti-larval activities of sponge extracts were more pronounced in the area without upwelling showing higher level of anthropogenic pollution. This study suggests that upwelling and anthropogenic pollution affect the chemical activity and holobiome composition of sponges.
Collapse
Affiliation(s)
- Daniela Batista
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto no 253, Praia dos Anjos, Arraial do Cabo, RJ, Brazil.
| | - Rafaela Costa
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto no 253, Praia dos Anjos, Arraial do Cabo, RJ, Brazil
| | - Ana Polycarpa Carvalho
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto no 253, Praia dos Anjos, Arraial do Cabo, RJ, Brazil
| | - William Romão Batista
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto no 253, Praia dos Anjos, Arraial do Cabo, RJ, Brazil
| | - Cintia P J Rua
- Instituto de Biologia e SAGE-COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundão s/n, Rio de Janeiro, RJ, Brazil
| | - Louisi de Oliveira
- Instituto de Biologia e SAGE-COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundão s/n, Rio de Janeiro, RJ, Brazil
| | - Luciana Leomil
- Instituto de Biologia e SAGE-COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundão s/n, Rio de Janeiro, RJ, Brazil
| | - Adriana M Fróes
- Instituto de Biologia e SAGE-COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundão s/n, Rio de Janeiro, RJ, Brazil
| | - Fabiano L Thompson
- Instituto de Biologia e SAGE-COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundão s/n, Rio de Janeiro, RJ, Brazil
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto no 253, Praia dos Anjos, Arraial do Cabo, RJ, Brazil
| | - Sergey Dobretsov
- Marine Science and Fisheries Department, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123. PO Box 34, Muscat, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Al-Khoud 123. PO Box 50, Muscat, Oman.
| |
Collapse
|
30
|
Russell SL, McCartney E, Cavanaugh CM. Transmission strategies in a chemosynthetic symbiosis: detection and quantification of symbionts in host tissues and their environment. Proc Biol Sci 2018; 285:20182157. [PMID: 30381385 PMCID: PMC6235040 DOI: 10.1098/rspb.2018.2157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transmission of bacteria vertically through host tissues ensures offspring acquire symbionts; however, horizontal transmission is an effective strategy for many associations and plays a role in some vertically transmitted symbioses. The bivalve Solemya velum and its gammaproteobacterial chemosynthetic symbionts exhibit evolutionary evidence of both transmission modes, but the dominant strategy on an ecological time scale is unknown. To address this, a specific primer set was developed and validated for the S. velum symbiont using a novel workflow called specific marker design (SMD). Symbionts were quantified in spawned eggs and sediment and seawater samples from S. velum habitats with qPCR. Each egg was estimated to contain 50-100 symbiont genomes. By contrast, symbiont DNA was found at low abundance/occurrence in sediment and seawater, often co-occurring with host mitochondrial DNA, obscuring its origin. To ascertain when eggs become infected, histological sections of S. velum tissues were labelled for symbiont 16S rRNA via in situ hybridization. This revealed symbionts in the ovary walls and mature oocytes, suggesting association in late oogenesis. These data support the hypothesis that S. velum symbionts are vertically transmitted every host generation, thus genetic signatures of horizontal transmission are driven by ecologically infrequent events. This knowledge furthers our understanding of vertical and horizontal mode integration and provides insights across animal-bacterial chemosynthetic symbioses.
Collapse
Affiliation(s)
- S L Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - E McCartney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - C M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
31
|
Versluis D, Nijsse B, Naim MA, Koehorst JJ, Wiese J, Imhoff JF, Schaap PJ, van Passel MWJ, Smidt H, Sipkema D. Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biol Evol 2018; 10:125-142. [PMID: 29319806 PMCID: PMC5765558 DOI: 10.1093/gbe/evx271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesized that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV, and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin, and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival, for example through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| |
Collapse
|
32
|
Turon M, Cáliz J, Garate L, Casamayor EO, Uriz MJ. Showcasing the role of seawater in bacteria recruitment and microbiome stability in sponges. Sci Rep 2018; 8:15201. [PMID: 30315194 PMCID: PMC6185911 DOI: 10.1038/s41598-018-33545-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023] Open
Abstract
We studied the core bacterial communities of 19 sponge species from Nha Trang Bay (Central Vietnam), with particular emphasis on the contribution of planktonic seawater bacteria to the sponge core microbiomes. To ensure consistent sponge-microbe associations and accurate identification of planktonic bacteria transmitted from seawater, we were very restrictive with the definition of the sponge core microbiomes (present in all the replicates), and with the identification of valid biological 16S rRNA gene sequences (100% sequence identity) that belonged to potentially different bacterial taxa. We found a high overlap (>50% relative abundance) between the sponge species core microbiome and the seawater bacterial core in ca. a half of the studied species, including representatives of both, HMA and LMA sponges. From our restrictive analysis, we point to horizontal transmission as a relevant way of symbiont acquisition in sponges. Some species-specific recognition mechanisms may act in sponges to enrich specific seawater bacteria in their tissues. These mechanisms would allow the maintenance of bacterial communities in a species across geographical ranges. Moreover, besides contrasting preferences in bacteria selection from seawater, divergent physiological traits may also account for the different microbiomes in species of HMA and LMA sponges.
Collapse
Affiliation(s)
- Marta Turon
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain.
| | - Joan Cáliz
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Leire Garate
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Emilio O Casamayor
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain
| | - Maria J Uriz
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala St. Francesc, Blanes, Girona, 17300, Spain.
| |
Collapse
|
33
|
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. MICROBIOME 2018; 6:78. [PMID: 29695294 PMCID: PMC5922317 DOI: 10.1186/s40168-018-0457-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/05/2018] [Indexed: 05/11/2023]
Abstract
The holobiont (host with its endocellular and extracellular microbiome) can function as a distinct biological entity, an additional organismal level to the ones previously considered, on which natural selection operates. The holobiont can function as a whole: anatomically, metabolically, immunologically, developmentally, and during evolution. Consideration of the holobiont with its hologenome as an independent level of selection in evolution has led to a better understanding of underappreciated modes of genetic variation and evolution. The hologenome is comprised of two complimentary parts: host and microbiome genomes. Changes in either genome can result in variations that can be selected for or against. The host genome is highly conserved, and genetic changes within it occur slowly, whereas the microbiome genome is dynamic and can change rapidly in response to the environment by increasing or reducing particular microbes, by acquisition of novel microbes, by horizontal gene transfer, and by mutation. Recent experiments showing that microbiota can play an initial role in speciation have been suggested as an additional mode of enhancing evolution. Some of the genetic variations can be transferred to offspring by a variety of mechanisms. Strain-specific DNA analysis has shown that at least some of the microbiota can be maintained across hundreds of thousands of host generations, implying the existence of a microbial core. We argue that rapid changes in the microbiome genome could allow holobionts to adapt and survive under changing environmental conditions thus providing the time necessary for the host genome to adapt and evolve. As Darwin wrote, "It is not the strongest of the species that survives but the most adaptable".
Collapse
Affiliation(s)
- Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
34
|
Steinert G, Gutleben J, Atikana A, Wijffels RH, Smidt H, Sipkema D. Coexistence of poribacterial phylotypes among geographically widespread and phylogenetically divergent sponge hosts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:80-91. [PMID: 29194987 DOI: 10.1111/1758-2229.12609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Marine sponges are benthic 'filter-feeding' invertebrates that can host dense and diverse bacterial, archaeal and eukaryotic communities. Due to the finding of several genes encoding symbiosis factors, such as adhesins, ankyrin repeats and tetratricopeptide repeats, the candidate phylum 'Poribacteria' is considered as a promising model microorganism for studying the origin of host-symbiont interactions in sponges. However, relatively little is known about its global diversity and phylogenetic distribution among different sponge hosts. Therefore, in this study we investigated phylogenetic relationships among poribacterial phylotypes and generated a phylogenetic network to examine the distribution and intraspecific diversity of the phylotypes between phylogenetically divergent host-sponges at a global scale. For this study 361 poribacterial 16S rRNA gene sequences obtained by Sanger sequencing from 15 different countries and 8 marine regions were gathered. We could demonstrate that the candidate phylum 'Poribacteria' is composed of diverse phylotypes, which are distributed among a wide range of phylogenetically divergent sponge hosts. The current phylogenetic analyses found neither conclusive evidence for co-speciation with its hosts, nor biogeographical correlation. Moreover, we identified a novel poribacterial clade, which might represent a link between the previously established four 'Poribacteria' clades.
Collapse
Affiliation(s)
- Georg Steinert
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Wilhelmshaven, 26382, Germany
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Akhirta Atikana
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong Science Center (CSC) Cibinong, Bogor, 16911, Indonesia
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, 6700 AA, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8026, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
35
|
BluePharmTrain: Biology and Biotechnology of Marine Sponges. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Gualtieri L, Nugnes F, Nappo AG, Gebiola M, Bernardo U. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol Ecol 2017; 93:3934658. [PMID: 28854679 DOI: 10.1093/femsec/fix087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
The incidence of horizontal transmission as a route for spreading symbiont infections is still being debated, but a common view is that horizontal transfers require intimate between-species relationships. Here we study a system that meets ideal requirements for horizontal transmission: the gall wasp Leptocybe invasa and its parasitoid Quadrastichus mendeli (Hymenoptera: Eulophidae). These wasps belong to the same subfamily, spend most of their lives inside the same minute gall and are both infected by Rickettsia, a maternally inherited endosymbiotic bacteria that infects several arthropods, sometimes manipulating their reproduction, like inducing thelytokous parthenogenesis in L. invasa. Despite intimate contact, close phylogenetic relationship and the parasitoid's host specificity, we show that host and parasitoid do not share the same Rickettsia. We provide indirect evidence that Rickettsia infecting Q. mendeli may be inducing thelytokous parthenogenesis, as the symbiont is densely present in the reproductive apparatus and is vertically transmitted. Phylogenetic analyses based on 16S and gltA placed this symbiont in the leech group. The confirmed and presumed parthenogenesis-inducing Rickettsia discovered so far only infect eulophid wasps, and belong to three different groups, suggesting multiple independent evolution of the parthenogenesis inducing phenotype. We also show some degree of cospeciation between Rickettsia and their eulophid hosts.
Collapse
Affiliation(s)
- Liberata Gualtieri
- CNR, Institute for Sustainable Plant Protection, SS of Portici, Via Università 133, 80055 Portici (NA), Italy. Tel: +39-081-7753658-19; E-mail:
| | | | | | | | | |
Collapse
|
37
|
Chaib De Mares M, Sipkema D, Huang S, Bunk B, Overmann J, van Elsas JD. Host Specificity for Bacterial, Archaeal and Fungal Communities Determined for High- and Low-Microbial Abundance Sponge Species in Two Genera. Front Microbiol 2017; 8:2560. [PMID: 29326681 PMCID: PMC5742488 DOI: 10.3389/fmicb.2017.02560] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show low microbial abundance (LMA). However, the associated Archaea and Eukarya have remained relatively understudied. We assessed the bacterial, archaeal and eukaryotic diversities in the LMA sponge species Dysidea avara and Dysidea etheria by deep amplicon sequencing, and compared the results to those in the HMA sponges Aplysina aerophoba and Aplysina cauliformis. D. avara and A. aerophoba are sympatric in the Mediterranean Sea, while D. etheria and A. cauliformis are sympatric in the Caribbean Sea. The bacterial communities followed a host-specific pattern, with host species identity explaining most of the variation among samples. We identified OTUs shared by the Aplysina species that support a more ancient association of these microbes, before the split of the two species studied here. These shared OTUs are suitable targets for future studies of the microbial traits that mediate interactions with their hosts. Even though the archaeal communities were not as rich as the bacterial ones, we found a remarkable diversification and specificity of OTUs of the family Cenarchaeaceae and the genus Nitrosopumilus in all four sponge species studied. Similarly, the differences in fungal communities were driven by sponge identity. The structures of the communities of small eukaryotes such as dinophytes and ciliophores (alveolates), and stramenopiles, could not be explained by either sponge host, sponge genus or geographic location. Our analyses suggest that the host specificity that was previously described for sponge bacterial communities also extends to the archaeal and fungal communities, but not to other microbial eukaryotes.
Collapse
Affiliation(s)
- Maryam Chaib De Mares
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Sixing Huang
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jan Dirk van Elsas
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13752-017-0287-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Naim MA, Smidt H, Sipkema D. Fungi found in Mediterranean and North Sea sponges: how specific are they? PeerJ 2017; 5:e3722. [PMID: 28894639 PMCID: PMC5591636 DOI: 10.7717/peerj.3722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023] Open
Abstract
Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.
Collapse
Affiliation(s)
- Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.,Department of Biotechnology, International Islamic University, Jalan Istana, Malaysia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
40
|
Ellis GA, Thomas CS, Chanana S, Adnani N, Szachowicz E, Braun DR, Harper MK, Wyche TP, Bugni TS. Brackish habitat dictates cultivable Actinobacterial diversity from marine sponges. PLoS One 2017; 12:e0176968. [PMID: 28692665 PMCID: PMC5503172 DOI: 10.1371/journal.pone.0176968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022] Open
Abstract
Bacterial communities associated with marine invertebrates such as sponges and ascidians have demonstrated potential as sources of bio-medically relevant small molecules. Metagenomic analysis has shown that many of these invertebrates harbor populations of Actinobacteria, many of which are cultivable. While some populations within invertebrates are transmitted vertically, others are obtained from the environment. We hypothesized that cultivable diversity from sponges living in brackish mangrove habitats have associations with Actinobacterial populations that differ from those found in clear tropical waters. In this study, we analyzed the cultivable Actinobacterial populations from sponges found in these two distinct habitats with the aim of understanding the secondary metabolite potential. Importantly, we wanted to broadly evaluate the potential differences among these groups to guide future Actinobacterial collection strategies for the purposes of drug discovery.
Collapse
Affiliation(s)
- Gregory A. Ellis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris S. Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Navid Adnani
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Szachowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Endosymbiotic calcifying bacteria across sponge species and oceans. Sci Rep 2017; 7:43674. [PMID: 28262822 PMCID: PMC5337934 DOI: 10.1038/srep43674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/27/2017] [Indexed: 11/17/2022] Open
Abstract
From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance.
Collapse
|
42
|
Mixed transmission modes and dynamic genome evolution in an obligate animal-bacterial symbiosis. ISME JOURNAL 2017; 11:1359-1371. [PMID: 28234348 DOI: 10.1038/ismej.2017.10] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022]
Abstract
Reliable transmission of symbionts between host generations facilitates the evolution of beneficial and pathogenic associations. Although transmission mode is typically characterized as either vertical or horizontal, the prevalence of intermediate transmission modes, and their impact on symbiont genome evolution, are understudied. Here, we use population genomics to explore mixed transmission modes of chemosynthetic bacterial symbionts in the bivalve Solemya velum. Despite strong evidence for symbiont inheritance through host oocytes, whole-genome analyses revealed signatures of frequent horizontal transmission, including discordant mitochondrial-symbiont genealogies, widespread recombination and a dynamic symbiont genome structure consistent with evolutionary patterns of horizontally transmitted associations. Population-level analyses thus provide a tractable means of ascertaining the fidelity of vertical versus horizontal transmission. Our data support the strong influence horizontal transmission can have on symbiont genome evolution, and shed light on the dynamic evolutionary pressures shaping symbiotic bacterial genomes.
Collapse
|
43
|
Paz LC, Schramm A, Lund MB. Biparental transmission of Verminephrobacter symbionts in the earthworm Aporrectodea tuberculata (Lumbricidae). FEMS Microbiol Ecol 2017; 93:3045886. [DOI: 10.1093/femsec/fix025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
|
44
|
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol 2017; 26:1432-1451. [PMID: 28036141 DOI: 10.1111/mec.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023]
Abstract
Eukaryotic-like proteins (ELPs) are classes of proteins that are found in prokaryotes, but have a likely evolutionary origin in eukaryotes. ELPs have been postulated to mediate host-microbiome interactions. Recent work has discovered that prokaryotic symbionts of sponges contain abundant and diverse genes for ELPs, which could modulate interactions with their filter-feeding and phagocytic host. However, the extent to which these ELP genes are actually used and expressed by the symbionts is poorly understood. Here, we use metatranscriptomics to investigate ELP expression in the microbiomes of three different sponges (Cymbastella concentrica, Scopalina sp. and Tedania anhelens). We developed a workflow with optimized rRNA removal and in silico subtraction of host sequences to obtain a reliable symbiont metatranscriptome. This showed that between 1.3% and 2.3% of all symbiont transcripts contain genes for ELPs. Two classes of ELPs (cadherin and tetratricopeptide repeats) were abundantly expressed in the C. concentrica and Scopalina sp. microbiomes, while ankyrin repeat ELPs were predominant in the T. anhelens metatranscriptome. Comparison with transcripts that do not encode ELPs indicated a constitutive expression of ELPs across a range of bacterial and archaeal symbionts. Expressed ELPs also contained domains involved in protein secretion and/or were co-expressed with proteins involved in extracellular transport. This suggests these ELPs are likely exported, which could allow for direct interaction with the sponge. Our study shows that ELP genes in sponge symbionts represent actively expressed functions that could mediate molecular interaction between symbiosis partners.
Collapse
Affiliation(s)
- C Díez-Vives
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - L Moitinho-Silva
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - S Nielsen
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - D Reynolds
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - T Thomas
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
45
|
Li H, Li T, Yao M, Li J, Zhang S, Wirth S, Cao W, Lin Q, Li X. Pika Gut May Select for Rare but Diverse Environmental Bacteria. Front Microbiol 2016; 7:1269. [PMID: 27582734 PMCID: PMC4987353 DOI: 10.3389/fmicb.2016.01269] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 02/01/2023] Open
Abstract
The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesSichuan, China; University of Chinese Academy of SciencesBeijing, China
| | - Tongtong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Minjie Yao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Shiheng Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Stephan Wirth
- Leibniz-Center for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry Müncheberg, Germany
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China; Soil and Fertilizer Institute, Qinghai Academy of Agriculture and Forestry Sciences, Qinghai UniversityXining, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| |
Collapse
|
46
|
Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep 2016; 6:24966. [PMID: 27113140 PMCID: PMC4844951 DOI: 10.1038/srep24966] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei.
Collapse
|
47
|
Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. ACTA ACUST UNITED AC 2016; 43:115-28. [DOI: 10.1007/s10295-015-1683-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.
Collapse
Affiliation(s)
- Michael J Smanski
- grid.17635.36 0000000419368657 Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Daniel C Schlatter
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Linda L Kinkel
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| |
Collapse
|
48
|
Microbial Diversity and Putative Diazotrophy in High- and Low-Microbial-Abundance Mediterranean Sponges. Appl Environ Microbiol 2015; 81:5683-93. [PMID: 26070678 DOI: 10.1128/aem.01320-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Microbial communities associated with marine sponges carry out nutrient transformations essential for benthic-pelagic coupling; however, knowledge about their composition and function is still sparse. We evaluated the richness and diversity of prokaryotic assemblages associated with three high-microbial-abundance (HMA) and three low-microbial-abundance (LMA) sympatric Mediterranean sponges to address their stability and uniqueness. Moreover, to examine functionality and because an imbalance between nitrogen ingestion and excretion has been observed for some of these species, we sequenced nitrogenase genes (nifH) and measured N2 fixation. The prokaryotic communities in the two sponge types did not differ in terms of richness, but the highest diversity was found in HMA sponges. Moreover, the discrete composition of the communities in the two sponge types relative to that in the surrounding seawater indicated that horizontal transmission and vertical transmission affect the microbiomes associated with the two sponge categories. nifH genes were found in all LMA species and sporadically in one HMA species, and about half of the nifH gene sequences were common between the different sponge species and were also found in the surrounding water, suggesting horizontal transmission. (15)N2-enriched incubations showed that N2 fixation was measurable in the water but was not associated with the sponges. Also, the analysis of the isotopic ratio of (15)N to (14)N in sponge tissue indicated that N2 fixation is not an important source of nitrogen in these Mediterranean sponges. Overall, our results suggest that compositional and functional features differ between the prokaryotic communities associated with HMA and LMA sponges, which may affect sponge ecology.
Collapse
|