1
|
Taylor TB, Silby MW, Jackson RW. Pseudomonas fluorescens. Trends Microbiol 2024:S0966-842X(24)00289-0. [PMID: 39613688 DOI: 10.1016/j.tim.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Tiffany B Taylor
- Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Cao YH, Zhao XW, Nie G, Wang ZY, Song X, Zhang MX, Hu JP, Zhao Q, Jiang Y, Zhang JL. The salt-tolerance of perennial ryegrass is linked with root exudate profiles and microflora recruitment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170205. [PMID: 38272075 DOI: 10.1016/j.scitotenv.2024.170205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Salinity poses a significant threat to plant growth and development. The root microbiota plays a key role in plant adaptation to saline environments. Nevertheless, it remains poorly understood whether and how perennial grass plants accumulate specific root-derived bacteria when exposed to salinity. Here, we systematically analyzed the composition and variation of rhizosphere and endophytic bacteria, as well as root exudates in perennial ryegrass differing in salt tolerance grown in unsterilized soils with and without salt. Both salt-sensitive (P1) and salt-tolerant (P2) perennial ryegrass genotypes grew better in unsterilized soils compared to sterilized soils under salt stress. The rhizosphere and endophytic bacteria of both P1 and P2 had lower alpha-diversity under salt treatment compared to control. The reduction of alpha-diversity was more pronounced for P1 than for P2. The specific root-derived bacteria, particularly the genus Pseudomonas, were enriched in rhizosphere and endophytic bacteria under salt stress. Changes in bacterial functionality induced by salt stress differed in P1 and P2. Additionally, more root exudates were altered under salt stress in P2 than in P1. The content of important root exudates, mainly including phenylpropanoids, benzenoids, organic acids, had a significantly positive correlation with the abundance of rhizosphere and endophytic bacteria under salt stress. The results indicate that the interactions between root-derived bacteria and root exudates are crucial for the salt tolerance of perennial ryegrass, which provides a potential strategy to manipulate root microbiome for improved stress tolerance of perennial grass species.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Xiong-Wei Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, PR China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhi-Yong Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agricultural and Forestry, Hainan University, Sanya 572025, PR China
| | - Xin Song
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, PR China
| | - Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China; Sanya Institute of Breeding and Multiplication, School of Tropical Agricultural and Forestry, Hainan University, Sanya 572025, PR China.
| |
Collapse
|
3
|
Gu Y, Li T, Yin CF, Zhou NY. Elucidation of the coumarin degradation by Pseudomonas sp. strain NyZ480. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131802. [PMID: 37320896 DOI: 10.1016/j.jhazmat.2023.131802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
As a phytotoxin and synthetic chemical, coumarin (COU) is known for its hepatotoxicity and carcinogenicity. However, no thorough characterization of its microbial degradation has been reported. Here, Pseudomonas sp. strain NyZ480 was isolated for its capability of utilizing COU as the sole carbon source. Studies on its growth and degradation efficiency of COU under various conditions suggested that strain NyZ480 performed the optimum degradation at 30 ℃, pH 7, and 0.5 mM COU was completely removed within 4 h with 1% inoculum. HPLC and LC-MS analyses indicated that dihydrocoumarin (DHC), melilotic acid (MA) and 3-(2,3-dihydroxyphenyl)propionate (DHPP) were the upstream biotransformation intermediates of COU. Enzyme assay established that the initial reaction transforming COU to DHC required an NAD(P)H-dependent reductase, followed by the hydrolysis of DHC to generate MA, and the third reaction catalyzing the monooxygenation of MA to DHPP utilized a strict NADH-dependent hydroxylase. Combining genomics and transcriptomics, we proposed that the COU downstream degradation (from DHPP) was catalyzed by enzymes encoded by a gene cluster homologous to the mhp cluster for 3(3-hydroxyphenyl)propionate degradation via DHPP in E. coli. This study thoroughly identified the intermediates from the COU catabolism, providing essential insights into the molecular evidences of its biodegradation pathway.
Collapse
Affiliation(s)
- Yichao Gu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Fan Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Adedayo AA, Fadiji AE, Babalola OO. Unraveling the functional genes present in rhizosphere microbiomes of Solanum lycopersicum. PeerJ 2023; 11:e15432. [PMID: 37283894 PMCID: PMC10241170 DOI: 10.7717/peerj.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
The microbiomes living in the rhizosphere soil of the tomato plant contribute immensely to the state of health of the tomato plant alongside improving sustainable agriculture. With the aid of shotgun metagenomics sequencing, we characterized the putative functional genes (plant-growth-promoting and disease-resistant genes) produced by the microbial communities dwelling in the rhizosphere soil of healthy and powdery mildew-diseased tomato plants. The results identified twenty-one (21) plant growth promotion (PGP) genes in the microbiomes inhabiting the healthy rhizosphere (HR) which are more predomiant as compared to diseased rhizosphere (DR) that has nine (9) genes and four (4) genes in bulk soil (BR). Likewise, we identified some disease-resistant genes which include nucleotide binding genes and antimicrobial genes. Our study revealed fifteen (15) genes in HR which made it greater in comparison to DR that has three (3) genes and three (3) genes in bulk soil. Further studies should be conducted by isolating these microorganisms and introduce them to field experiments for cultivation of tomatoes.
Collapse
|
5
|
Wiesmann CL, Zhang Y, Alford M, Hamilton CD, Dosanjh M, Thoms D, Dostert M, Wilson A, Pletzer D, Hancock REW, Haney CH. The ColR/S two-component system is a conserved determinant of host association across Pseudomonas species. THE ISME JOURNAL 2023; 17:286-296. [PMID: 36424517 PMCID: PMC9859794 DOI: 10.1038/s41396-022-01343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Morgan Alford
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corri D Hamilton
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Melanie Dostert
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Pletzer
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Robert E W Hancock
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Wang W, Liu J, Mishra B, Mukhtar MS, McDowell JM. Sparking a sulfur war between plants and pathogens. TRENDS IN PLANT SCIENCE 2022; 27:1253-1265. [PMID: 36028431 DOI: 10.1016/j.tplants.2022.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The biochemical versatility of sulfur (S) lends itself to myriad roles in plant-pathogen interactions. This review evaluates the current understanding of mechanisms by which pathogens acquire S from their plant hosts and highlights new evidence that plants can limit S availability during the immune responses. We discuss the discovery of host disease-susceptibility genes related to S that can be genetically manipulated to create new crop resistance. Finally, we summarize future research challenges and propose a research agenda that leverages systems biology approaches for a holistic understanding of this important element's diverse roles in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Li Q, Li H, Yang Z, Cheng X, Zhao Y, Qin L, Bisseling T, Cao Q, Willemsen V. Plant growth-promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. THE NEW PHYTOLOGIST 2022; 235:1575-1588. [PMID: 35510807 PMCID: PMC9546010 DOI: 10.1111/nph.18199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 06/10/2023]
Abstract
Plant growth-promoting rhizobacteria are involved in altering secondary root (SR) formation, but hitherto there has been no distinction between the different types of SRs upon induction of soil biota, and the genetic pathways involved. By using plate and soil systems, we studied the effects of the Pseudomonas strains CM11 and WCS417 on plant performance with a focus on root development. Through a combination of cellular, molecular and genetic analyses, we investigated the type of SRs induced upon CM11 and WCS417 root inoculation using genetic pathways associated with specific SR types. CM11 was shown to affect the root architecture differently from WCS417. CM11 inoculation leads to primary root arrest, whereas WCS417 reveals a longer primary root. Both CM11 and WCS417 activate the PLETHORA 3,5,7-controlled lateral root pathway, rather than the WUSCHEL-RELATED HOMEOBOX 11,12-controlled adventitious (lateral) root pathway. In addition, CM11 promotes plant growth in model and various crop species. It improves plant fitness traits, such as bigger shoots, faster bolting and higher yield in terms of seeds. Our results indicate that the root system architecture can be promoted by activation of PLETHORA 3,5,7 dependent primed lateral pre-branch sites upon inoculation with CM11, which creates great potential to gain a better understanding of root plasticity.
Collapse
Affiliation(s)
- Qian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Beijing Bei Nong Enterprise Management Co. LtdBeijing102206China
| | - Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Zhuang Yang
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Xu Cheng
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Yaceng Zhao
- College of Plant Science and TechnologyBeijing Key Laboratory for Agricultural Application and New TechniqueBeijing University of AgricultureBeijing102206China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
- College of Plant Science and TechnologyBeijing Key Laboratory for Agricultural Application and New TechniqueBeijing University of AgricultureBeijing102206China
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
- College of Plant Science and TechnologyBeijing Key Laboratory for Agricultural Application and New TechniqueBeijing University of AgricultureBeijing102206China
| | - Viola Willemsen
- Cluster of Plant Developmental BiologyLaboratory of Molecular BiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
9
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
10
|
Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
japonica
and O. sativa subsp.
indica
, as Revealed by Transposon Mutagenesis Sequencing. Appl Environ Microbiol 2022; 88:e0064222. [DOI: 10.1128/aem.00642-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Burkholderiaceae
are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of
Paraburkholderia
have repeatedly been described to stimulate plant growth.
Collapse
|
11
|
Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100084. [PMID: 34917993 PMCID: PMC8645841 DOI: 10.1016/j.crmicr.2021.100084] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Fluorescent and non-fluorescent species of Pseudomonas are important for plant growth promotion, phytopathogenic control and plant disease management. Pseudomonas belong to Pseudomonadaceae family (10 groups on the basis of rRNA-DNA hybridization) classified into 6-subgroups of rRNA gene homology and RFLP. Pseudomonas species produce antagonistic mechanism such as ISR and compounds like cell wall degradation enzymes, and antibiotics to maintain a mutualistic relationship with the associated plant. Pseudomonas sp. synthesize auxins having properties similar to phytohormones like IAA, which act as signaling molecules for regulating plant growth.
Numerous microbial communities show synergistic and antagonistic interactions among themselves, resulting in benefit and harm to either or both the associated members. The association holds accountability for nutrients recycling and energy drift, resulting in the availability of macronutrients unavailable and insoluble forms of rhizospheric nutrients, crucial for vital processes in plants, e.g., act as co-factors of various phyto-enzyme and redox mediators. Plant growth promoting rhizobacteria are known to enhance plant growth by increasing these macronutrients availability during their plant root colonization. In comparison to any other genera, Pseudomonas is the most favored bioinoculant due to its significant properties in both plant growth and phytopathogen control during its synergistic association with the host plant. These properties include siderophore production, phosphate solubilization, nitrogen fixation, phenazines, antibiotics, and induced systemic resistance carried out by various Pseudomonas species like Pseudomonas fluorescens, Pseudomonas putida, and Pseudomonas syringae. The association of Pseudomonas with crop plants procures several secretory and electron-based feedback mechanisms in order to regulate the plant growth and phytopathogen control activities through the secretion of several phytohormones (auxins, gibberellins, Indole-3-acetic acid), secondary metabolites (flavonoids) and enzymes (aminocyclopropane-1-carboxylate, phenylalanine ammonia-lyase). Ecologically significant applications of Pseudomonas in biocontrol and bioaugmentation are crucial for maintaining food security.
Collapse
|
12
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
13
|
Jeon JS, Etalo DW, Carreno-Quintero N, de Vos RCH, Raaijmakers JM. Effects of Sulfur Assimilation in Pseudomonas fluorescens SS101 on Growth, Defense, and Metabolome of Different Brassicaceae. Biomolecules 2021; 11:1704. [PMID: 34827700 PMCID: PMC8615669 DOI: 10.3390/biom11111704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
| | | | - Ric C. H. de Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), 6700 AA Wageningen, The Netherlands;
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
14
|
Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci U S A 2021; 118:2107417118. [PMID: 34772809 PMCID: PMC8609655 DOI: 10.1073/pnas.2107417118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Although plant growth–promoting bacteria (PGPB) enhance the performance of plants, only a few mechanisms have been identified so far. We show that the sulfur metabolisms in both PGPB Enterobacter sp. SA187 and Arabidopsis plants play a key role in plant salt stress tolerance. Salt stress induces a sulfur starvation response in plants that is attenuated by SA187. Arabidopsis sulfur metabolic mutants are hypersensitive to salt stress but can be rescued by SA187. Most plant sulfur metabolism occurs in chloroplasts and is linked to stress-induced accumulation of reactive oxygen species that is suppressed by SA187. This work reveals that plant salt stress tolerance requires the coordinated regulation of the sulfur metabolic pathways in both beneficial microbe and host plant. Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.
Collapse
|
15
|
Song C, Jin K, Raaijmakers JM. Designing a home for beneficial plant microbiomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102025. [PMID: 33684884 DOI: 10.1016/j.pbi.2021.102025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The plant microbiome comprises a highly diverse community of saprotrophic, mutualistic, and pathogenic microbes that can affect plant growth and plant health. There is substantial interest to exploit beneficial members of plant microbiomes for new sustainable management strategies in crop production. However, poor survival and colonization of plant tissues by introduced microbial isolates as well as lack of expression of the plant growth-promoting or disease-suppressive traits at the right time and place are still major limitations for successful implementation of microbiomes in future agricultural practices and plant breeding programs. Similar to building a home for humans, we discuss different strategies of building a home for beneficial plant microbiomes, here referred to as the 'MicrobiHome'.
Collapse
Affiliation(s)
- Chunxu Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Kemo Jin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands; Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
16
|
Song S, Liu Y, Wang NR, Haney CH. Mechanisms in plant-microbiome interactions: lessons from model systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102003. [PMID: 33545444 DOI: 10.1016/j.pbi.2021.102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
The use of genetically tractable plant-microbe pairs has driven research in plant immunity and mutualistic symbiosis. Clear functional readouts for the outcomes of symbiosis or immunity have facilitated forward genetic screening and identification of signals, molecules and mechanisms that determine the outcome of these interactions. Plants also associate with beneficial microbial communities that form the microbiome. However, the complexity of the microbiome, combined with relatively subtle effects on plant growth and immunity, has impeded forward genetic screening to identify plant and bacterial genes that shape the microbiome. As a result, microbiome research has relied largely on reverse genetics approaches, based on what is known about plant nutrient uptake and immunity, to identify mechanisms in plant-microbiome research. Here we revisit the features of reductionist model systems that have made them so powerful for studying plant-microbe interactions, and how modeling microbiome research after these systems can propel discovery of novel mechanisms.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
17
|
Thoms D, Liang Y, Haney CH. Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:462-469. [PMID: 33534602 DOI: 10.1094/mpmi-11-20-0318-fi] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.That plants recruit beneficial microbes while simultaneously restricting pathogens is critical to their survival. Plants must exclude pathogens; however, most land plants are able to form mutualistic symbioses with arbuscular mycorrhizal fungi. Plants also associate with the complex microbial communities that form the microbiome. The outcome of each symbiotic interaction-whether a specific microbe is pathogenic, commensal, or mutualistic-relies on the specific interplay of host and microbial genetics and the environment. Here, we discuss how plants use metabolites as a gate to select which microbes can be symbiotic. Once present, we discuss how plants integrate multiple inputs to initiate programs of immunity or mutualistic symbiosis and how this paradigm may be expanded to the microbiome. Finally, we discuss how environmental signals are integrated with immunity to fine-tune a thermostat that determines whether a plant engages in mutualism, resistance to pathogens, and shapes associations with the microbiome. Collectively, we propose that the plant immune thermostat is set to select for and tolerate a largely nonharmful microbiome while receptor-mediated decision making allows plants to detect and dynamically respond to the presence of potential pathogens or mutualists.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, V6T 1Z3 Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Yan Liang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, V6T 1Z3 Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| |
Collapse
|
18
|
Marian M, Fujikawa T, Shimizu M. Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch Microbiol 2021; 203:3373-3388. [PMID: 33880605 DOI: 10.1007/s00203-021-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.,College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8605, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
19
|
Wang NR, Wiesmann CL, Melnyk RA, Hossain SS, Chi MH, Martens K, Craven K, Haney CH. Commensal Pseudomonas fluorescens Strains Protect Arabidopsis from Closely Related Pseudomonas Pathogens in a Colonization-Dependent Manner. mBio 2021; 13:e0289221. [PMID: 35100865 PMCID: PMC8805031 DOI: 10.1128/mbio.02892-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Plants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits, including protection against pathogens. While bacteria can inhibit pathogens through the production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model consisting of Arabidopsis thaliana and the opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3, including Pseudomonas sp. WCS365, were more likely to protect against pathogenesis. We used comparative genomics to identify genes unique to the protective strains and found no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection, so we tested deletions in genes required for Arabidopsis rhizosphere colonization. We identified a response regulator colR, and two ColR-dependent genes with predicted roles in membrane modifications (warB and pap2_2), that are required for Pseudomonas-mediated protection from N2C3. We found that WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice, in a ColR-dependent manner. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems. IMPORTANCE Microbiota can protect diverse hosts from pathogens, and microbiome dysbiosis can result in increased vulnerability to opportunistic pathogens. Here, we developed a rhizosphere commensal-pathogen model to identify bacterial strains and mechanisms that can protect plants from an opportunistic Pseudomonas pathogen. Our finding that protective strains are closely related to the pathogen suggests that the presence of specific microbial taxa may help protect plants from disease. We found that commensal colonization level was highly correlated with protection, suggesting that competition with pathogens may play a role in protection. As we found that commensal Pseudomonas were also able to protect against an agricultural pathogen, this system may be broadly relevant for identifying strains and mechanisms to control agriculturally important pathogens. This work also suggests that beneficial plant-associated microbes may be useful for engineering soils where microbial complexity is low, such as hydroponic, or disturbed agricultural soils.
Collapse
Affiliation(s)
- Nicole R. Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina L. Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan A. Melnyk
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarzana S. Hossain
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kitoosepe Martens
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly Craven
- Noble Research Institute, Ardmore, Oklahoma, USA
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Jeon JS, Carreno-Quintero N, van Eekelen HDLM, De Vos RCH, Raaijmakers JM, Etalo DW. Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea. Sci Rep 2021; 11:2781. [PMID: 33531553 PMCID: PMC7854645 DOI: 10.1038/s41598-021-82238-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Several root-colonizing bacterial species can simultaneously promote plant growth and induce systemic resistance. How these rhizobacteria modulate plant metabolism to accommodate the carbon and energy demand from these two competing processes is largely unknown. Here, we show that strains of three Paraburkholderia species, P. graminis PHS1 (Pbg), P. hospita mHSR1 (Pbh), and P. terricola mHS1 (Pbt), upon colonization of the roots of two Broccoli cultivars led to cultivar-dependent increases in biomass, changes in primary and secondary metabolism and induced resistance against the bacterial leaf pathogen Xanthomonas campestris. Strains that promoted growth led to greater accumulation of soluble sugars in the shoot and particularly fructose levels showed an increase of up to 280-fold relative to the non-treated control plants. Similarly, a number of secondary metabolites constituting chemical and structural defense, including flavonoids, hydroxycinnamates, stilbenoids, coumarins and lignins, showed greater accumulation while other resource-competing metabolite pathways were depleted. High soluble sugar generation, efficient sugar utilization, and suppression or remobilization of resource-competing metabolites potentially contributed to curb the tradeoff between the carbon and energy demanding processes induced by Paraburkholderia-Broccoli interaction. Collectively, our results provide a comprehensive and integrated view of the temporal changes in plant metabolome associated with rhizobacteria-mediated plant growth promotion and induced resistance.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- KeyGene N.V., Wageningen, 6708 PW, The Netherlands
| | | | - Ric C H De Vos
- Wageningen Plant Research, Bioscience, Wageningen, 6708 PB, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
21
|
McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 2021; 34:108645. [PMID: 33472073 PMCID: PMC8158063 DOI: 10.1016/j.celrep.2020.108645] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions. The role that bacterial outer membrane vesicles (OMVs) play in plant-microbe interactions is poorly characterized. McMillan et al. show that OMVs elicit plant immune responses that protect against pathogens. This study also reveals a use for OMVs as tools to probe the plant immune system.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sophia G Zebell
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Meta J Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Xie J, Xu W, Zhang M, Qiu C, Liu J, Wisniewski M, Ou T, Zhou Z, Xiang Z. The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir ecosystem, China. Environ Microbiol 2020; 23:1858-1875. [PMID: 32902116 DOI: 10.1111/1462-2920.15230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/29/2022]
Abstract
Plant-associated microbes influence plant performance and may also impact biotic and abiotic stress tolerance. The microbiome of mulberry trees planted for ecological restoration in the hydro-fluctuation belt of the Three Gorges Reservoir Region, China, exhibited distinct patterns of localization. The endosphere exhibited lower α-diversity relative to the rhizosphere, but was more closely related to host growth status, especially in stem tissues. Pantoea was the predominant bacterial genus inhabiting the stems of two well-growing plants, while sequences identified as Pseudomonas and Pantoea were abundant in poorly growing plants. The complexity of the endophytic community was more connected to growth status in well-growing plants than it was in poorly growing plants. Among 151 endophytes cultured from collected samples of mulberry, 64 exhibited plant growth-promoting (PGP) potential in vitro and the majority of beneficial taxa were harvested from well-growing plants. Collectively, the present study indicates that the recruitment of beneficial endophytes may contribute to mulberry fitness under abiotic stress, and it provides a foundation for the development of a new strategy in vegetation restoration.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Weifang Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Changyu Qiu
- Promotion Station of Sericulture Technology, Guangxi Zhuang Autonomous Region, 530007, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China.,College of Life Science, Chongqing Normal University, Chongqing, 400047, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
23
|
Masteling R, Lombard L, de Boer W, Raaijmakers JM, Dini-Andreote F. Harnessing the microbiome to control plant parasitic weeds. Curr Opin Microbiol 2019; 49:26-33. [PMID: 31654911 PMCID: PMC6906922 DOI: 10.1016/j.mib.2019.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Plant microbiomes have an unexplored potential to control root parasitic weeds. Understanding the mechanisms by which microbes can control parasitic weeds is largely elusive. Members of the root microbiome can interfere with host-parasite chemical communication. Direct and indirect modes of action can work synergistically in microbe-mediated weed control.
Microbiomes can significantly expand the genomic potential of plants, contributing to nutrient acquisition, plant growth promotion and tolerance to (a)biotic stresses. Among biotic stressors, root parasitic weeds (RPWs), mainly of the genera Orobanche, Phelipanche and Striga, are major yield-limiting factors of a wide range of staple crops, particularly in developing countries. Here, we provide a conceptual synthesis of putative mechanisms by which soil and plant microbiomes could be harnessed to control RPWs. These mechanisms are partitioned in direct and indirect modes of action and discussed in the context of past and present studies on microbe-mediated suppression of RPWs. Specific emphasis is given to the large but yet unexplored potential of root-associated microorganisms to interfere with the chemical signalling cascade between the host plant and the RPWs. We further provide concepts and ideas for future research directions and prospective designs of novel control strategies.
Collapse
Affiliation(s)
- Raul Masteling
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Lorenzo Lombard
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Chair Group Soil Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Department of Plant Science, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Timmermann T, Poupin MJ, Vega A, Urrutia C, Ruz GA, González B. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One 2019; 14:e0221358. [PMID: 31437216 PMCID: PMC6705864 DOI: 10.1371/journal.pone.0221358] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.
Collapse
Affiliation(s)
- Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Andrea Vega
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Urrutia
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A. Ruz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- * E-mail:
| |
Collapse
|
25
|
Tariq R, Ji Z, Wang C, Tang Y, Zou L, Sun H, Chen G, Zhao K. RNA-Seq analysis of gene expression changes triggered by Xanthomonas oryzae pv. oryzae in a susceptible rice genotype. RICE (NEW YORK, N.Y.) 2019; 12:44. [PMID: 31236783 PMCID: PMC6591352 DOI: 10.1186/s12284-019-0301-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease in most of the rice growing regions worldwide. Xoo injects the transcriptional activator-like (TAL) effector protein into the host cell to induce the susceptibility (S) gene(s) for spreading the disease. In the current study, a susceptible rice genotype, JG30, was inoculated with wild Xoo strain PXO99A and its mutant PH without any TAL effector, to retrieve the differentially expressed genes (DEGs) having a role in susceptibility. RESULTS RNA-Seq data analysis showed that 1143 genes were significantly differentially expressed (p-value ≤0.05) at 12, 24, 36 and 48 h post inoculation (hpi). Expression patterns, evaluated by quantitative real-time PCR (qRT-PCR), of randomly selected eight genes were similar to the RNA-Seq data. KEGG pathway classified the DEGs into photosynthesis and biosynthesis of phenylpropanoid pathway. Gene ontology (GO) analysis categorized the DEGs into the biological pathway, cellular component, and molecular function. We identified 43 differentially expressed transcription factors (TFs) belonging to different families. Also, clusters of the DEGs representing kinase and peroxidase responsive genes were retrieved. MapMan pathway analysis representing the expression pattern of genes expressed highly in biotic stress and metabolic pathways after PXO99A infection relative to PH. CONCLUSIONS DEGs were identified in susceptible rice genotype inoculated with PXO99A relative to mutant strain PH. The identified 1143 DEGs were predicted to be included in the different biological processes, signaling mechanism and metabolic pathways. The Jasmonic acid (JA) responsive genes were identified to be downregulated in PXO99A infected leaves. This study would be useful for the researchers to reveal the potential functions of genes involved in the rice susceptibility to PXO99A infection.
Collapse
Affiliation(s)
- Rezwan Tariq
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hongda Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
26
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
27
|
Majeed A, Muhammad Z, Ahmad H. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. PLANT CELL REPORTS 2018; 37:1599-1609. [PMID: 30178214 DOI: 10.1007/s00299-018-2341-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Agricultural production-a major contributing factor towards global food supply-is highly reliant on field crops which are under severe threats ranging from poor soil quality, biotic, abiotic stresses and changing climatic conditions. To overcome these challenges, larger exertions are required to boost production of agricultural crops in a defensible mode. Since the evolution of fertilizers and pesticides, global crop productivity has experienced an unprecedented elevation, but at the cost of environmental and ecological unsustainability. To enhance the agricultural outputs in a sustainable way, the novel and eco-friendly strategies must be employed in agriculture, which would lead to reduced use of hazardous chemicals. Thus, the utilization of our knowledge about natural growth stimulators can lead to decrease reliance on fertilizers and pesticide which are widely used for increasing crop productivity. Among beneficial microbes, plant growth promoting bacteria offers excellent opportunities for their wide utilization in agriculture to manage soil quality and other factors which correspond to limited growth and yield output of major field crops. The aim of this review is to examine the potential role of plant growth stimulating bacteria in soil fertility and enabling crops to cope with biotic and abiotic challenges.
Collapse
Affiliation(s)
- Abdul Majeed
- Department of Botany, Government Degree College Naguman Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Zahir Muhammad
- Department of Botany, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Habib Ahmad
- Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
A Genome-Wide Screen Identifies Genes in Rhizosphere-Associated Pseudomonas Required to Evade Plant Defenses. mBio 2018; 9:mBio.00433-18. [PMID: 30401768 PMCID: PMC6222131 DOI: 10.1128/mbio.00433-18] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While rhizosphere bacteria hold the potential to improve plant health and fitness, little is known about the bacterial genes required to evade host immunity. Using a model system consisting of Arabidopsis and a beneficial Pseudomonas sp. isolate, we identified bacterial genes required for both rhizosphere fitness and for evading host immune responses. This work advances our understanding of how evasion of host defenses contributes to survival in the rhizosphere. Pseudomonas fluorescens and related plant root (“rhizosphere”)-associated species contribute to plant health by modulating defenses and facilitating nutrient uptake. To identify bacterial fitness determinants in the rhizosphere of the model plant Arabidopsis thaliana, we performed a high-throughput transposon sequencing (Tn-Seq) screen using the biocontrol and growth-promoting strain Pseudomonas sp. WCS365. The screen, which was performed in parallel on wild-type and immunocompromised Arabidopsis plants, identified 231 genes that increased fitness in the rhizosphere of wild-type plants. A subset of these genes decreased fitness in the rhizosphere of immunocompromised plants. We hypothesized that these genes might be involved in avoiding plant defenses and verified 7 Pseudomonas sp. WCS365 candidate genes by generating clean deletions. We found that two of these deletion mutants, ΔmorA (encoding a putative diguanylate cyclase/phosphodiesterase) and ΔspuC (encoding a putrescine aminotransferase), formed enhanced biofilms and inhibited plant growth. We found that mutants ΔspuC and ΔmorA induced pattern-triggered immunity (PTI) as measured by induction of an Arabidopsis PTI reporter and FLS2/BAK1-dependent inhibition of plant growth. We show that MorA acts as a phosphodiesterase to inhibit biofilm formation, suggesting a possible role in biofilm dispersal. We found that both putrescine and its precursor arginine promote biofilm formation that is enhanced in the ΔspuC mutant, which cannot break down putrescine, suggesting that putrescine might serve as a signaling molecule in the rhizosphere. Collectively, this work identified novel bacterial factors required to evade plant defenses in the rhizosphere.
Collapse
|
29
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME JOURNAL 2018; 12:2307-2321. [PMID: 29899517 DOI: 10.1038/s41396-018-0186-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023]
Abstract
Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.
Collapse
|
31
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|