1
|
Cao Y, Yang N, Gu J, Zhang X, Ye J, Chen J, Li H. Distinct biogeographic patterns for bacteria and fungi in association with Bursaphelenchus xylophilus nematodes and infested pinewood. Microbiol Spectr 2024; 12:e0077824. [PMID: 39162557 PMCID: PMC11448397 DOI: 10.1128/spectrum.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Pinewood nematodes (PWN, Bursaphelenchus xylophilus) are destructive plant parasitic nematodes that cause pine wilt disease (PWD) by attacking the vascular systems of pine trees, resulting in widespread tree mortality. Research has shown that there are connections between nematode-associated microbes and PWD. Yet the variations in microbial communities across different geographic regions are not well-understood. In this study, we examined the bacterial and fungal communities associated with nematodes and infested wood collected from 34 sites across three vegetation zones in China, as well as samples from the United States, using 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing. The predominant genera Pseudomonas and Rhodococcus were found in nematodes, and Acinetobacter was present in the wood of PWD-infected pine trees across China. Network analysis revealed that core bacterial taxa belonged to the Pseudomonadota and Actinomycetota phyla for the nematodes, whereas the Pseudomonadota and Bacteroidota phyla were dominant in the infested wood. Identification of enriched key microbial taxa in nematodes and infested wood across vegetation zones indicates distinct biogeographic microbial community structures and key bacterial species. Although the nematode-associated bacterial community showed consistency across geographic distances, the similarity of the PWD pine trees' bacterial community decreased with distance, suggesting a spatial correlation with environmental variables. Our findings enhance our understanding of the microbiota associated with pinewood nematode (PWN) and offer valuable insights into PWD management. IMPORTANCE Our research uncovered specific bacteria and fungi linked to pinewood nematode (PWN) and infested wood in three different vegetation zones in China, as well as samples from the United States. This sheds light on the critical roles of certain microbial groups, such as Pseudomonas, Acinetobacter, and Stenotrophomonas, in influencing PWN fitness. Understanding these patterns provides valuable insights into the dynamics of PWN-associated microbiomes, offering potential strategies for managing pine wilt disease (PWD). We found significant correlations between geographic distance and similarity in bacterial communities in the infested wood, indicating a spatial influence on wood-associated microbial communities due to limited dispersal and localized environmental conditions. Further investigations of these spatial patterns and driving forces are crucial for understanding the ecological processes that shape microbial communities in complex ecosystems and, ultimately, for mitigating the transmission of PWN in forests.
Collapse
Affiliation(s)
- Yuyu Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianfeng Gu
- Ningbo Key Laboratory of Port Biological and Food Safety Testing (Technical Centre of Ningbo Customs/Ningbo Inspection and Quarantine Science Technology Academy), No. 8, Huikang Road, Ningbo, Zhejiang 315100, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianren Ye
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Peng Y, Tang Y, Li D, Ye J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms 2024; 12:1089. [PMID: 38930471 PMCID: PMC11206076 DOI: 10.3390/microorganisms12061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we focused on evaluating the impact of Pseudomonas abietaniphila BHJ04 on the growth of Pinus massoniana seedlings and its biocontrol efficacy against pine wilt disease (PWD). Additionally, the colonization dynamics of P. abietaniphila BHJ04 on P. massoniana were examined. The growth promotion experiment showed that P. abietaniphila BHJ04 significantly promoted the growth of the branches and roots of P. massoniana. Pot control experiments indicated that strain BHJ04 significantly inhibited the spread of PWD. There were significant changes in the expression of several genes related to pine wood nematode defense in P. massoniana, including chitinase, nicotinamide synthetase, and triangular tetrapeptide-like superfamily protein isoform 9. Furthermore, our results revealed significant upregulation of genes associated with the water stress response (dehydration-responsive proteins), genetic material replication (DNA/RNA polymerase superfamily proteins), cell wall hydrolase, and detoxification (cytochrome P450 and cytochrome P450 monooxygenase superfamily genes) in the self-regulation of P. massoniana. Colonization experiments demonstrated that strain BHJ04 can colonize the roots, shoots, and leaves of P. massoniana, and the colonization amount on the leaves was the greatest, reaching 160,000 on the 15th day. However, colonization of the stems lasted longer, with the highest level of colonization observed after 45 d. This study provides a preliminary exploration of the growth-promoting and disease-preventing mechanisms of P. abietaniphila BHJ04 and its ability to colonize pines, thus providing a new biocontrol microbial resource for the biological control of plant diseases.
Collapse
Affiliation(s)
- Yueyuan Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
| | - Da Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. The Changes of Microbial Communities and Key Metabolites after Early Bursaphelenchus xylophilus Invasion of Pinus massoniana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2849. [PMID: 36365304 PMCID: PMC9653782 DOI: 10.3390/plants11212849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.
Collapse
Affiliation(s)
- Yibo An
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiol Spectr 2022; 10:e0078322. [PMID: 35758726 PMCID: PMC9430308 DOI: 10.1128/spectrum.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our understanding of environmental acquisition of microbes and migration-related alteration of microbiota across habitats has rapidly increased. However, in complex life cycles, such as for many parasites, exactly how these microbes are transmitted across multiple environments, such as hosts and habitats, is unknown. Pinewood nematode, the causal agent of the globally devastating pine wilt disease, provides an ideal model to study the role of microbiota in multispecies interactions because its successful host invasion depends on the interactions among its vector insects, pine hosts, and associated microbes. Here, we studied the role of bacterial and fungal communities involved in the nematode’s life cycle across different micro- (pupal chamber, vector beetle, and dispersal nematodes) and macrohabitats (geographical locations). We identified the potential sources, selection processes, and keystone taxa involved in the host pine-nematode-vector beetle microbiota interactions. Nearly 50% of the microbiota in vector beetle tracheae and ~60% that of third-stage dispersal juveniles were derived from the host pine (pupal chambers), whereas 90% of bacteria of fourth-stage dispersal juveniles originated from vector beetle tracheae. Our results also suggest that vector beetles’ tracheae selectively acquire some key taxa from the microbial community of the pupal chambers. These taxa will be then enriched in the dispersal nematodes traveling in the tracheae and hence likely transported to new host trees. Taken together, our findings contribute to the critical information toward a better understanding of the role of microbiota in pine wilt disease, therefore aiding the knowledge for the development of future biological control agents. IMPORTANCE Our understanding of animal microbiota acquisition and dispersal-mediated variation has rapidly increased. In this study, using the model of host pine-pinewood nematode-vector beetle (Monochamus sp.) complex, we disentangled the routes of microbial community assembly and transmission mechanisms among these different participants responsible for highly destructive pine wilt disease. We provide evidence that the microhabitat is the driving force shaping the microbial community of these participants. The microbiota of third-stage dispersal juveniles (LIII) of the nematodes collected around pupal chambers and of vector beetles were mainly derived from the host pine (pupal chambers), whereas the vector-entering fourth-stage dispersal juveniles (LIV) of the nematodes had the simplest microbiota community, not influencing vector’s microbiota. These findings enhanced our understanding of the variation in the microbiota of plants and animals and shed light on microbiota acquisition in complex life cycles.
Collapse
|
5
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
6
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
7
|
Nascimento FX, Urón P, Glick BR, Giachini A, Rossi MJ. Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. Front Microbiol 2021; 12:752288. [PMID: 34659189 PMCID: PMC8515041 DOI: 10.3389/fmicb.2021.752288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Beneficial 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing bacteria promote plant growth and stress resistance, constituting a sustainable alternative to the excessive use of chemicals in agriculture. In this work, the increased plant growth promotion activity of the ACC deaminase-producing Pseudomonas thivervalensis SC5, its ability to limit the growth of phytopathogens, and the genomics behind these important properties are described in detail. P. thivervalensis SC5 displayed several active plant growth promotion traits and significantly increased cucumber plant growth and resistance against salt stress (100mmol/L NaCl) under greenhouse conditions. Strain SC5 also limited the in vitro growth of the pathogens Botrytis cinerea and Pseudomonas syringae DC3000 indicating active biological control activities. Comprehensive analysis revealed that P. thivervalensis SC5 genome is rich in genetic elements involved in nutrient acquisition (N, P, S, and Fe); osmotic stress tolerance (e.g., glycine-betaine, trehalose, and ectoine biosynthesis); motility, chemotaxis and attachment to plant tissues; root exudate metabolism including the modulation of plant phenolics (e.g., hydroxycinnamic acids), lignin, and flavonoids (e.g., quercetin); resistance against plant defenses (e.g., reactive oxygens species-ROS); plant hormone modulation (e.g., ethylene, auxins, cytokinins, and salicylic acid), and bacterial and fungal phytopathogen antagonistic traits (e.g., 2,4-diacetylphloroglucinol, HCN, a fragin-like non ribosomal peptide, bacteriocins, a lantipeptide, and quorum-quenching activities), bringing detailed insights into the action of this versatile plant-growth-promoting bacterium. Ultimately, the combination of both increased plant growth promotion/protection and biological control abilities makes P. thivervalensis SC5 a prime candidate for its development as a biofertilizer/biostimulant/biocontrol product. The genomic analysis of this bacterium brings new insights into the functioning of Pseudomonas and their role in beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paola Urón
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Admir Giachini
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J Rossi
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
9
|
Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters. BIOLOGY 2020; 9:biology9120482. [PMID: 33419369 PMCID: PMC7767323 DOI: 10.3390/biology9120482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Biosurfactants are amphiphilic molecules produced by microorganisms with a hydrophilic and a hydrophobic group, able to reduce surface tension. These molecules are largely used in the environmental, food, pharmaceutical, medical, and cleaning industries, among others. Serratia strains are ubiquitous microorganisms with the ability to produce biosurfactants, such as serrawettins. These extracellular lipopeptides are described as biocides against many bacteria and fungi. This work used comparative genomics to determine the distribution and organization of the serrawettins W1 and W2 biosynthetic gene clusters in all the 84 publicly available genomes of the Serratia genus. Here, the serrawettin W1 gene clusters’ organization is reported for the first time. The serrawettin W1 biosynthetic gene swrW and serrawettin W2 biosynthetic gene swrA were present in 17 and 11 Serratia genomes, respectively. The same genes in the biosynthetic clusters frame the swrW and swrA biosynthetic genes. This work identified four genes common to all serrawettin gene clusters, highlighting their key potential in the serrawettins biosynthetic process. Abstract Serratia strains are ubiquitous microorganisms with the ability to produce serratomolides, such as serrawettins. These extracellular lipopeptides are described as biocides against many bacteria and fungi and may have a nematicidal activity against phytopathogenic nematodes. Serrawettins W1 and W2 from different strains have different structures that might be correlated with distinct genomic organizations. This work used comparative genomics to determine the distribution and the organization of the serrawettins biosynthetic gene clusters in all the 84 publicly available genomes of the Serratia genus. The serrawettin W1 and W2 gene clusters’ organization was established using antiSMASH software and compared with single and short data previously described for YD25TSerratia. Here, the serrawettin W1 gene clusters’ organization is reported for the first time. The serrawettin W1 biosynthetic gene swrW was present in 17 Serratia genomes. Eighty different coding sequence (CDS) were assigned to the W1 gene cluster, 13 being common to all clusters. The serrawettin W2 swrA gene was present in 11 Serratia genomes. The W2 gene clusters included 68 CDS with 24 present in all the clusters. The genomic analysis showed the swrA gene constitutes five modules, four with three domains and one with four domains, while the swrW gene constitutes one module with four domains. This work identified four genes common to all serrawettin gene clusters, highlighting their essential potential in the serrawettins biosynthetic process.
Collapse
|
10
|
Transcriptome Analysis of Bursaphelenchus xylophilus Uncovers the Impact of Stenotrophomonas maltophilia on Nematode and Pine Wilt Disease. FORESTS 2020. [DOI: 10.3390/f11090908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stenotrophomonas maltophilia influences the reproduction, pathogenicity, and gene expression of aseptic Bursaphelenchus xylophilus after inoculation of aseptic Pinus massoniana. Pine wilt disease is a destructive pine forest disease caused by B. xylophilus, and its pathogenesis is unclear. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. S. maltophilia is one of the most dominant bacteria in B. xylophilus, and its effect is ambiguous. This study aims to explore the role of S. maltophilia in pine wilt disease. The reproduction and virulence of aseptic B. xylophilus and B. xylophilus containing S. maltophilia were examined by inoculating aseptic P. massoniana seedlings. The gene expressions of two nematode treatments were identified by transcriptome sequencing. The reproduction and virulence of B. xylophilus containing S. maltophilia were stronger than that of aseptic nematodes. There were 4240 differentially expressed genes between aseptic B. xylophilus and B. xylophilus containing S. maltophilia after inoculation of aseptic P. massoniana, including 1147 upregulated genes and 2763 downregulated genes. These differentially expressed genes were significantly enriched in some immune-related gene ontology (GO) categories, such as membrane, transporter activity, metabolic processes, and many immune-related pathways, such as the wnt, rap1, PI3K-Akt, cAMP, cGMP-PKG, MAPK, ECM-receptor interaction, and calcium signaling pathways. The polyubiquitin-rich gene, leucine-rich repeat serine/threonine-protein kinase gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, acetyl-CoA carboxylase gene, and heat shock protein genes were the key genes associated with immune resistance. Moreover, there were four cell wall hydrolase genes, thirty-six detoxification- and pathogenesis-related protein genes, one effector gene and ten cathepsin L-like cysteine proteinase genes that were differentially expressed. After inoculation of the host pine, S. maltophilia could affect the virulence and reproduction of B. xylophilus by regulating the expression of parasitic, immune, and pathogenicity genes of B. xylophilus.
Collapse
|
11
|
Nascimento FX, Hernandez AG, Glick BR, Rossi MJ. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ Microbiol 2020; 22:1341-1355. [PMID: 32077227 DOI: 10.1111/1462-2920.14946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Numerous Pantoea strains are important because of the benefit they provide in the facilitation of plant growth. However, Pantoea have a high level of genotypic diversity and not much is understood regarding their ability to function in a plant beneficial manner. In the work reported here, the plant growth promotion activities and the genomic properties of the unusual Pantoea phytobeneficialis MSR2 are elaborated, emphasizing the genetic mechanisms involved in plant colonization and growth promotion. Detailed analysis revealed that strain MSR2 belongs to a rare group of Pantoea strains possessing an astonishing number of plant growth promotion genes, including those involved in nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase activity, indoleacetic acid and cytokinin biosynthesis, and jasmonic acid metabolism. Moreover, the genome of this bacterium also contains genes involved in the metabolism of lignin and other plant cell wall compounds, quorum-sensing mechanisms, metabolism of plant root exudates, bacterial attachment to plant surfaces and resistance to plant defences. Importantly, the analysis revealed that most of these genes are present on accessory plasmids that are found within a small subset of Pantoea genomes, reinforcing the idea that Pantoea evolution is largely mediated by plasmids, providing new insights into the evolution of beneficial plant-associated Pantoea.
Collapse
Affiliation(s)
- Francisco X Nascimento
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Anabel G Hernandez
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, ON, Canada
| | - Márcio J Rossi
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
12
|
Xue Q, Xiang Y, Wu XQ, Li MJ. Bacterial Communities and Virulence Associated with Pine Wood Nematode Bursaphelenchus xylophilus from Different Pinus spp. Int J Mol Sci 2019; 20:ijms20133342. [PMID: 31284685 PMCID: PMC6650965 DOI: 10.3390/ijms20133342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Bursaphelenchus xylophilus, the causal agent of pine wilt disease, is a destructive threat to pine forests. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. This study investigated variation in bacterial communities and the virulence of surface-sterilized B. xylophilus from different Pinus spp. The predominant culturable bacteria of nematodes from different pines were Stenotrophomonas and Pseudomonas. Biolog EcoPlate analysis showed that metabolic diversity of bacteria in B. xylophilus from P. massoniana was the highest, followed by P. thunbergii and P. densiflora. High-throughput sequencing analysis indicated that bacterial diversity and community structure in nematodes from the different pine species varied, and the dominant bacteria were Stenotrophomonas and Elizabethkingia. The virulence determination of B. xylophilus showed that the nematodes from P. massoniana had the greatest virulence, followed by the nematodes from P. thunbergii and P. densiflora. After the nematodes were inoculated onto P. thunbergii, the relative abundance of the predominant bacteria changed greatly, and some new bacterial species emerged. Meanwhile, the virulence of all the nematode isolates increased after passage through P. thunbergii. These inferred that some bacteria associated with B. xylophilus isolated from different pine species might be helpful to adjust the PWN’s parasitic adaptability.
Collapse
Affiliation(s)
- Qi Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yang Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Ming-Jie Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
13
|
Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, Hasegawa K, Mota M. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb Genom 2018; 4. [PMID: 29781797 PMCID: PMC6113876 DOI: 10.1099/mgen.0.000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia grimesii BXF1 is a bacterium with the ability to modulate the development of several eukaryotic hosts. Strain BXF1 was isolated from the pinewood nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease affecting pine forests worldwide. This bacterium potentiates Bursaphelenchus xylophilus reproduction, acts as a beneficial pine endophyte, and possesses fungal and bacterial antagonistic activities, further indicating a complex role in a wide range of trophic relationships. In this work, we describe and analyse the genome sequence of strain BXF1, and discuss several important aspects of its ecological role. Genome analysis indicates the presence of several genes related to the observed production of antagonistic traits, plant growth regulation and the modulation of nematode development. Moreover, most of the BXF1 genes are involved in environmental and genetic information processing, which is consistent with its ability to sense and colonize several niches. The results obtained in this study provide the basis to a better understanding of the role and evolution of strain BXF1 as a mediator of interactions between organisms involved in a complex disease system. These results may also bring new insights into general Serratia and Enterobacteriaceae evolution towards multitrophic interactions.
Collapse
Affiliation(s)
- Francisco Nascimento
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Cláudia Vicente
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Peter Cock
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Maria Tavares
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Márcio Rossi
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Koichi Hasegawa
- 3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Manuel Mota
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,5Departamento Ciências da Vida, EPCV Universidade Lusófona de Humanidades e Tecnologias, C. Grande 376, Lisboa, 1749-024, Portugal
| |
Collapse
|
14
|
Tavares MJ, Nascimento FX, Glick BR, Rossi MJ. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean. Lett Appl Microbiol 2018; 66:252-259. [PMID: 29327464 DOI: 10.1111/lam.12847] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
Ethylene acts as an inhibitor of the nodulation process of leguminous plants. However, some bacteria can decrease deleterious ethylene levels by the action of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase which degrades ACC, the ethylene precursor in all higher plants. Co-inoculation of rhizobia with endophytes enhances the rhizobial symbiotic efficiency with legumes, improving both nodulation and nitrogen fixation. However, not much is understood about the mechanisms employed by these endophytic bacteria. In this regard, the role of ACC deaminase from endophytic strains in assisting rhizobia in this process has yet to be confirmed. In this study, the role of ACC deaminase in an endophyte's ability to increase Rhizobium tropici nodulation of common bean was evaluated. To assess the effect of ACC deaminase in an endophyte's ability to promote rhizobial nodulation, the endophyte Serratia grimesii BXF1, which does not encode ACC deaminase, was transformed with an exogenous acdS gene. The results obtained indicate that the ACC deaminase-overexpressing transformant strain increased common bean growth, and enhanced the nodulation abilities of R. tropici CIAT899, in both cases compared to the wild-type non-transformed strain. Furthermore, plant inoculation with the ACC deaminase-overproducing strain led to an increased level of plant protection against a seed-borne pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY In this work, we studied the effect of ACC deaminase production by the bacterial endophyte Serratia grimesi BXF1, and its impact on the nodulation process of common bean. The results obtained indicate that ACC deaminase is an asset to the synergetic interaction between rhizobia and the endophyte, positively contributing to the overall legume-rhizobia symbiosis by regulating inhibitory ethylene levels that might otherwise inhibit nodulation and overall plant growth. The use of rhizobia together with an ACC deaminase-producing endophyte is, therefore, an important strategy for the development of new bacterial inoculants with increased performance.
Collapse
Affiliation(s)
- M J Tavares
- Departamento de Microbiologia, MIP-CCB, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - F X Nascimento
- Departamento de Microbiologia, MIP-CCB, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - B R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - M J Rossi
- Departamento de Microbiologia, MIP-CCB, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|