1
|
Cockell CS. Where the microbes aren't. FEMS Microbiol Rev 2025; 49:fuae034. [PMID: 39725411 PMCID: PMC11737512 DOI: 10.1093/femsre/fuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes. At the physico-chemical limits of life, questions such as whether spaces devoid of actively metabolizing or reproducing life constitute uninhabitable space or space containing vacant niches that could be occupied with appropriate adaptation are raised. We do not know the extent to which evolution has allowed life to occupy all niche space within its biochemical potential. The case of habitable extraterrestrial environments and the scientific and ethical questions that they raise is discussed.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
2
|
Sipes K, Buongiorno J, Steen AD, Abramov AA, Abuah C, Peters SL, Gianonne RJ, Hettich RL, Boike J, Garcia SL, Vishnivetskaya TA, Lloyd KG. Depth-specific distribution of bacterial MAGs in permafrost active layer in Ny Ålesund, Svalbard (79°N). Syst Appl Microbiol 2024; 47:126544. [PMID: 39303414 DOI: 10.1016/j.syapm.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny Ålesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5°C to 5 °C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding β -glucosidase, N-acetyl-β-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below ∼6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.
Collapse
Affiliation(s)
- Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, United States.
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, United States
| | - Andrew D Steen
- Department of Microbiology, University of Tennessee, Knoxville, United States; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, United States
| | - Andrey A Abramov
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia
| | | | - Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Richard J Gianonne
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Julia Boike
- Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; Department of Geography, Humboldt University, Berlin, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, United States
| |
Collapse
|
3
|
Kumari S, Kumar A, Lepcha A, Kumar R. Cold-adapted Exiguobacterium sibiricum K1 as a potential bioinoculant in cold regions: Physiological and genomic elucidation of biocontrol and plant growth promotion. Gene 2024; 916:148439. [PMID: 38583819 DOI: 10.1016/j.gene.2024.148439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.
Collapse
Affiliation(s)
- Sareeka Kumari
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ayush Lepcha
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
4
|
Savaglia V, Lambrechts S, Tytgat B, Vanhellemont Q, Elster J, Willems A, Wilmotte A, Verleyen E, Vyverman W. Geology defines microbiome structure and composition in nunataks and valleys of the Sør Rondane Mountains, East Antarctica. Front Microbiol 2024; 15:1316633. [PMID: 38380088 PMCID: PMC10877063 DOI: 10.3389/fmicb.2024.1316633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.
Collapse
Affiliation(s)
- Valentina Savaglia
- InBioS Research Unit, Department of Life Sciences, University of Liège, Liège, Belgium
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Sam Lambrechts
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Josef Elster
- Faculty of Science, Centre for Polar Ecology, University of South Bohemia České Budějovice and Institute of Botany, Třeboň, Czechia
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Annick Wilmotte
- InBioS Research Unit, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Dong L, Li MX, Li S, Yue LX, Ali M, Han JR, Lian WH, Hu CJ, Lin ZL, Shi GY, Wang PD, Gao SM, Lian ZH, She TT, Wei QC, Deng QQ, Hu Q, Xiong JL, Liu YH, Li L, Abdelshafy OA, Li WJ. Aridity drives the variability of desert soil microbiomes across north-western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168048. [PMID: 37890638 DOI: 10.1016/j.scitotenv.2023.168048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Dryland covers >35 % of the terrestrial surface and the global extent of dryland increases due to the forecasted increase in aridity driven by climate change. Due to the climate change-driven aridity ecosystems, deserts provide one of the most hostile environments for microbial life and survival. Therefore, a detailed study was carried out to explore the deserts with different aridity levels (exposed to severe climate change) influence on microbial (bacteria, fungi, and protist) diversity patterns, assembly processes, and co-occurrence. The results revealed that the aridity (semi-arid, arid, and hyper-arid) patterns caused distinct changes in environmental heterogeneity in desert ecosystems. Similarly, microbial diversities were also reduced with increasing the aridity pattern, and it was found that environmental heterogeneity is highly involved in affecting microbial diversities under different ecological niches. Interestingly, it was found that certain microbes, including bacterial (Firmicutes), fungal (Sordariomycetes), and protistan (Ciliophora) abundance increased with increasing aridity levels, indicating that these microbes might possess the capability to tolerate the environmental stress conditions. Moreover, microbial community turnover analysis revealed that bacterial diversities followed homogenous selection, whereas fungi and protists were mostly driven by the dispersal limitation pattern. Co-occurrence network analysis showed that hyper-arid and arid conditions tightened the bacterial and fungal communities and had more positive associations compared to protistan. In conclusion, multiple lines of evidence were provided to shed light on the habitat specialization impact on microbial (bacteria, fungi, and protists) communities and composition under different desert ecosystems.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ling-Xiang Yue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guo-Yuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Shao-Ming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Jia-Liang Xiong
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
6
|
Sun X, Jiang H, Zhang S. Diversities and interactions of phages and bacteria in deep-sea sediments as revealed by metagenomics. Front Microbiol 2024; 14:1337146. [PMID: 38260883 PMCID: PMC10801174 DOI: 10.3389/fmicb.2023.1337146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Phages are found virtually everywhere, even in extreme environments, and are extremely diverse both in their virion structures and in their genomic content. They are thought to shape the taxonomic and functional composition of microbial communities as well as their stability. A number of studies on laboratory culture and viral metagenomic research provide deeper insights into the abundance, diversity, distribution, and interaction with hosts of phages across a wide range of ecosystems. Although most of these studies focus on easily accessible samples, such as soils, lakes, and shallow oceans, little is known about bathypelagic phages. In this study, through analyzing the 16S rRNA sequencing and viral metagenomic sequencing data of 25 samples collected from five different bathypelagic ecosystems, we detected a high diversity of bacteria and phages, particularly in the cold seep and hydrothermal vent ecosystems, which have stable chemical energy. The relative abundance of phages in these ecosystems was higher than in other three abyssal ecosystems. The low phage/host ratios obtained from host prediction were different from shallow ecosystems and indicated the prevalence of prophages, suggesting the complexity of phage-bacteria interactions in abyssal ecosystems. In the correlation analysis, we revealed several phages-bacteria interaction networks of potential ecological relevance. Our study contributes to a better understanding of the interactions between bathypelagic bacteria and their phages.
Collapse
Affiliation(s)
| | | | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Wood C, Bruinink A, Trembath-Reichert E, Wilhelm MB, Vidal C, Balaban E, McKay CP, Swan R, Swan B, Goordial J. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME COMMUNICATIONS 2024; 4:ycad002. [PMID: 38304082 PMCID: PMC10833075 DOI: 10.1093/ismeco/ycad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.
Collapse
Affiliation(s)
- Claudia Wood
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Bruinink
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Elizabeth Trembath-Reichert
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Chanel Vidal
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Edward Balaban
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Christopher P McKay
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Robert Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Barney Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Jackie Goordial
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Ray AE, Tribbia DZ, Cowan DA, Ferrari BC. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis. Microbiol Mol Biol Rev 2023; 87:e0004823. [PMID: 37914532 PMCID: PMC10732025 DOI: 10.1128/mmbr.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotrophic microbial primary production. The proposed process relies on the oxidation of trace concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane (≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon monoxide oxidation have been primarily linked to microbial growth in desert surface soils scarce in liquid water and organic nutrients, and low in photosynthetic communities. It is well established that the oxidation of trace hydrogen and carbon monoxide gases widely supports the persistence of microbial communities in a diminished metabolic state, with the former potentially providing a reliable source of metabolic water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils and is widespread throughout copiotrophic environments, with established links to microbial growth. Despite these findings, the direct link between trace gas oxidation and carbon fixation remains disputable. Here, we review the supporting evidence, outlining major gaps in our understanding of this phenomenon, and propose approaches to validate atmospheric chemosynthesis as a primary production process. We also explore the implications of this minimalistic survival strategy in terms of nutrient cycling, climate change, aerobiology, and astrobiology.
Collapse
Affiliation(s)
- Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Dana Z. Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
9
|
Mashamaite L, Lebre PH, Varliero G, Maphosa S, Ortiz M, Hogg ID, Cowan DA. Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front Microbiol 2023; 14:1203216. [PMID: 37555066 PMCID: PMC10406297 DOI: 10.3389/fmicb.2023.1203216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica. METHODS We analysed prokaryotic and lower eukaryotic diversity from soil samples across a 684 m altitudinal transect in the lower Taylor Valley, Antarctica and performed a phylogenic characterization of soil microbial communities using short-read sequencing of the 16S rRNA and ITS marker gene amplicons. RESULTS AND DISCUSSION Phylogenetic analysis showed clear altitudinal trends in soil microbial composition and structure. Cyanobacteria were more prevalent in higher altitude samples, while the highly stress resistant Chloroflexota and Deinococcota were more prevalent in lower altitude samples. We also detected a shift from Basidiomycota to Chytridiomycota with increasing altitude. Several genera associated with trace gas chemotrophy, including Rubrobacter and Ornithinicoccus, were widely distributed across the entire transect, suggesting that trace-gas chemotrophy may be an important trophic strategy for microbial survival in oligotrophic environments. The ratio of trace-gas chemotrophs to photoautotrophs was significantly higher in lower altitude samples. Co-occurrence network analysis of prokaryotic communities showed some significant differences in connectivity within the communities from different altitudinal zones, with cyanobacterial and trace-gas chemotrophy-associated taxa being identified as potential keystone taxa for soil communities at higher altitudes. By contrast, the prokaryotic network at low altitudes was dominated by heterotrophic keystone taxa, thus suggesting a clear trophic distinction between soil prokaryotic communities at different altitudes. Based on these results, we conclude that altitude is an important driver of microbial ecology in Antarctic ice-free soil habitats.
Collapse
Affiliation(s)
- Lefentse Mashamaite
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Pedro H. Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Silindile Maphosa
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Max Ortiz
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Clemson University Genomics & Bioinformatics Facility, Clemson University, Clemson, SC, United States
| | - Ian D. Hogg
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - Don A. Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Gao R, Ma B, Hu M, Fang L, Chen G, Zhang W, Wang Y, Song X, Li F. Ecological drivers and potential functions of viral communities in flooded arsenic-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162289. [PMID: 36804971 DOI: 10.1016/j.scitotenv.2023.162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
This work revealed the profile of viral communities in paddy soils with different levels of arsenic (As) contamination during the flooded period. The structure of viral communities differed significantly in highly and moderately As-contaminated soils. The diversity of soil viral communities under high As contamination decreased. Siphoviridae, Podoviridae, Myoviridae, and Microviridae were the dominant viral families in all samples, and the relative abundances of five of the top 20 viral genera were significantly different between highly and moderately As-contaminated groups. Seventeen dissimilatory As(V)-reducing bacteria were predicted to host 161 viral operational taxonomic units (vOTUs), mainly affiliated with the genera of Sulfurospirillum, Deferribacter, Bacillus and Fusibacter. Among them, 28 vOTUs were also associated with Fe(III)-reducing bacteria, which belonged to different species of the genus Shewanella. Procrustes analysis showed that the community structure of soil viruses was strongly correlated with both prokaryotic community structure and geochemical properties. Random forest analyses revealed that the Total-Fe, DCB-Fe and oxalate-Fe were the most significant variables on viral community richness, while the total-As concentration was an important factor on the Shannon index. Furthermore, As resistance genes (ArsC, ArsR and ArsD), As methylation genes (arsM) and As transporter genes (Pst and Pit) were identified among the auxiliary metabolic genes (AMGs) of the virome. This work revealed that the viruses might influence microbial adaptation in response to As-induced stress, and provided a perspective on the potential virus-mediated biogeochemical cycling of As.
Collapse
Affiliation(s)
- Ruichuan Gao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenqiang Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
13
|
Sannino C, Borruso L, Mezzasoma A, Turchetti B, Ponti S, Buzzini P, Mimmo T, Guglielmin M. The Unusual Dominance of the Yeast Genus Glaciozyma in the Deeper Layer in an Antarctic Permafrost Core (Adélie Cove, Northern Victoria Land) Is Driven by Elemental Composition. J Fungi (Basel) 2023; 9:jof9040435. [PMID: 37108890 PMCID: PMC10145851 DOI: 10.3390/jof9040435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical–physical and biotic composition remain scarce. Chemical–physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1–U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical–physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.
Collapse
Affiliation(s)
- Ciro Sannino
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Ambra Mezzasoma
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Benedetta Turchetti
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Stefano Ponti
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| | - Pietro Buzzini
- Industrial Yeasts Collection DBVPG, Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, 21100 Varese, Italy
| |
Collapse
|
14
|
Rasmussen CB, Scavenius C, Thøgersen IB, Harwood SL, Larsen Ø, Bjerga GEK, Stougaard P, Enghild JJ, Thøgersen MS. Characterization of a novel cold-adapted intracellular serine protease from the extremophile Planococcus halocryophilus Or1. Front Microbiol 2023; 14:1121857. [PMID: 36910232 PMCID: PMC9995970 DOI: 10.3389/fmicb.2023.1121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The enzymes of microorganisms that live in cold environments must be able to function at ambient temperatures. Cold-adapted enzymes generally have less ordered structures that convey a higher catalytic rate, but at the cost of lower thermodynamic stability. In this study, we characterized P355, a novel intracellular subtilisin protease (ISP) derived from the genome of Planococcus halocryophilus Or1, which is a bacterium metabolically active down to -25°C. P355's stability and activity at varying pH values, temperatures, and salt concentrations, as well as its temperature-dependent kinetics, were determined and compared to an uncharacterized thermophilic ISP (T0099) from Parageobacillus thermoglucosidasius, a previously characterized ISP (T0034) from Planococcus sp. AW02J18, and Subtilisin Carlsberg (SC). The results showed that P355 was the most heat-labile of these enzymes, closely followed by T0034. P355 and T0034 exhibited catalytic constants (k cat ) that were much higher than those of T0099 and SC. Thus, both P355 and T0034 demonstrate the characteristics of the stability-activity trade-off that has been widely observed in cold-adapted proteases.
Collapse
Affiliation(s)
| | | | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Øivind Larsen
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
15
|
Genetic and Structural Diversity of Prokaryotic Ice-Binding Proteins from the Central Arctic Ocean. Genes (Basel) 2023; 14:genes14020363. [PMID: 36833289 PMCID: PMC9957290 DOI: 10.3390/genes14020363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Ice-binding proteins (IBPs) are a group of ecologically and biotechnologically relevant enzymes produced by psychrophilic organisms. Although putative IBPs containing the domain of unknown function (DUF) 3494 have been identified in many taxa of polar microbes, our knowledge of their genetic and structural diversity in natural microbial communities is limited. Here, we used samples from sea ice and sea water collected in the central Arctic Ocean as part of the MOSAiC expedition for metagenome sequencing and the subsequent analyses of metagenome-assembled genomes (MAGs). By linking structurally diverse IBPs to particular environments and potential functions, we reveal that IBP sequences are enriched in interior ice, have diverse genomic contexts and cluster taxonomically. Their diverse protein structures may be a consequence of domain shuffling, leading to variable combinations of protein domains in IBPs and probably reflecting the functional versatility required to thrive in the extreme and variable environment of the central Arctic Ocean.
Collapse
|
16
|
Abulaizi M, Chen M, Yang Z, Hu Y, Zhu X, Jia H. Response of soil bacterial community to alpine wetland degradation in arid Central Asia. FRONTIERS IN PLANT SCIENCE 2023; 13:990597. [PMID: 36684714 PMCID: PMC9848402 DOI: 10.3389/fpls.2022.990597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A large number of studies have reported the importance of bacterial communities in ecosystems and their responses to soil degradation, but the response mechanism in arid alpine wetlands is still unclear. Here, the non-degraded (ND), slightly degraded (SD), and heavily degraded (HD) regions of Bayinbuluk alpine wetland were used to analyzed the diversity, structure and function of bacterial communities in three degraded wetlands using 16S rRNA. The results showed that with the increase of degradation degree, the content of soil moisture (SM) and available nitrogen (AN) decreased significantly, plant species richness and total vegetation coverage decreased significantly, Cyperaceae (Cy) coverage decreased significantly, and Gramineae (Gr) coverage increased significantly. Degradation did not significantly affect the diversity of the bacterial community, but changed the relative abundance of the community structure. Degradation significantly increased the relative abundance of Actinobacteria (ND: 3.95%; SD: 7.27%; HD: 23.97%) and Gemmatimonadetes (ND: 0.39%; SD: 2.17%; HD: 10.78%), while significantly reducing the relative abundance of Chloroflexi (ND: 13.92%; SD: 8.68%; HD: 3.55%) and Nitrospirae (ND: 6.18%; SD: 0.45%; HD: 2.32%). Degradation significantly reduced some of the potential functions in the bacterial community associated with the carbon (C), nitrogen (N) and sulfur (S) cycles, such as hydrocarbon degradation (ND: 25.00%; SD: 1.74%; HD: 6.59%), such as aerobic ammonia oxidation (ND: 5.96%; SD: 22.82%; HD: 4.55%), and dark sulfide oxidation (ND: 32.68%; SD: 0.37%; HD: 0.28%). Distance-based redundancy analysis (db-RDA) results showed that the bacteria community was significantly related to the TC (total carbon) and Gr (P < 0.05). The results of linear discriminant analysis effect size (LEfSe) analysis indicate significant enrichments of Alphaproteobacteria and Sphingomonas in the HD area. The vegetation communities and soil nutrients changed significantly with increasing soil degradation levels, and Sphingomonas could be used as potential biomarker of degraded alpine wetlands.
Collapse
Affiliation(s)
- Maidinuer Abulaizi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Mo Chen
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Zailei Yang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Xinping Zhu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| |
Collapse
|
17
|
Zaitseva S, Badmaev N, Kozyreva L, Dambaev V, Barkhutova D. Microbial Community in the Permafrost Thaw Gradient in the South of the Vitim Plateau (Buryatia, Russia). Microorganisms 2022; 10:2202. [PMID: 36363794 PMCID: PMC9695985 DOI: 10.3390/microorganisms10112202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2023] Open
Abstract
Soil microbial communities play key roles in biogeochemical cycles and greenhouse gas formation during the decomposition of the released organic matter in the thawing permafrost. The aim of our research was to assess the taxonomic prokaryotic diversity in soil-ecological niches of the Darkhituy-Khaimisan transect during the initial period of soil thawing. We investigated changes in the microbial communities present in the active layer of four sites representing distinct habitats (larch forest, birch forest, meadow steppe and thermokarst lake). We explore the relationship between the biogeochemical differences among habitats and the active layer microbial community via a spatial (across habitats, and with depth through the active layer) community survey using high-throughput Illumina sequencing. Microbial communities showed significant differences between active and frozen layers and across ecosystem types, including a high relative abundance of Alphaproteobacteria, Firmicutes, Crenarchaeota, Bacteroidota and Gemmatimonadota in the active layer and a high relative abundance of Actinobacteriota and Desulfobacterota in the frozen layer. Soil pH, temperature and moisture were the most significant parameters underlying the variations in the microbial community composition. CCA suggested that the differing environmental conditions between the four soil habitats had strong influences on microbial distribution and diversity and further explained the variability of soil microbial community structures.
Collapse
Affiliation(s)
- Svetlana Zaitseva
- Institute of General and Experimental Biology SD RAS, 670047 Ulan-Ude, Russia
| | | | | | | | | |
Collapse
|
18
|
Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Microbiol Res 2022; 260:127049. [DOI: 10.1016/j.micres.2022.127049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022]
|
19
|
Wang D, Zhou H, Zuo J, Chen P, She Y, Yao B, Dong S, Wu J, Li F, Njoroge DM, Shi G, Mao X, Ma L, Zhang Z, Mao Z. Responses of Soil Microbial Metabolic Activity and Community Structure to Different Degraded and Restored Grassland Gradients of the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:770315. [PMID: 35463442 PMCID: PMC9024238 DOI: 10.3389/fpls.2022.770315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 05/31/2023]
Abstract
Climate change and land-use disturbances are supposed to have severely affected the degraded alpine grasslands on the Tibetan Plateau. Artificial grassland establishment has been implemented as a restoration tool against grassland degradation. However, the impact of such degradation and restoration processes on soil microbial communities and soil quality is not clearly understood. Here, we aim to investigate how the dynamics of microbial community and soil quality of alpine grasslands respond to a gradient of degradation and that of restoration, respectively. We conducted a randomised experiment with four degradation stages (light, moderate, heavy, and extreme degradation) and three restoration stages (artificial restoration for 1, 5, and 10 years). We analysed the abundance and diversity of soil bacteria and fungi, and measured soil nutrients, enzymatic activity and microbial biomass. The concentration of soil nitrogen (TN), soil organic matter (OM) in heavy degraded grassland decreased significantly by 37.4 and 45.08% compared with that in light degraded grassland. TN and OM in 10-years restored grassland also increased significantly by 33.10 and 30.42% compared to that in 1-year restored grassland. Four soil enzymatic activity indicators related to microbial biomass decreased with degradation gradient and increased with recovery time (i.e., restoration gradient). Both bacterial and fungal community structure was significantly different among grassland degradation or restoration successional stages. The LEfSe analysis revealed that 29 fungal clades and 9 bacterial clades were susceptible to degraded succession, while16 fungal clades and 5 bacterial clades were susceptible to restoration succession. We conclude that soil quality (TN, OM, and enzymatic activity) deteriorated significantly in heavy degraded alpine grassland. Soil microbial community structure of alpine is profoundly impacted by both degradation and restoration processes, fungal communities are more sensitive to grassland succession than bacterial communities. Artificial grasslands can be used as an effective method of restoring degraded grassland, but the soil functions of artificial grassland, even after 10 years of recovery, cannot be restored to the original state of alpine grassland.
Collapse
Affiliation(s)
- Dangjun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huakun Zhou
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yandi She
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Buqing Yao
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Denis Mburu Njoroge
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxi Shi
- Key Laboratory of Utilization of Agriculture Solid Waste Resources, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Xufeng Mao
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Li Ma
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Zhang
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhun Mao
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
20
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
21
|
Bi L, Yu DT, Han LL, Du S, Yuan CY, He JZ, Hu HW. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152217. [PMID: 34890674 DOI: 10.1016/j.scitotenv.2021.152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan-Ting Yu
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng-Yu Yuan
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
da Silva TH, Câmara PEAS, Pinto OHB, Carvalho-Silva M, Oliveira FS, Convey P, Rosa CA, Rosa LH. Diversity of Fungi Present in Permafrost in the South Shetland Islands, Maritime Antarctic. MICROBIAL ECOLOGY 2022; 83:58-67. [PMID: 33733305 DOI: 10.1007/s00248-021-01735-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp., Pseudogymnoascus roseus, Penicillium herquei, Curvularia lunata, Leotiomycetes sp., Mortierella sp. 1, Mortierella fimbricystis, Fungal sp. 1 and Fungal sp. 2. A further 38 taxa had intermediate abundance and 345 were classified as rare. The total fungal community detected in the permafrost showed high indices of diversity, richness and dominance, although these varied between the sampling locations. The use of a metabarcoding approach revealed the presence of DNA of a complex fungal assemblage in the permafrost of the South Shetland Islands including taxa with a range of ecological functions among which were multiple animal, human and plant pathogenic fungi. Further studies are required to determine whether the taxa identified are present in the form of viable cells or propagules and which might be released from melting permafrost to other Antarctic habitats and potentially dispersed more widely.
Collapse
Affiliation(s)
- Thamar Holanda da Silva
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | - Fábio Soares Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
23
|
Abstract
Studies from cryoenvironments on Earth have demonstrated that microbial life is widespread and have identified microorganisms that are metabolically active and can replicate at subzero temperatures if liquid water is present. However, cryophiles (subzero-growing organisms) often exist in low densities in the environment and their growth rate is low, making them difficult to study. Compounding this, a large number of dormant and dead cells are preserved in frozen settings. Using integrated genomic and activity-based approaches is essential to understanding the cold limits of life on Earth, as well as how cryophilic microorganisms are poised to adapt and metabolize in warming settings, such as in thawing permafrost. An increased understanding of cryophilic lifestyles on Earth will also help inform how (and where) we look for potential microbial life on cold planetary bodies in our solar system such as Mars, Europa, and Enceladus.
Collapse
|
24
|
Eight metagenome-assembled genomes provide evidence for microbial adaptation in 20,000 to 1,000,000-year-old Siberian permafrost. Appl Environ Microbiol 2021; 87:e0097221. [PMID: 34288700 DOI: 10.1128/aem.00972-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly-cored permafrost from the Siberia Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have previously been obtained from non-permafrost environments and have been suggested to show adaptations to long-term energy-starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had higher proportions of clusters of orthologous genes (COGs) from 'Energy production and conversion' and 'Carbohydrate transport and metabolism' than their non-permafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis and cellulose degradation that were less prevalent in non-permafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high ionic strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA in high enough quality to assemble MAGs from microorganisms with adaptations to subsist long-term freezing in this extreme environment. Importance Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture independent techniques can give a glimpse into how these microorganisms function in these extreme low temperature and energy conditions. This will aid understanding of how they will change with the environment. This study presents genomic data from this unique environment aged ∼20,000 to 1,000,000-years-old.
Collapse
|
25
|
Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. THE ISME JOURNAL 2021; 15:1956-1970. [PMID: 33612831 PMCID: PMC8245658 DOI: 10.1038/s41396-021-00897-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Viruses are abundant yet understudied members of soil environments that influence terrestrial biogeochemical cycles. Here, we characterized the dsDNA viral diversity in biochar-amended agricultural soils at the preplanting and harvesting stages of a tomato growing season via paired total metagenomes and viral size fraction metagenomes (viromes). Size fractionation prior to DNA extraction reduced sources of nonviral DNA in viromes, enabling the recovery of a vaster richness of viral populations (vOTUs), greater viral taxonomic diversity, broader range of predicted hosts, and better access to the rare virosphere, relative to total metagenomes, which tended to recover only the most persistent and abundant vOTUs. Of 2961 detected vOTUs, 2684 were recovered exclusively from viromes, while only three were recovered from total metagenomes alone. Both viral and microbial communities differed significantly over time, suggesting a coupled response to rhizosphere recruitment processes and/or nitrogen amendments. Viral communities alone were also structured along an 18 m spatial gradient. Overall, our results highlight the utility of soil viromics and reveal similarities between viral and microbial community dynamics throughout the tomato growing season yet suggest a partial decoupling of the processes driving their spatial distributions, potentially due to differences in dispersal, decay rates, and/or sensitivities to soil heterogeneity.
Collapse
Affiliation(s)
| | - Laura A Zinke
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Danielle L Gelardi
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
| |
Collapse
|
26
|
Ertekin E, Meslier V, Browning A, Treadgold J, DiRuggiero J. Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ Microbiol 2020; 23:3937-3956. [PMID: 33078515 DOI: 10.1111/1462-2920.15287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 11/29/2022]
Abstract
Endolithic (rock-dwelling) microbial communities are ubiquitous in hyper-arid deserts around the world and the last resort for life under extreme aridity. These communities are excellent models to explore biotic and abiotic drivers of diversity because they are of low complexity. Using high-throughput amplicon and metagenome sequencing, combined with X-ray computed tomography, we investigated how water availability and substrate architecture modulated the taxonomic and functional composition of gypsum endolithic communities in the Atacama Desert, Chile. We found that communities inhabiting gypsum rocks with a more fragmented substrate architecture had higher taxonomic and functional diversity, despite having less water available. This effect was tightly linked with community connectedness and likely the result of niche differentiation. Gypsum communities were functionally similar, yet adapted to their unique micro-habitats by modulating their carbon and energy acquisition strategies and their growth modalities. Reconstructed population genomes showed that these endolithic microbial populations encoded potential pathways for anoxygenic phototrophy and atmospheric hydrogen oxidation as supplemental energy sources.
Collapse
Affiliation(s)
- Emine Ertekin
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,MetaGenoPolis, Jouy-en-Josas, France
| | | | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Coleine C, Stajich JE, de Los Ríos A, Selbmann L. Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia 2020; 113:108-133. [PMID: 33232202 DOI: 10.1080/00275514.2020.1816761] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Ave , Riverside, California 92521
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales, Spanish National Resource Council, Madrid, Spain
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy.,Italian National Antarctic Museum, Mycological Section, Genoa, Italy
| |
Collapse
|
28
|
Ray AE, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. Front Microbiol 2020; 11:1936. [PMID: 32903524 PMCID: PMC7437527 DOI: 10.3389/fmicb.2020.01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Soil microbiomes within oligotrophic cold deserts are extraordinarily diverse. Increasingly, oligotrophic sites with low levels of phototrophic primary producers are reported, leading researchers to question their carbon and energy sources. A novel microbial carbon fixation process termed atmospheric chemosynthesis recently filled this gap as it was shown to be supporting primary production at two Eastern Antarctic deserts. Atmospheric chemosynthesis uses energy liberated from the oxidation of atmospheric hydrogen to drive the Calvin-Benson-Bassham (CBB) cycle through a new chemotrophic form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), designated IE. Here, we propose that the genetic determinants of this process; RuBisCO type IE (rbcL1E) and high affinity group 1h-[NiFe]-hydrogenase (hhyL) are widespread across cold desert soils and that this process is linked to dry and nutrient-poor environments. We used quantitative PCR (qPCR) to quantify these genes in 122 soil microbiomes across the three poles; spanning the Tibetan Plateau, 10 Antarctic and three high Arctic sites. Both genes were ubiquitous, being present at variable abundances in all 122 soils examined (rbcL1E, 6.25 × 103–1.66 × 109 copies/g soil; hhyL, 6.84 × 103–5.07 × 108 copies/g soil). For the Antarctic and Arctic sites, random forest and correlation analysis against 26 measured soil physicochemical parameters revealed that rbcL1E and hhyL genes were associated with lower soil moisture, carbon and nitrogen content. While further studies are required to quantify the rates of trace gas carbon fixation and the organisms involved, we highlight the global potential of desert soil microbiomes to be supported by this new minimalistic mode of carbon fixation, particularly throughout dry oligotrophic environments, which encompass more than 35% of the Earth’s surface.
Collapse
Affiliation(s)
- Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Environment, Antarctic Conservation and Management, Kingston, TAS, Australia
| | - Mukan Ji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
da Silva TH, Silva DAS, de Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH. Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 2020; 24:565-576. [PMID: 32405812 DOI: 10.1007/s00792-020-01176-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
We evaluated the diversity and distribution of viable fungi present in permafrost and active layers obtained from three islands of Maritime Antarctica. A total of 213 fungal isolates were recovered from the permafrost, and 351 from the active layer, which were identified in 58 taxa; 27 from permafrost and 31 from the active layer. Oidiodendron, Penicillium, and Pseudogymnoascus taxa were the most abundant in permafrost. Bionectriaceae, Helotiales, Mortierellaceae, and Pseudeurotium were the most abundant in the active layer. Only five shared both substrates. The yeast Mrakia blollopis represented is the first reported on Antarctic permafrost. The fungal diversity detected was moderate to high, and composed of cosmopolitan, cold-adapted, and endemic taxa, reported as saprobic, mutualistic, and parasitic species. Our results demonstrate that permafrost shelters viable fungi across the Maritime Antarctica, and that they are contrasting to the overlying active layer. We detected important fungal taxa represented by potential new species, particularly, those genetically close to Pseudogymnoascus destructans, which can cause extinction of bats in North America and Eurasia. The detection of viable fungi trapped in permafrost deserves further studies on the extension of its fungal diversity and its capability to expand from permafrost to other habitats in Antarctica, and elsewhere.
Collapse
Affiliation(s)
- Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fábio Soares de Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
30
|
Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. Employing viromics to characterize soil systems presents new challenges, however. Ones that only recently are being addressed. Here we provide a guide to implementing these three approaches to studying environmental viruses, highlighting benefits, difficulties, and potential contamination, all toward fostering greater focus on viruses in the study of soil ecology.
Collapse
|
31
|
Qu EB, Omelon CR, Oren A, Meslier V, Cowan DA, Maggs-Kölling G, DiRuggiero J. Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Front Microbiol 2020; 10:2952. [PMID: 31969867 PMCID: PMC6960110 DOI: 10.3389/fmicb.2019.02952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022] Open
Abstract
Studies of microbial biogeography are often convoluted by extremely high diversity and differences in microenvironmental factors such as pH and nutrient availability. Desert endolithic (inside rock) communities are relatively simple ecosystems that can serve as a tractable model for investigating long-range biogeographic effects on microbial communities. We conducted a comprehensive survey of endolithic sandstones using high-throughput marker gene sequencing to characterize global patterns of diversity in endolithic microbial communities. We also tested a range of abiotic variables in order to investigate the factors that drive community assembly at various trophic levels. Macroclimate was found to be the primary driver of endolithic community composition, with the most striking difference witnessed between hot and polar deserts. This difference was largely attributable to the specialization of prokaryotic and eukaryotic primary producers to different climate conditions. On a regional scale, microclimate and properties of the rock substrate were found to influence community assembly, although to a lesser degree than global hot versus polar conditions. We found new evidence that the factors driving endolithic community assembly differ between trophic levels. While phototrophic taxa, mostly oxygenic photosynthesizers, were rigorously selected for among different sites, heterotrophic taxa were more cosmopolitan, suggesting that stochasticity plays a larger role in heterotroph assembly. This study is the first to uncover the global drivers of desert endolithic diversity using high-throughput sequencing. We demonstrate that phototrophs and heterotrophs in the endolithic community assemble under different stochastic and deterministic influences, emphasizing the need for studies of microorganisms in context of their functional niche in the community.
Collapse
Affiliation(s)
- Evan B. Qu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chris R. Omelon
- Department of Geography and Planning, Queen’s University, Kingston, ON, Canada
| | - Aharon Oren
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
32
|
Bergk Pinto B, Maccario L, Dommergue A, Vogel TM, Larose C. Do Organic Substrates Drive Microbial Community Interactions in Arctic Snow? Front Microbiol 2019; 10:2492. [PMID: 31749784 PMCID: PMC6842950 DOI: 10.3389/fmicb.2019.02492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
The effect of nutrients on microbial interactions, including competition and collaboration, has mainly been studied in laboratories, but their potential application to complex ecosystems is unknown. Here, we examined the effect of changes in organic acids among other parameters on snow microbial communities in situ over 2 months. We compared snow bacterial communities from a low organic acid content period to that from a higher organic acid period. We hypothesized that an increase in organic acids would shift the dominant microbial interaction from collaboration to competition. To evaluate microbial interactions, we built taxonomic co-variance networks from OTUs obtained from 16S rRNA gene sequencing. In addition, we tracked marker genes of microbial cooperation (plasmid backbone genes) and competition (antibiotic resistance genes) across both sampling periods in metagenomes and metatranscriptomes. Our results showed a decrease in the average connectivity of the network during late spring compared to the early spring that we interpreted as a decrease of cooperation. This observation was strengthened by the significantly more abundant plasmid backbone genes in the metagenomes from the early spring. The modularity of the network from the late spring was also found to be higher than the one from the early spring, which is another possible indicator of increased competition. Antibiotic resistance genes were significantly more abundant in the late spring metagenomes. In addition, antibiotic resistance genes were also positively correlated to the organic acid concentration of the snow across both seasons. Snow organic acid content might be responsible for this change in bacterial interactions in the Arctic snow community.
Collapse
Affiliation(s)
- Benoît Bergk Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, UMR CNRS 5005, Université de Lyon, Lyon, France
| | - Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, UMR CNRS 5005, Université de Lyon, Lyon, France
| | - Aurélien Dommergue
- Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Institut des Géosciences de l'Environnement, Grenoble, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, UMR CNRS 5005, Université de Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, UMR CNRS 5005, Université de Lyon, Lyon, France
| |
Collapse
|
33
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
34
|
Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Séneca J, Baptista MS, Lee CK, Cary SC, Ramos V, Carvalho MF, Leão PN, Magalhães C. Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Front Microbiol 2019; 10:1018. [PMID: 31214128 PMCID: PMC6555387 DOI: 10.3389/fmicb.2019.01018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial diversity from McMurdo Dry Valleys in Antarctica, the coldest desert on earth, has become more easily assessed with the development of High Throughput Sequencing (HTS) techniques. However, some of the diversity remains inaccessible by the power of sequencing. In this study, we combine cultivation and HTS techniques to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley in McMurdo Dry Valleys. Our results demonstrate that the Dry Valleys actinobacteria and cyanobacteria distribution is driven by environmental forces, in particular the effect of water availability and endolithic environments clearly conditioned the distribution of those communities. Data derived from HTS show that the percentage of cyanobacteria decreases from about 20% in the sample closest to the water source to negligible values on the last three samples of the transect with less water availability. Inversely, actinobacteria relative abundance increases from about 20% in wet soils to over 50% in the driest samples. Over 30% of the total HTS data set was composed of actinobacterial strains, mainly distributed by 5 families: Sporichthyaceae, Euzebyaceae, Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae. However, the 11 actinobacterial strains isolated in this study, belonged to Micrococcaceae and Dermacoccaceae families that were underrepresented in the HTS data set. A total of 10 cyanobacterial strains from the order Synechococcales were also isolated, distributed by 4 different genera (Nodosilinea, Leptolyngbya, Pectolyngbya, and Acaryochloris-like). In agreement with the cultivation results, Leptolyngbya was identified as dominant genus in the HTS data set. Acaryochloris-like cyanobacteria were found exclusively in the endolithic sample and represented 44% of the total 16S rRNA sequences, although despite our efforts we were not able to properly isolate any strain from this Acaryochloris-related group. The importance of combining cultivation and sequencing techniques is highlighted, as we have shown that culture-dependent methods employed in this study were able to retrieve actinobacteria and cyanobacteria taxa that were not detected in HTS data set, suggesting that the combination of both strategies can be usefull to recover both abundant and rare members of the communities.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Raio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Teresa P Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Hugo Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - António G G Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Joana Séneca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
36
|
Amarelle V, Carrasco V, Fabiano E. The Hidden Life of Antarctic Rocks. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ, Saleska SR, Tyson GW, Wrighton KC, Sullivan MB, Rich VI. Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing. mSystems 2018; 3:e00076-18. [PMID: 30320215 PMCID: PMC6172770 DOI: 10.1128/msystems.00076-18] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (viral operational taxonomic units [vOTUs]) recovered from seven quantitatively derived (i.e., not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient at the Stordalen Mire field site in northern Sweden. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like assemblages in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteobacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty auxiliary metabolic genes (AMGs) were identified and suggested virus-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide binding, and regulation of sporulation. Together, these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic. IMPORTANCE This work is part of a 10-year project to examine thawing permafrost peatlands and is the first virome-particle-based approach to characterize viruses in these systems. This method yielded >2-fold-more viral populations (vOTUs) per gigabase of metagenome than vOTUs derived from bulk-soil metagenomes from the same site (J. B. Emerson, S. Roux, J. R. Brum, B. Bolduc, et al., Nat Microbiol 3:870-880, 2018, https://doi.org/10.1038/s41564-018-0190-y). We compared the ecology of the recovered vOTUs along a permafrost thaw gradient and found (i) habitat specificity, (ii) a shift in viral community identity from soil-like to aquatic-like viruses, (iii) infection of dominant microbial hosts, and (iv) carriage of host metabolic genes. These vOTUs can impact ecosystem carbon processing via top-down (inferred from lysing dominant microbial hosts) and bottom-up (inferred from carriage of auxiliary metabolic genes) controls. This work serves as a foundation which future studies can build upon to increase our understanding of the soil virosphere and how viruses affect soil ecosystem services.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Joanne B. Emerson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Dean R. Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Lindsey Solden
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jared Ellenbogen
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ben J. Woodcroft
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Queensland, Australia
| | - Scott R. Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kelly C. Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
Survivability of Soil and Permafrost Microbial Communities after Irradiation with Accelerated Electrons under Simulated Martian and Open Space Conditions. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8080298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the prior current astrobiological tasks is revealing the limits of microbial resistance to extraterrestrial conditions. Much attention is paid to ionizing radiation, since it can prevent the preservation and spread of life outside the Earth. The aim of this research was to study the impact of accelerated electrons (~1 MeV) as component of space radiation on microbial communities in their natural habitat—the arid soil and ancient permafrost, and also on the pure bacterial cultures that were isolated from these ecotopes. The irradiation was carried out at low pressure (~0.01 Torr) and low temperature (−130 °C) to simulate the conditions of Mars or outer space. High doses of 10 kGy and 100 kGy were used to assess the effect of dose accumulation in inactive and hypometabolic cells, depending on environmental conditions under long-term irradiation estimated on a geological time scale. It was shown that irradiation with accelerated electrons in the applied doses did not sterilize native samples from Earth extreme habitats. The data obtained suggests that viable Earth-like microorganisms can be preserved in the anabiotic state for at least 1.3 and 20 million years in the regolith of modern Mars in the shallow subsurface layer and at a 5 m depth, respectively. In addition, the results of the study indicate the possibility of maintaining terrestrial like life in the ice of Europa at a 10 cm depth for at least ~170 years or for at least 400 thousand years in open space within meteorites. It is established that bacteria in natural habitat has a much higher resistance to in situ irradiation with accelerated electrons when compared to their stability in pure isolated cultures. Thanks to the protective properties of the heterophase environment and the interaction between microbial populations even radiosensitive microorganisms as members of the native microbial communities are able to withstand very high doses of ionizing radiation.
Collapse
|
39
|
Brady AL, Goordial J, Sun HJ, Whyte LG, Slater GF. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers. GEOBIOLOGY 2018; 16:62-79. [PMID: 29076278 DOI: 10.1111/gbi.12263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 05/28/2023]
Abstract
Cryptoendolithic lichens and cyanobacteria living in porous sandstone in the high-elevation McMurdo Dry Valleys are purported to be among the slowest growing organisms on Earth with cycles of death and regrowth on the order of 103 -104 years. Here, organic biomarker and radiocarbon analysis were used to better constrain ages and carbon sources of cryptoendoliths in University Valley (UV; 1,800 m.a.s.l) and neighboring Farnell Valley (FV; 1,700 m.a.s.l). Δ14 C was measured for membrane component phospholipid fatty acids (PLFA) and glycolipid fatty acids, as well as for total organic carbon (TOC). PLFA concentrations indicated viable cells comprised a minor (<0.5%) component of TOC. TOC Δ14 C values ranged from -272‰ to -185‰ equivalent to calibrated ages of 1,100-2,550 years old. These ages may be the result of fractional preservation of biogenic carbon and/or sudden large-scale community death and extended period(s) of inactivity prior to slow recolonization and incorporation of 14 C-depleted fossil material. PLFA Δ14 C values were generally more modern than the corresponding TOC and varied widely between sites; the FV PLFA Δ14 C value (+40‰) was consistent with modern atmospheric CO2 , while UV values ranged from -199‰ to -79‰ (calibrated ages of 1,665-610 years). The observed variability in PLFA Δ14 C depletions is hypothesized to reflect variations in the extent of fixation of modern atmospheric CO2 and the preservation and recycling of older organic carbon by the community in various stages of sandstone recolonization. PLFA profiles and microbial community compositions as determined by molecular genetic characterizations and microscopy differed between the two valleys (e.g., predominance of biomarker 18:2 [>50%] in FV compared to UV), representing microbial communities that may reflect distinct stages of sandstone recolonization and/or environmental conditions. It is thus proposed that Dry Valley cryptoendolithic microbial communities are faster growing than previously estimated.
Collapse
Affiliation(s)
- A L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - H J Sun
- Desert Research Institute, Las Vegas, NV, USA
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - G F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, Whyte LG. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities. Front Microbiol 2017; 8:2594. [PMID: 29326684 PMCID: PMC5742409 DOI: 10.3389/fmicb.2017.02594] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.
Collapse
Affiliation(s)
- J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Katherine Hindson
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Kelly Chan-Yam
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Evangelos Marcolefas
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| |
Collapse
|
41
|
Chen YL, Deng Y, Ding JZ, Hu HW, Xu TL, Li F, Yang GB, Yang YH. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol Ecol 2017; 26:6608-6620. [DOI: 10.1111/mec.14396] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Yong-Liang Chen
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Jin-Zhi Ding
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Tian-Le Xu
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Gui-Biao Yang
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Yuan-He Yang
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|