1
|
Sun M, Lu T, Chen P, Wang X, Yang H, Zhou R, Zheng W, Zhao Y. The sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) coordinately regulate the response of Neurospora crassa to the springtail Sinella curviseta (Collembola: Entomobryidae) attack. Appl Environ Microbiol 2023; 89:e0101823. [PMID: 37855634 PMCID: PMC10686092 DOI: 10.1128/aem.01018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Understanding the regulatory pathways by which fungi respond to environmental signals through interlinked genes provides insights into the interactions between fungi and insects. The coordinated optimization of the regulatory networks is necessary for fungi to adapt to their habitats. We demonstrated that the synergistic regulation of sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) plays a critical role in regulating the fungal response to Sinella curviseta stress. Furthermore, we found that the enhanced production of trehalose, carotenoids, and 5-MTHF plays crucial role in the resistance to the fungivore. Our results provide insights into the understanding of the adaptation of N. crassa to environmental stimuli.
Collapse
Affiliation(s)
- Mengni Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Pengxu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaomeng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hanbing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Rong Zhou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weifa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yanxia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Calcáneo-Hernández G, Landeros-Jaime F, Cervantes-Chávez JA, Mendoza-Mendoza A, Esquivel-Naranjo EU. Osmotic Stress Responses, Cell Wall Integrity, and Conidiation Are Regulated by a Histidine Kinase Sensor in Trichoderma atroviride. J Fungi (Basel) 2023; 9:939. [PMID: 37755046 PMCID: PMC10532544 DOI: 10.3390/jof9090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Trichoderma atroviride responds to various environmental stressors through the mitogen-activated protein kinase (MAPK) Tmk3 and MAPK-kinase Pbs2 signaling pathways. In fungi, orthologues to Tmk3 are regulated by a histidine kinase (HK) sensor. However, the role of T. atroviride HKs remains unknown. In this regard, the function of the T. atroviride HK Nik1 was analyzed in response to stressors regulated by Tmk3. The growth of the Δnik1 mutant strains was compromised under hyperosmotic stress; mycelia were less resistant to lysing enzymes than the WT strain, while conidia of Δnik1 were more sensitive to Congo red; however, ∆pbs2 and ∆tmk3 strains showed a more drastic defect in cell wall stability. Light-regulated blu1 and grg2 gene expression was induced upon an osmotic shock through Pbs2-Tmk3 but was independent of Nik1. The encoding chitin synthases chs1 and chs2 genes were downregulated after an osmotic shock in the WT, but chs1 and chs3 expression were enhanced in ∆nik1, ∆pbs2, and ∆tmk3. The vegetative growth and conidiation by light decreased in ∆nik1, although Nik1 was unrequired to activate the light-responsive genes by Tmk3. Altogether, Nik1 regulates responses related to the Pbs2-Tmk3 pathway and suggests the participation of additional HKs to respond to stress.
Collapse
Affiliation(s)
- Gabriela Calcáneo-Hernández
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico; (G.C.-H.); (F.L.-J.); (J.A.C.-C.)
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico; (G.C.-H.); (F.L.-J.); (J.A.C.-C.)
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico; (G.C.-H.); (F.L.-J.); (J.A.C.-C.)
| | | | - Edgardo Ulises Esquivel-Naranjo
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico; (G.C.-H.); (F.L.-J.); (J.A.C.-C.)
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
3
|
Liu Y, Yang X, Zhu M, Bai N, Wang W, Yang J. Involvement of AoMdr1 in the Regulation of the Fluconazole Resistance, Mycelial Fusion, Conidiation, and Trap Formation of Arthrobotrys oligospora. Microorganisms 2023; 11:1612. [PMID: 37375114 DOI: 10.3390/microorganisms11061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Multidrug resistance (Mdr) proteins are critical proteins for maintenance of drug resistance in fungi. Mdr1 has been extensively studied in Candida albicans; its role in other fungi is largely unknown. In this study, we identified a homologous protein of Mdr (AoMdr1) in the nematode-trapping (NT) fungus Arthrobotrys oligospora. It was found that the deletion of Aomdr1 resulted in a significant reduction in the number of hyphal septa and nuclei as well as increased sensitivity to fluconazole and resistance to hyperosmotic stress and SDS. The deletion of Aomdr1 also led to a remarkable increase in the numbers of traps and mycelial loops in the traps. Notably, AoMdr1 was able to regulate mycelial fusion under low-nutrient conditions, but not under nutrient-rich conditions. AoMdr1 was also involved in secondary metabolism, and its deletion caused an increase in arthrobotrisins (specific compounds produced by NT fungi). These results suggest that AoMdr1 plays a crucial role in the fluconazole resistance, mycelial fusion, conidiation, trap formation, and secondary metabolism of A. oligospora. Our study contributes to the understanding of the critical role of Mdr proteins in mycelial growth and the development of NT fungi.
Collapse
Affiliation(s)
- Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| |
Collapse
|
4
|
Choi H, Park SW, Oh J, Kim CS, Sung GH, Sang H. Efficient disruption of CmHk1 using CRISPR/Cas9 ribonucleoprotein delivery in Cordyceps militaris. FEMS Microbiol Lett 2023; 370:fnad072. [PMID: 37475654 DOI: 10.1093/femsle/fnad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cordyceps militaris, an entomopathogenic ascomycete, produces edible medicinal mushrooms known to have medicinal and therapeutic functions. To develop the genetic transformation system in C. militaris, green fluorescent protein (GFP) mutants of C. militaris were generated by PEG-mediated protoplast transformation. The CRISPR/Cas9 ribonucleoprotein (RNP) targeting the class III histidine kinase of C. militaris (CmHk1) was then delivered into protoplasts of C. militaris through the transformation system. Mutations induced by the RNP in selected mutants were detected: 1 nt deletion (6 mutants), 3 nt deletion with substitution of 1 nt (1 mutant), insertion of 85 nts (1 mutant), 41 nts (2 mutants), and 35 nts (5 mutants). An in vitro sensitivity assay of the mutants indicated that knockout of CmHk1 reduced sensitivity to two fungicides, iprodione and fludioxonil, but increased sensitivity to osmotic stresses compared to the wild type. Summing up, the CRISPR/Cas9 RNP delivery system was successfully developed, and our results revealed that CmHk1 was involved in the fungicide resistance and osmotic stress in C. militaris.
Collapse
Affiliation(s)
- Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
5
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
7
|
Tong SM, Wang DY, Gao BJ, Ying SH, Feng MG. The DUF1996 and WSC domain-containing protein Wsc1I acts as a novel sensor of multiple stress cues in Beauveria bassiana. Cell Microbiol 2019; 21:e13100. [PMID: 31418513 DOI: 10.1111/cmi.13100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A & F University, Lin'an, China.,MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ding-Yi Wang
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
9
|
Tong SM, Feng MG. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol 2018; 103:577-587. [PMID: 30448905 DOI: 10.1007/s00253-018-9516-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022]
Abstract
Fungal entomopathogenicity may have evolved at least 200 million years later than carnivorism of nematophagous fungi on Earth. This mini-review focuses on the composition and regulatory roles of mitogen-activated protein kinase (MAPK) cascades, which act as stress-responsive signaling pathways. Unveiled by genomic comparison, three MAPK cascades of these mycopathogens consist of singular MAPKs (Fus3/Hog1/Slt2), MAPK kinases (Ste7/Pbs2/Mkk1), and MAPK kinase kinases (Ste11/Ssk2/Bck1). All cascaded components characterized in fungal entomopathogens play conserved and special roles in regulating multiple stress responses and phenotypes associated with biological control potential. Fus3-cascaded components are indispensable for fungal growth on oligotrophic substrata and virulence, and mediate cell tolerance to Na+/K+ toxicity, which is often misinterpreted as hyperosmotic effect but readily clarified by transcriptional changes of Na+/K+ ATPase genes and/or cell responses to osmotic polyols. Hog1-cascaded components regulate osmotolerance positively and phenylpyrrole-type fungicide resistance negatively, and also play differential roles in cell growth, conidiation, virulence, and responses to other stress cues. Ste11 has no stress-responsive role in the Beauveria Hog1 cascade despite an essential role in branched yeast Hog1 cascade. Slt2-cascaded components are required for mediation of cell wall integrity and repair of cell wall damage. A crosstalk between Hog1 and Slt2 cascades ensures fungal osmotolerance inside or outside insect. In nematode-trapping fungi, Slt2 is indispensable for cell wall integrity, conidiation, and mycelial trap formation, suggesting that the Slt2 cascade could have evolved along a distinct trajectory required for fungal carnivorism and dispersal/survival in nematode habitats. Altogether, the MAPK cascades are major parts of signaling network that regulate fungal adaptation to insects and nematodes and their habitats.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China. .,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
10
|
Zhen Z, Zhang G, Yang L, Ma N, Li Q, Ma Y, Niu X, Zhang KQ, Yang J. Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora. Appl Microbiol Biotechnol 2018; 103:819-832. [PMID: 30417308 DOI: 10.1007/s00253-018-9504-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Ca2+/calmodulin-dependent protein kinases (CaMKs) are unique second-messenger molecules that impact almost all cellular processes in eukaryotes. In this study, five genes encoding different CaMKs were characterized in the nematode-trapping fungus Arthrobotrys oligospora. These CaMKs, which were retrieved from the A. oligospora genome according to their orthologs in fungi such as Aspergillus nidulans and Neurospora crassa, were expressed at a low level in vitro during mycelial growth stages. Five deletion mutants corresponding to these CaMKs led to growth defects in different media and increased sensitivity to several environmental stresses, including H2O2, menadione, SDS, and Congo red; they also reduced the ability to produce conidia and traps, thus causing a deficiency in nematicidal ability as well. In addition, the transcriptional levels of several typical sporulation-related genes, such as MedA, VelB, and VeA, were down-regulated in all ΔCaMK mutants compared with the wild-type (WT) strain. Moreover, these mutants exhibited hypersensitivity to heat shock and ultraviolet-radiation stresses compared with the WT strain. These results suggest that the five CaMKs in A. oligospora are involved in regulating multiple cellular processes, such as growth, environmental stress tolerance, conidiation, trap formation, and virulence.
Collapse
Affiliation(s)
- Zhengyi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qing Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
11
|
Zhen Z, Xing X, Xie M, Yang L, Yang X, Zheng Y, Chen Y, Ma N, Li Q, Zhang KQ, Yang J. MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation, and pathogenicity in two nematode-trapping fungi. Fungal Genet Biol 2018; 116:42-50. [PMID: 29702229 DOI: 10.1016/j.fgb.2018.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Mitogen-activated protein (MAP) kinase Slt2 is a key player in the cell-wall integrity pathway of budding yeast. In this study, we functionally characterized Slt2 orthologs AoSlt2 and MhSlt2 from the nematode-trapping fungi Arthrobotrys oligospora and Monacrosporium haptotylum, respectively. We found that disruption of AoSlt2 and MhSlt2 led to reduced mycelial growth, increased sensitivity to environmental stresses such as sodium dodecyl sulfate, Congo red, and H2O2, and an inability to produce conidia and nematode-trapping structures. Real-time polymerase chain reaction-based analyses showed that the transcription of sporulation-related (AbaA, Sep2, and MedA) and cell wall synthesis-related (Chs, Glu, and Gfpa) genes was down-regulated in the mutants compared with the wild-type strains. Moreover, the mutant strains showed reduced extracellular proteolytic activity and decreased transcription of three homologous serine protease-encoding genes. These results show for the first time that MAP kinase Slt2 orthologs play similar roles in regulating mycelial growth, conidiation, trap formation, stress resistance, and pathogenicity in the divergent nematode-trapping fungal species A. oligospora and M. haptotylum.
Collapse
Affiliation(s)
- Zhengyi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Xinjing Xing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Yuanli Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Qing Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
12
|
Liu J, Sun HH, Ying SH, Feng MG. Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bassiana. Fungal Genet Biol 2018; 113:24-31. [DOI: 10.1016/j.fgb.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
13
|
The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:6941-6949. [DOI: 10.1007/s00253-017-8434-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
|