1
|
Yan W, Gu L, Yue X, Zhong H, Wang D. Distribution of protoporphyrin IX during Prorocentrum donghaiense blooms and its relationship with particle-attached and free-living bacterial communities. ENVIRONMENTAL RESEARCH 2024; 263:120255. [PMID: 39481790 DOI: 10.1016/j.envres.2024.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Particle-attached (PA) and free-living (FL) bacterial communities are essential for nutrient cycles and metabolite production and serve as a food source in aquatic systems. However, our understanding of how biotic factors influence community interactions, co-occurrence patterns, and niche occupancy remains limited. This study investigated the influence of protoporphyrin IX (PPIX) on bacteria with different lifestyles during Prorocentrum donghaiense bloom. The findings revealed that PPIX distribution responded variably to changes in physicochemical parameters induced by red tide bloom. Large-sized or particle-attached (PA) phytoplankton (cell size >3 μm) were identified as the primary contributors to environmental PPIX, while small-sized plankton or free-living (FL) microorganisms (<3 μm) contributed less. In red tide-affected areas, PPIX and its derivatives were significantly more abundant than in non-red tide areas, indicating an increased demand for porphyrins by plankton during red tides. Additionally, the red tide also significantly influenced the preference of bacterial lineages for PA or FL lifestyles, highlighting a close interaction between bacteria with different lifestyles and PPIX levels. This study quantitatively analyzed the distribution of PPIX across different cell sizes in red tide and non-red tide marine environments, providing insights into microbial interactions and dynamics in changing ecosystems and offering a reference for using PPIX to predict red tide ecological disasters.
Collapse
Affiliation(s)
- Wanli Yan
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lide Gu
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - Xinli Yue
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Haowen Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Lu Y, Li Q, Zhao D, Zhang Y. Important role of Marine Group II Euryarchaeota in organic carbon cycling in the South China Sea. Sci Bull (Beijing) 2024:S2095-9273(24)00850-8. [PMID: 39672715 DOI: 10.1016/j.scib.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Affiliation(s)
- Ye Lu
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian Li
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Duo Zhao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Wu Z, Li M, Qu L, Zhang C, Xie W. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary. MICROBIOME 2024; 12:115. [PMID: 38918820 PMCID: PMC11200988 DOI: 10.1186/s40168-024-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Liping Qu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
4
|
Fan L, Xu B, Chen S, Liu Y, Li F, Xie W, Prabhu A, Zou D, Wan R, Li H, Liu H, Liu Y, Kao SJ, Chen J, Zhu Y, Rinke C, Li M, Zhu M, Zhang C. Gene inversion led to the emergence of brackish archaeal heterotrophs in the aftermath of the Cryogenian Snowball Earth. PNAS NEXUS 2024; 3:pgae057. [PMID: 38380056 PMCID: PMC10877094 DOI: 10.1093/pnasnexus/pgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.
Collapse
Affiliation(s)
- Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Apoorva Prabhu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ru Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuhang Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Maoyan Zhu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
- Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
5
|
Guider JT, Yoshimura KM, Block KR, Biddle JF, Shah Walter SR. Archaeal blooms and busts in an estuarine time series. Environ Microbiol 2024; 26:e16584. [PMID: 38372423 DOI: 10.1111/1462-2920.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Coastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons. We detected seasonally high abundances of Marine Group II archaea in summer months which correlate with indicators of phytoplankton production, although not phytoplankton biomass. Although previous studies have reported associations between Marine Group II archaea and particles, here they are almost entirely found in very small particles (0.22-0.7 μm), suggesting they are free-living cells. Populations of Nitrososphaeria did not vary with particle size or environmental conditions. Methanogens were significant fractions of archaeal sequences in large particles at low tide during winter months. Contrary to expectations, Nanoarchaeia were found predominantly in the free-living fraction despite the previous observation that they require an association with hosts. These results underscore the utility of time series studies in shallow, tidally mixed estuarine environments that capture variable conditions for understanding the ecology and biogeochemistry of planktic archaea.
Collapse
Affiliation(s)
- Justin T Guider
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Kristin M Yoshimura
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kaleigh R Block
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
6
|
Qu L, Li M, Gong F, He L, Li M, Zhang C, Yin K, Xie W. Oxygen-driven divergence of marine group II archaea reflected by transitions of superoxide dismutases. Microbiol Spectr 2024; 12:e0203323. [PMID: 38047693 PMCID: PMC10783094 DOI: 10.1128/spectrum.02033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Reactive oxygen species (ROS), including superoxide anion, is a series of substances that cause oxidative stress for all organisms. Marine group II (MGII) archaea are mainly live in the surface seawater and exposed to considerable ROS. Therefore, it is important to understand the antioxidant capacity of MGII. Our research found that Fe/Mn- superoxide dismutase (Fe/MnSOD) may be more suitable for MGII to resist oxidative damage, and the changes in oxygen concentrations and SOD metallic cofactors play an important role in the selection of SOD by the 17 clades of MGII, which in turn affects the species differentiation of MGII. Overall, this study provides insight into the co-evolutionary history of these uncultivated marine archaea with the earth system.
Collapse
Affiliation(s)
- Liping Qu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Meng Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Fahui Gong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Lei He
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chuanlun Zhang
- Department of Ocean Science & Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Kedong Yin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
7
|
Zhou Y, Wang Y, Prangishvili D, Krupovic M. Exploring the Archaeal Virosphere by Metagenomics. Methods Mol Biol 2024; 2732:1-22. [PMID: 38060114 DOI: 10.1007/978-1-0716-3515-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.
Collapse
Affiliation(s)
- Yifan Zhou
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - David Prangishvili
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
8
|
Zhang X, Cui L, Liu S, Li J, Wu Y, Ren Y, Huang X. Seasonal dynamics of bacterial community and co-occurrence with eukaryotic phytoplankton in the Pearl River Estuary. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106193. [PMID: 37832281 DOI: 10.1016/j.marenvres.2023.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
In this study, we investigated the taxonomic composition of the bacteria and phytoplankton communities in the Pearl River Estuary (PRE) through Illumina sequencing of the V3-V4 region of the 16 S rRNA gene. Furthermore, their relationships as well as recorded environmental variables were explored by co-occurrence networks. Bacterial community composition was different in two size fractions, as well as along the salinity gradient across two seasons. Free-living (FL) communities were dominated by pico-sized Cyanobacteria (Synechococcus CC9902) while Exiguobacterium, Halomonas and Pseudomonas were predominantly associated with particle-associated (PA) lifestyle, and Cyanobium PCC-6307 exhibited seasonal shifts in lifestyles in different seasons. In wet season, bacterial community composition was characterized by abundance of Cyanobacteria, Actinobacteria, and Bacteroidetes, which were tightly linked with high riverine inflow. While in dry season, Proteobacteria increased in prevalence, especially for Psychrobacter, NOR5/OM60 clade and Pseudomonas, which were thrived in lower water temperature and higher salinity. Moreover, we discovered that differences between PA and FL composition were more significant in the wet season than in the dry season, which may be due to better nutritional conditions of particles (indicated by POC%) in the wet season and then attract more diverse PA populations. Based on the analysis of plastidial 16 S rRNA genes, abundant small-sized mixotrophic phytoplankton (Dinophyceae, Euglenida and Haptophyta) were identified in the PRE. The complexity of co-occurrence network increased from FL to PA fractions in both seasons, which suggested that suspended particles can provide ecological niches for particle-associated colonizers contributing to the maintenance of a more stable community structure. In addition, the majority of phytoplankton species exhibited positive co-occurrences with both other phytoplankton species and bacterial counterparts, indicating the mutual cooperation between phytoplankton assemblages and specific bacterial populations e likely benefited from phytoplankton-derived organic compounds. This study enhances our understanding of the seasonal and spatial dynamics of bacterial communities and their potential relationship with phytoplankton assembly in estuarine waters.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Yuzheng Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zou D, Chen J, Zhang C, Kao SJ, Liu H, Li M. Diversity and salinity adaptations of ammonia oxidizing archaea in three estuaries of China. Appl Microbiol Biotechnol 2023; 107:6897-6909. [PMID: 37702790 DOI: 10.1007/s00253-023-12761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Ammonia-oxidizing archaea (AOA) are ubiquitously found in diverse habitats and play pivotal roles in the nitrogen and carbon cycle, especially in estuarine and coastal environments. Despite the fact that the diversity and distribution of AOA are thought to be tightly linked to habitats, little is known about the relationship that underpins their genomic traits, adaptive potentials, and ecological niches. Here, we have characterized and compared the AOA community in three estuaries of China using metagenomics. AOA were the dominant ammonia oxidizers in the three estuaries. Through phylogenetic analyses, five major AOA groups were identified, including the Nitrosomarinus-like, Nitrosopumilus-like, Aestuariumsis-like, Nitrosarchaeum-like, and Nitrosopelagicus-like groups. Statistical analyses showed that the aquatic and sedimentary AOA communities were mainly influenced by spatial factors (latitude and water depth) and environmental factors (salinity, pH, and dissolved oxygen) in estuaries, respectively. Compared to AOA dwelling in terrestrial and marine habitats, estuarine AOA encoded more genes involved in glucose and amino acid metabolism, transport systems, osmotic control, and cell motility. The low proteome isoelectric points (pI), high content of acidic amino acids, and the presence of potassium ion and mechanosensitive channels suggest a "salt-in" strategy for estuarine AOA to counteract high osmolarity in their surroundings. Our findings have indicated potential adaptation strategies and highlighted their importance in the estuarine nitrogen and carbon cycles. KEY POINTS: • Spatial and environmental factors influence water and sediment AOA respectively. • Estuarine AOA share low proteome isoelectric value and high acid amino acids content. • AOA adaptation to estuaries is likely resulted from their unique genomic features.
Collapse
Affiliation(s)
- Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
| | - Hongbin Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Hu X, Huang Y, Gu G, Hu H, Yan H, Zhang H, Zhang R, Zhang D, Wang K. Distinct patterns of distribution, community assembly and cross-domain co-occurrence of planktonic archaea in four major estuaries of China. ENVIRONMENTAL MICROBIOME 2023; 18:75. [PMID: 37805516 PMCID: PMC10560434 DOI: 10.1186/s40793-023-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Archaea are key mediators of estuarine biogeochemical cycles, but comprehensive studies comparing archaeal communities among multiple estuaries with unified experimental protocols during the same sampling periods are scarce. Here, we investigated the distribution, community assembly, and cross-domain microbial co-occurrence of archaea in surface waters across four major estuaries (Yellow River, Yangtze River, Qiantang River, and Pearl River) of China cross climatic zones (~ 1,800 km) during the winter and summer cruises. RESULTS The relative abundance of archaea in the prokaryotic community and archaeal community composition varied with estuaries, seasons, and stations (reflecting local environmental changes such as salinity). Archaeal communities in four estuaries were overall predominated by ammonia-oxidizing archaea (AOA) (aka. Marine Group (MG) I; primarily Nitrosopumilus), while the genus Poseidonia of Poseidoniales (aka. MGII) was occasionally predominant in Pearl River estuary. The cross-estuary dispersal of archaea was largely limited and the assembly mechanism of archaea varied with estuaries in the winter cruise, while selection governed archaeal assembly in all estuaries in the summer cruise. Although the majority of archaea taxa in microbial networks were peripherals and/or connectors, extensive and distinct cross-domain associations of archaea with bacteria were found across the estuaries, with AOA as the most crucial archaeal group. Furthermore, the expanded associations of MGII taxa with heterotrophic bacteria were observed, speculatively indicating the endogenous demand for co-processing high amount and diversity of organic matters in the estuarine ecosystem highly impacted by terrestrial/anthropogenic input, which is worthy of further study. CONCLUSIONS Our results highlight the lack of common patterns in the dynamics of estuarine archaeal communities along the geographic gradient, expanding the understanding of roles of archaea in microbial networks of this highly dynamic ecosystem.
Collapse
Affiliation(s)
- Xuya Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yujie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gaoke Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hanjing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huizhen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China.
| |
Collapse
|
11
|
Liu H, Liu WW, Haro-Moreno JM, Xu B, Zheng Y, Liu J, Tian J, Zhang XH, Zhou NY, Qin L, Zhu Y, Rodriguez-Valera F, Zhang C. A moderately thermophilic origin of a novel family of marine group II euryarchaeota from deep ocean. iScience 2023; 26:107664. [PMID: 37680465 PMCID: PMC10480650 DOI: 10.1016/j.isci.2023.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Marine group II (MGII) is the most abundant planktonic heterotrophic archaea in the ocean. The evolutionary history of MGII archaea is elusive. In this study, 13 new MGII metagenome-assembled genomes were recovered from surface to the hadal zone in Challenger Deep of the Mariana Trench; four of them from the deep ocean represent a novel group. The optimal growth temperature (OGT) of the common ancestor of MGII has been estimated to be at about 60°C and OGTs of MGIIc, MGIIb, and MGIIa at 47°C-50ºC, 37°C-44ºC, and 30°C-37ºC, respectively, suggesting the adaptation of these species to different temperatures during evolution. The estimated OGT range of MGIIc was supported by experimental measurements of cloned β-galactosidase that showed optimal enzyme activity around 50°C. These results indicate that MGIIc may have originated from a common ancestor that lived in warm or even hot marine environment, such as hydrothermal vents.
Collapse
Affiliation(s)
- Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Wei Liu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Yanfen Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| |
Collapse
|
12
|
Lin X, Zhang C, Xie W. Deterministic processes dominate archaeal community assembly from the Pearl River to the northern South China Sea. Front Microbiol 2023; 14:1185436. [PMID: 37426005 PMCID: PMC10324572 DOI: 10.3389/fmicb.2023.1185436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Archaea play a significant role in the biogeochemical cycling of nutrients in estuaries. However, comprehensive researches about their assembly processes remain notably insufficient. In this study, we systematically examined archaeal community dynamics distinguished between low-salinity and high-salinity groups in water and surface sediments over a 600-kilometer range from the upper Pearl River (PR) to the northern South China Sea (NSCS). Neutral community model analysis together with null model analysis showed that their C-score values were greater than 2, suggesting that deterministic processes could dominate the assembly of those planktonic or benthic archaeal communities at both the low-salinity and high-salinity sites. And deterministic processes contributed more in the low-salinity than high-salinity environments from the PR to the NSCS. Furthermore, through the co-occurrence network analysis, we found that the archaeal communities in the low-salinity groups possessed closer interactions and higher proportions of negative interactions than those in the high-salinity groups, which might be due to the larger environmental heterogeneities reflected by the nutrient concentrations of those low-salinity samples. Collectively, our work systematically investigated the composition and co-occurrence networks of archaeal communities in water as well as sediments from the PR to the NSCS, yielding new insights into the estuary's archaeal community assembly mechanisms.
Collapse
Affiliation(s)
- Xizheng Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| |
Collapse
|
13
|
Xu B, Fan L, Wang W, Zhu Y, Zhang C. Diversity, distribution, and functional potentials of magroviruses from marine and brackish waters. Front Microbiol 2023; 14:1151034. [PMID: 37152742 PMCID: PMC10160649 DOI: 10.3389/fmicb.2023.1151034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Marine group II (MGII) archaea (Ca. Poseidoniales) are among the most abundant microbes in global oceanic surface waters and play an important role in driving marine biogeochemical cycles. Magroviruses - the viruses of MGII archaea have been recently found to occur ubiquitously in surface ocean. However, their diversity, distribution, and potential ecological functions in coastal zones especially brackish waters are unknown. Here we obtained 234 non-redundant magroviral genomes from brackish surface waters by using homology searches for viral signature proteins highlighting the uncovered vast diversity of this novel viral group. Phylogenetic analysis based on these brackish magroviruses along with previously reported marine ones identified six taxonomic groups with close evolutionary connection to both haloviruses and the viruses of Marine Group I archaea. Magroviruses were present abundantly both in brackish and open ocean samples with some showing habitat specification and others having broad spectrums of distribution between different habitats. Genome annotation suggests they may be involved in regulating multiple metabolic pathways of MGII archaea. Our results uncover the previously overlooked diversity and ecological potentials of a major archaeal virial group in global ocean and brackish waters and shed light on the cryptic evolutionary history of archaeal viruses.
Collapse
Affiliation(s)
- Bu Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Lu Fan,
| | - Wenxiu Wang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
14
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Debroas D, Hochart C, Galand PE. Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere. ISME COMMUNICATIONS 2022; 2:87. [PMID: 37938749 PMCID: PMC9723795 DOI: 10.1038/s43705-022-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
In environmental metagenomic experiments, a very high proportion of the microbial sequencing data (> 70%) remains largely unexploited because rare and closely related genomes are missed in short-read assemblies. The identity and the potential metabolisms of a large fraction of natural microbial communities thus remain inaccessible to researchers. The purpose of this study was to explore the genomic content of unassembled metagenomic data and test their level of novelty. We used data from a three-year microbial metagenomic time series of the NW Mediterranean Sea, and conducted reference-free and database-guided analysis. The results revealed a significant genomic difference between the assembled and unassembled reads. The unassembled reads had a lower mean identity against public databases, and fewer metabolic pathways could be reconstructed. In addition, the unassembled fraction presented a clear temporal pattern, unlike the assembled ones, and a specific community composition that was similar to the rare communities defined by metabarcoding using the 16S rRNA gene. The rare gene pool was characterised by keystone bacterial taxa, and the presence of viruses, suggesting that viral lysis could maintain some taxa in a state of rarity. Our study demonstrates that unassembled metagenomic data can provide important information on the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France.
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
16
|
Wang P, Li M, Dong L, Zhang C, Xie W. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Front Microbiol 2022; 13:869834. [PMID: 35859738 PMCID: PMC9289680 DOI: 10.3389/fmicb.2022.869834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host–microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.
Collapse
Affiliation(s)
- Peng Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Wei Xie,
| |
Collapse
|
17
|
Zhao G, He H, Wang H, Liang Y, Guo C, Shao H, Jiang Y, Wang M. Variations in Marine Bacterial and Archaeal Communities during an Ulva prolifera Green Tide in Coastal Qingdao Areas. Microorganisms 2022; 10:microorganisms10061204. [PMID: 35744722 PMCID: PMC9228619 DOI: 10.3390/microorganisms10061204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Green tides caused by Ulva prolifera occur annually in the Yellow Sea, potentially influencing the marine microorganisms. Here, we focused on the variations in marine bacterial and archaeal communities during an U. prolifera green tide in coastal Qingdao areas with Illumina high-throughput sequencing analysis. Our results revealed that the diversity and structure of bacterial and archaeal communities, as well as the organization and structure of microbial co-occurrence networks, varied during the green tide. The decline phase may be favorable to the bacterial and archaeal diversity and richness. The bacterial community, as well as the archaeal community, showed clear variations between the outbreak and decline phases. A simpler and less connected microbial co-occurrence network was observed during the outbreak phase compared with the decline phase. Flavobacteriales and Rhodobacterales separately dominated the bacterial community during the outbreak and decline phase, and Marine Group II (MGII) dominated the archaeal community during the green tide. Combined with microbial co-occurrence network analysis, Flavobacteriales, Rhodobacterales and MGII may be important organisms during the green tide. Temperature, chlorophyll a content and salinity may have an important impact on the variations in bacterial and archaeal communities during the green tide.
Collapse
Affiliation(s)
- Guihua Zhao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- Correspondence: (H.H.); (M.W.)
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- OUC-UMT Joint Academic Centre for Marine Studies, Qingdao 266003, China
- Correspondence: (H.H.); (M.W.)
| |
Collapse
|
18
|
A holistic genome dataset of bacteria, archaea and viruses of the Pearl River estuary. Sci Data 2022; 9:49. [PMID: 35165305 PMCID: PMC8844013 DOI: 10.1038/s41597-022-01153-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
Estuaries are one of the most important coastal ecosystems. While microbiomes and viromes have been separately investigated in some estuaries, few studies holistically deciphered the genomes and connections of viruses and their microbial hosts along an estuarine salinity gradient. Here we applied deep metagenomic sequencing on microbial and viral communities in surface waters of the Pearl River estuary, one of China’s largest estuaries with strong anthropogenic impacts. Overall, 1,205 non-redundant prokaryotic genomes with ≥50% completeness and ≤10% contamination, and 78,502 non-redundant viral-like genomes were generated from samples of three size fractions and five salinity levels. Phylogenomic analysis and taxonomy classification show that majority of these estuarine prokaryotic and viral genomes are novel at species level according to public databases. Potential connections between the microbial and viral populations were further investigated by host-virus matching. These combined microbial and viral genomes provide an important complement of global marine genome datasets and should greatly facilitate our understanding of microbe-virus interactions, evolution and their implications in estuarine ecosystems. Measurement(s) | bacteria • Archaea • viruses | Technology Type(s) | Shotgun Sequencing | Sample Characteristic - Organism | estuary metagenome | Sample Characteristic - Environment | subtropical estuarine | Sample Characteristic - Location | Pearl river estuary |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.17139998
Collapse
|
19
|
Chen S, Tao J, Chen Y, Wang W, Fan L, Zhang C. Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea. Front Microbiol 2022; 12:785532. [PMID: 35145493 PMCID: PMC8821943 DOI: 10.3389/fmicb.2021.785532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Marine Group II (MGII) archaea (Poseidoniales) are the most abundant surface marine planktonic archaea and are widely distributed in both coastal and pelagic waters. The factors affecting their distribution and activity are poorly understood. MGII archaea have the metabolic potential to utilize algae-derived organic matter and are frequently observed in high abundance during or following phytoplankton blooms, suggesting that they are key players of the marine food web. In this study, we studied interactions between MGII archaea and the diverse taxa of phytoplankton in the northern coast of South China Sea. Non-metric multidimensional scaling and cluster analyses demonstrated distinct MGII community patterns in the Pearl River plume (PRP) and the open regions of the northern South China Sea (ONSCS), with MGIIb dominating the former and MGIIa and MGIIb showing remarkable variations in the latter for the same sampling season. Nevertheless, positive correlations (Pearson correlation: R > 0.8 and P < 0.01) in absolute abundances of ribosomal RNA (rRNA)-derived complementary DNA and rRNA genes from network analyses were found between MGII archaea and phytoplankton (cyanobacteria, haptophytes, and stramenopiles in both PRP and ONSCS) among different particle size fractions, indicating their intrinsic relationships under changing environmental conditions. The results of this study may shed light on the multiple interactions between co-existing species in the micro-niches of different oceanic regions.
Collapse
Affiliation(s)
- Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yufei Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
20
|
Genome-Resolved Metagenomic Insights into Massive Seasonal Ammonia-Oxidizing Archaea Blooms in San Francisco Bay. mSystems 2022; 7:e0127021. [PMID: 35076275 PMCID: PMC8788347 DOI: 10.1128/msystems.01270-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are key for the transformation of ammonia to oxidized forms of nitrogen in aquatic environments around the globe, including nutrient-rich coastal and estuarine waters such as San Francisco Bay (SFB). Using metagenomics and 16S rRNA gene amplicon libraries, we found that AOA are more abundant than ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), except in the freshwater stations in SFB. In South SFB, we observed recurrent AOA blooms of “Candidatus Nitrosomarinus catalina” SPOT01-like organisms, which account for over 20% of 16S rRNA gene amplicons in both surface and bottom waters and co-occur with weeks of high nitrite concentrations (>10 μM) in the oxic water column. We observed pronounced nitrite peaks occurring in the autumn for 7 of the last 9 years (2012 to 2020), suggesting that seasonal AOA blooms are common in South SFB. We recovered two high-quality AOA metagenome-assembled genomes (MAGs), including a Nitrosomarinus-like genome from the South SFB bloom and another Nitrosopumilus genome originating from Suisun Bay in North SFB. Both MAGs cluster with genomes from other estuarine/coastal sites. Analysis of Nitrosomarinus-like genomes show that they are streamlined, with low GC content and high coding density, and harbor urease genes. Our findings support the unique niche of Nitrosomarinus-like organisms which dominate coastal/estuarine waters and provide insights into recurring AOA blooms in SFB. IMPORTANCE Ammonia-oxidizing archaea (AOA) carry out key transformations of ammonia in estuarine systems such as San Francisco Bay (SFB)—the largest estuary on the west coast of North America—and play a significant role in both local and global nitrogen cycling. Using metagenomics and 16S rRNA gene amplicon libraries, we document a massive, recurrent AOA bloom in South SFB that co-occurs with months of high nitrite concentrations in the oxic water column. Our study is the first to generate metagenome-assembled genomes (MAGs) from SFB, and through this process we recovered two high-quality AOA MAGs, one of which originated from bloom samples. These AOA MAGs yield new insight into the Nitrosopumilus and Nitrosomarinus-like lineages and their potential niches in coastal and estuarine systems. Nitrosomarinus-like AOA are abundant in coastal regions around the globe, and we highlight the common occurrence of urease genes, low GC content, and range of salinity tolerances within this lineage.
Collapse
|
21
|
Diversity Distribution, Driving Factors and Assembly Mechanisms of Free-Living and Particle-Associated Bacterial Communities at a Subtropical Marginal Sea. Microorganisms 2021; 9:microorganisms9122445. [PMID: 34946047 PMCID: PMC8704526 DOI: 10.3390/microorganisms9122445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Free-living (FL) and particle-associated (PA) bacterioplankton communities play critical roles in biogeochemical cycles in the ocean. However, their community composition, assembly process and functions in the continental shelf and slope regions are poorly understood. Based on 16S rRNA gene amplicon sequencing, we investigated bacterial communities’ driving factors, assembly processes and functional potentials at a subtropical marginal sea. The bacterioplankton community showed specific distribution patterns with respect to lifestyle (free living vs. particle associated), habitat (slope vs. shelf) and depth (surface vs. DCM and Bottom). Salinity and water temperature were the key factors modulating turnover in the FL community, whereas nitrite, silicate and phosphate were the key factors for the PA community. Model analyses revealed that stochastic processes outweighed deterministic processes and had stronger influences on PA than FL. Homogeneous selection (Hos) was more responsible for the assembly and turnover of FL, while drift and dispersal limitation contributed more to the assembly of PA. Importantly, the primary contributor to Hos in PA was Gammaproteobacteria:Others, whereas that in FL was Cyanobacteria:Bin6. Finally, the PICRUSt2 analysis indicated that the potential metabolisms of carbohydrates, cofactors, amino acids, terpenoids, polyketides, lipids and antibiotic resistance were markedly enriched in PA than FL.
Collapse
|
22
|
Law KP, He W, Tao J, Zhang C. Characterization of the Exometabolome of Nitrosopumilus maritimus SCM1 by Liquid Chromatography-Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:658781. [PMID: 34276593 PMCID: PMC8281238 DOI: 10.3389/fmicb.2021.658781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Marine Thaumarchaeota (formerly known as the marine group I archaea) have received much research interest in recent years since these chemolithoautotrophic organisms are abundant in the subsurface ocean and oxidize ammonium to nitrite, which makes them a major contributor to the marine carbon and nitrogen cycles. However, few studies have investigated the chemical composition of their exometabolome and their contributions to the pool of dissolved organic matter (DOM) in seawater. This study exploits the recent advances in ion mobility mass spectrometry (IM-MS) and integrates this instrumental capability with bioinformatics to reassess the exometabolome of a model ammonia-oxidizing archaeon, Nitrosopumilus maritimus strain SCM1. Our method has several advantages over the conventional approach using an Orbitrap or ion cyclotron resonance mass analyzer and allows assignments or annotations of spectral features to known metabolites confidently and indiscriminately, as well as distinction of biological molecules from background organics. Consistent with the results of a previous report, the SPE-extracted exometabolome of N. maritimus is dominated by biologically active nitrogen-containing metabolites, in addition to peptides secreted extracellularly. Cobalamin and associated intermediates, including α-ribazole and α-ribazole 5'-phosphate, are major components of the SPE-extracted exometabolome of N. maritimus. This supports the proposition that Thaumarchaeota have the capacity of de novo biosynthesizing cobalamin. Other biologically significant metabolites, such as agmatidine and medicagenate, predicted by genome screening are also detected, which indicates that Thaumarchaeota have remarkable metabolic potentials, underlining their importance in driving elemental cycles critical to biological processes in the ocean.
Collapse
Affiliation(s)
- Kai P. Law
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
23
|
Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. Network analysis methods for studying microbial communities: A mini review. Comput Struct Biotechnol J 2021; 19:2687-2698. [PMID: 34093985 PMCID: PMC8131268 DOI: 10.1016/j.csbj.2021.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.
Collapse
Affiliation(s)
- Monica Steffi Matchado
- Chair of Experimental Bioinformatics, Technical University of Munich, 85354 Freising, Germany
| | - Michael Lauber
- Chair of Experimental Bioinformatics, Technical University of Munich, 85354 Freising, Germany
| | - Sandra Reitmeier
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, 38106 Brunswick, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Brunswick, Germany
| | - Jan Baumbach
- Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
24
|
Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea. THE ISME JOURNAL 2021; 15:1302-1316. [PMID: 33288859 PMCID: PMC8115670 DOI: 10.1038/s41396-020-00851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
The Archaea Marine Group II (MGII) is widespread in the world's ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group's metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes. The MAGs' seasonality revealed a MGIIb family composed of different subclades that have distinct lifestyles and physiologies. The vitamin metabolisms were notably different between ecotypes with, in some, a possible link to sunlight's energy. Diverse archaeal proteorhodopsin variants, with unusual signature in key amino acid residues, had distinct seasonal patterns corresponding to changing day length. In addition, we show that in summer, archaea, as opposed to bacteria, disappeared completely from surface waters. Our results shed light on the diversity and the distribution of the euryarchaeotal proteorhodopsin, and highlight that MGIIb is a diverse ecological group. The work shows that time-series based studies of the taxonomy, seasonality, and metabolisms of marine prokaryotes is critical to uncover their diverse role in the ocean.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States, Honolulu, HI, 96822, USA
| | - Jean Christophe Auguet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France, Montpellier, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France.
| |
Collapse
|
25
|
Rasmussen AN, Damashek J, Eloe-Fadrosh EA, Francis CA. In-depth Spatiotemporal Characterization of Planktonic Archaeal and Bacterial Communities in North and South San Francisco Bay. MICROBIAL ECOLOGY 2021; 81:601-616. [PMID: 33150499 DOI: 10.1007/s00248-020-01621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Despite being the largest estuary on the west coast of North America, no in-depth survey of microbial communities in San Francisco Bay (SFB) waters currently exists. In this study, we analyze bacterioplankton and archaeoplankton communities at several taxonomic levels and spatial extents (i.e., North versus South Bay) to reveal patterns in alpha and beta diversity. We assess communities using high-throughput sequencing of the 16S rRNA gene in 177 water column samples collected along a 150-km transect over a 2-year monthly time-series. In North Bay, the microbial community is strongly structured by spatial salinity changes while in South Bay seasonal variations dominate community dynamics. Along the steep salinity gradient in North Bay, we find that operational taxonomic units (OTUs; 97% identity) have higher site specificity than at coarser taxonomic levels and turnover ("species" replacement) is high, revealing a distinct brackish community (in oligo-, meso-, and polyhaline samples) from fresh and marine end-members. At coarser taxonomic levels (e.g., phylum, class), taxa are broadly distributed across salinity zones (i.e., present/abundant in a large number of samples) and brackish communities appear to be a mix of fresh and marine communities. We also observe variations in brackish communities between samples with similar salinities, likely related to differences in water residence times between North and South Bay. Throughout SFB, suspended particulate matter is positively correlated with richness and influences changes in beta diversity. Within several abundant groups, including the SAR11 clade (comprising up to 30% of reads in a sample), OTUs appear to be specialized to a specific salinity range. Some other organisms also showed pronounced seasonal abundance, including Synechococcus, Ca. Actinomarina, and Nitrosopumilus-like OTUs. Overall, this study represents the first in-depth spatiotemporal survey of SFB microbial communities and provides insight into how planktonic microorganisms have specialized to different niches along the salinity gradient.
Collapse
Affiliation(s)
- Anna N Rasmussen
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
| | - Julian Damashek
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
- Department of Biology, Utica College, Utica, NY, 13502, USA
| | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
26
|
Damashek J, Okotie-Oyekan AO, Gifford SM, Vorobev A, Moran MA, Hollibaugh JT. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean. ISME COMMUNICATIONS 2021; 1:5. [PMID: 37938231 PMCID: PMC9723583 DOI: 10.1038/s43705-021-00002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2023]
Abstract
Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
- Department of Biology, Utica College, Utica, NY, USA.
| | - Aimee Oyinlade Okotie-Oyekan
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Alexey Vorobev
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
27
|
Jain A, Krishnan KP. Marine Group-II archaea dominate particle-attached as well as free-living archaeal assemblages in the surface waters of Kongsfjorden, Svalbard, Arctic Ocean. Antonie van Leeuwenhoek 2021; 114:633-647. [PMID: 33694023 PMCID: PMC7945612 DOI: 10.1007/s10482-021-01547-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Marine archaea are a significant component of the global oceanic ecosystems, including the polar oceans. However, only a few attempts have been made to study archaea in the high Arctic fjords. Given the importance of Archaea in carbon and nitrogen cycling, it is imperative to explore their diversity and community composition in the high Arctic fjords, such as Kongsfjorden (Svalbard). In the present study, we evaluated archaeal diversity and community composition in the size-fractionated microbial population, viz-a-viz free-living (FL; 0.2-3 μm) and particle-attached (PA; > 3 μm) using archaeal V3-V4 16S rRNA gene amplicon sequencing. Our results indicate that the overall archaeal community in the surface water of Kongsfjorden was dominated by the members of the marine group-II (MGII) archaea, followed by the MGI group members, including Nitrosopumilaceae and Nitrososphaeraceae. Although a clear niche partitioning between PA and FL archaeal communities was not observed, 2 OTUs among 682 OTUs, and 3 ASVs out of 1932 ASVs were differentially abundant among the fractions. OTU001/ASV0002, classified as MGIIa, was differentially abundant in the PA fraction. OTU006/ASV0006/ASV0010 affiliated with MGIIb were differentially abundant in the FL fraction. Particulate organic nitrogen and C:N ratio were the most significant variables (P < 0.05) explaining the observed variation in the FL and PA archaeal communities, respectively. These results indicate an exchange between archaeal communities or a generalist lifestyle switching between FL and PA fractions. Besides, the particles' elemental composition (carbon and nitrogen) seems to play an essential role in shaping the PA archaeal communities in the surface waters of Kongsfjorden.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India.
| | | |
Collapse
|
28
|
Lu Z, Liu Z, Zhang C, Wei Q, Zhang S, Li M. Spatial and seasonal variations of sediment bacterial communities in a river-bay system in South China. Appl Microbiol Biotechnol 2021; 105:1979-1989. [PMID: 33544213 DOI: 10.1007/s00253-021-11142-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
River-bay systems are transitional areas that hold important roles in biogeochemical processes between continents and oceans. However, composition and structure of microbial communities shaped by such environments have not been clear yet. In this study, we used high-throughput sequencing of 16S rRNA genes to analyze the diversity and composition of sediment bacterial communities from the Shenzhen river-bay system during dry and wet seasons. The results showed that sediment bacterial community structure was varied according to habitats (river vs. estuary) and seasons (wet season vs. dry season). The alpha diversity of sediment bacterial community was significantly higher in the dry season than in the wet season, while no significant difference of alpha diversity was found between river and estuary. Neutral community model revealed a significant influence of stochastic processes on sediment bacterial community assembly, especially in the wet season. However, the beta nearest-taxon index indicated that deterministic processes were more responsible for the assembly of sediment bacterial community. Additionally, redundancy analysis suggested strong links between sediment bacterial communities and environmental factors in Shenzhen river-bay system, with the environmental factors explaining 63.5% of the bacterial community variation. Specifically, NH4+, pH, and salinity were the three most important contributing factors that shaped the sediment bacterial communities. Overall, this study provides a valuable reference to get insights into the spatiotemporal pattern of sediment bacterial communities in a typical river-bay system. KEY POINTS: • Stochastic processes contribute sediment bacterial community assembly. • Deterministic processes dominate sediment bacterial community assembly. • Environmental factors shape sediment bacterial communities.
Collapse
Affiliation(s)
- Zhongyi Lu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zongbao Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Cuijing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Qiaoyan Wei
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Siyu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
29
|
Wang H, Bier R, Zgleszewski L, Peipoch M, Omondi E, Mukherjee A, Chen F, Zhang C, Kan J. Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Front Microbiol 2020; 11:576661. [PMID: 33193193 PMCID: PMC7642518 DOI: 10.3389/fmicb.2020.576661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
In addition to inhabiting extreme territories, Archaea are widely distributed in common environments spanning from terrestrial to aquatic environments. This study investigated and compared archaeal community structures from three different habitats (representing distinct environments): agriculture soils (from farming system trials FST, PA, United States), freshwater biofilms (from White Clay Creek, PA, United States), and estuary water (Chesapeake Bay, United States). High-throughput sequencing of 16S rRNA genes indicated that Thaumarchaeota, Euryarchaeota, Nanoarchaeota, Crenarchaeota, and Diapherotrites were the commonly found dominant phyla across these three environments. Similar to Bacteria, distinct community structure and distribution patterns for Archaea were observed in soils vs. freshwater vs. estuary. However, the abundance, richness, evenness, and diversity of archaeal communities were significantly greater in soils than it was in freshwater and estuarine environments. Indicator species (or amplicon sequence variants, ASVs) were identified from different nitrogen and carbon cycling archaeal groups in soils (Nitrososphaerales, Nitrosotaleales, Nitrosopumilales, Methanomassiliicoccales, Lainarchaeales), freshwater biofilms (Methanobacteria, Nitrososphaerales) and Chesapeake Bay (Marine Group II, Nitrosopumilales), suggesting the habitat-specificity of their biogeochemical contributions to different environments. Distinct functional aspects of Archaea were also confirmed by functional predictions (PICRUSt2 analysis). Further, co-occurrence network analysis indicated that only soil Archaea formed stable modules. Keystone species (ASVs) were identified mainly from Methanomassiliicoccales, Nitrososphaerales, Nitrosopumilales. Overall, these results indicate a strong habitat-dependent distribution of Archaea and their functional partitions within the local environments.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Raven Bier
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Laura Zgleszewski
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | - Marc Peipoch
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
| | | | | | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA, United States
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
30
|
Dai J, Ye Q, Wu Y, Zhang M, Zhang J. Simulation of Enhanced Growth of Marine Group II Euryarchaeota From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone. Front Microbiol 2020; 11:571199. [PMID: 33013804 PMCID: PMC7516215 DOI: 10.3389/fmicb.2020.571199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Mesoscale eddies can have a strong impact on regional biogeochemistry and primary productivity. To investigate the effect of the upwelling of seawater by western Pacific eddies on the composition of the active planktonic marine archaeal community composition of the deep chlorophyll maximum (DCM) layer, mesoscale cold-core eddies were simulated in situ by mixing western Pacific DCM layer water with mesopelagic layer (400 m) water. Illumina sequencing of the 16S rRNA gene and 16S rRNA transcripts indicated that the specific heterotrophic Marine Group IIb (MGIIb) taxonomic group of the DCM layer was rapidly stimulated after receiving fresh substrate from 400 m water, which was dominated by uncultured autotrophic Marine Group I (MGI) archaea. Furthermore, niche differentiation of autotrophic ammonia-oxidizing archaea (MGI) was demonstrated by deep sequencing of 16S rRNA, amoA, and accA genes, respectively. Similar distribution patterns of active Marine Group III (MGIII) were observed in the DCM layer with or without vertical mixing, indicating that they are inclined to utilize the substrates already present in the DCM layer. These findings underscore the importance of mesoscale cyclonic eddies in stimulating microbial processes involved in the regional carbon cycle.
Collapse
Affiliation(s)
- Jinlong Dai
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Miao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
32
|
Ma C, Coffinet S, Lipp JS, Hinrichs KU, Zhang C. Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters. Front Microbiol 2020; 11:1034. [PMID: 32582055 PMCID: PMC7291766 DOI: 10.3389/fmicb.2020.01034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Planktonic archaea include predominantly Marine Group I Thaumarchaeota (MG I) and Marine Group II Euryarchaeota (MG II), which play important roles in the oceanic carbon cycle. MG I produce specific lipids called isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), which are being used in the sea surface temperature proxy named TEX86. Although MG II may be the most abundant planktonic archaeal group in surface water, their lipid composition remains poorly characterized because of the lack of cultured representatives. Circumstantial evidence from previous studies of marine suspended particulate matter suggests that MG II may produce both GDGTs and archaeol-based lipids. In this study, integration of the 16S rRNA gene quantification and sequencing and lipid analysis demonstrated that MG II contributed significantly to the pool of archaeal tetraether lipids in samples collected from MG II-dominated surface waters of the Northwestern Pacific Ocean (NWPO). The archaeal lipid composition in MG II-dominated NWPO waters differed significantly from that of known MG I cultures, containing relatively more 2G-OH-, 2G- and 1G- GDGTs, especially in their acyclic form. Lipid composition in NWPO waters was also markedly different from MG I-dominated surface water samples collected in the East China Sea. GDGTs from MG II-dominated samples seemed to respond to temperature similarly to GDGTs from the MG I-dominated samples, which calls for further study using pure cultures to determine the exact impact of MG II on GDGT-based proxies.
Collapse
Affiliation(s)
- Cenling Ma
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Sarah Coffinet
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Julius S Lipp
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
33
|
Li Y, Jing H, Kao SJ, Zhang W, Liu H. Metabolic response of prokaryotic microbes to sporadic hypoxia in a eutrophic subtropical estuary. MARINE POLLUTION BULLETIN 2020; 154:111064. [PMID: 32319898 DOI: 10.1016/j.marpolbul.2020.111064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Coastal eutrophication and consequent oxygen depletion (hypoxia) occurs worldwide due to increased human activity. The paucity of genomic information of microbes in hypoxia prone coastal waters have hindered our understanding of microorganism related causation and adaption to the environment. Here, using metagenomic approach, we investigated microbial metabolic capability in heavily polluted Pearl River estuary. Our results highlighted the possible roles of microbial metabolic activity in the formation of bottom water hypoxia by revealing enriched organic degradation related microbial genes in the bottom layer beneath surface phytoplankton bloom. Microbial nitrate reduction in hypoxia layer was low, possibly due to the low pH and fluctuating oxygen level. On contrary, high abundance of sulfate-reducing, and antibiotic and metal resistance related genes were detected in bottom and surface layers, respectively, indicating microbial adaptation to oxygen depletion and pollution. Our study provides gene level information on the interactive relations between microbial functions and environmental stress.
Collapse
Affiliation(s)
- Yingdong Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Weipeng Zhang
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
34
|
Chen S, Wang P, Liu H, Xie W, Wan XS, Kao SJ, Phelps TJ, Zhang C. Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Appl Microbiol Biotechnol 2019; 104:1331-1346. [DOI: 10.1007/s00253-019-10221-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/11/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
|
35
|
Kim JG, Gwak JH, Jung MY, An SU, Hyun JH, Kang S, Rhee SK. Distinct temporal dynamics of planktonic archaeal and bacterial assemblages in the bays of the Yellow Sea. PLoS One 2019; 14:e0221408. [PMID: 31449563 PMCID: PMC6709916 DOI: 10.1371/journal.pone.0221408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 02/01/2023] Open
Abstract
The Yellow Sea features unique characteristics due to strong tides and nutrient-enriched freshwater outflows from China and Korea. The coupling of archaeal and bacterial assemblages associated with environmental factors at two bay areas in the Yellow Sea was investigated. Temporal variations of the archaeal and bacterial assemblages were shown to be greater than the spatial variations based on an analysis of the 16S rRNA gene sequences. Distinct temporal dynamics of both planktonic archaeal and bacterial assemblages was associated with temperature, NO2-, and chlorophyll a ([chl-a]) concentrations in the bays of the Yellow Sea. The [chl-a] was the prime predictor of bacterial abundance, and some taxa were clearly correlated with [chl-a]. Bacteroidetes and Alpha-proteobacteria dominated at high [chl-a] stations while Gamma-proteobacteria (esp. SAR86 clade) and Actinobacteria (Candidatus Actinomarina clade) were abundant at low [chl-a] stations. The archaeal abundance was comparable with the bacterial abundance in most of the October samples. Co-dominance of Marine Group II (MGII) and Candidatus Nitrosopumilus suggests that the assimilation of organic nitrogen by MGII could be coupled with nitrification by ammonia-oxidizing archaea. The distinct temporal dynamics of the archaeal and bacterial assemblages might be attributable to the strong tides and the inflow of nutrient-rich freshwater.
Collapse
Affiliation(s)
- Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Gaeshin-dong, Heungduk-gu, Cheongju, South Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Gaeshin-dong, Heungduk-gu, Cheongju, South Korea
| | - Man-Young Jung
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse, Vienna, Austria
| | - Sung-Uk An
- Department of Marine Sciences and Convergent Technology, Hanyang University, Hanyangdaehak-ro Ansan, Gyeonggi-do, South Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Hanyangdaehak-ro Ansan, Gyeonggi-do, South Korea
| | - Sanghoon Kang
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, United States of America
- * E-mail: (SKR); (SK)
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Gaeshin-dong, Heungduk-gu, Cheongju, South Korea
- * E-mail: (SKR); (SK)
| |
Collapse
|
36
|
Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. Microbiologyopen 2019; 8:e00852. [PMID: 31264806 PMCID: PMC6741140 DOI: 10.1002/mbo3.852] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023] Open
Abstract
Planktonic Archaea have been detected in all the world's oceans and are found from surface waters to the deep sea. The two most common Archaea phyla are Thaumarchaeota and Euryarchaeota. Euryarchaeota are generally more common in surface waters, but very little is known about their ecology and their potential metabolisms. In this study, we explore the genomic ecology of the Marine Group II (MGII), the main marine planktonic Euryarchaeota, and test if it is composed of different ecologically relevant units. We re‐analyzed Tara Oceans metagenomes from the photic layer and the deep ocean by annotating sequences against a custom MGII database and by mapping gene co‐occurrences. Our data provide a global view of the distribution of Euryarchaeota, and more specifically of MGII subgroups, and reveal their association to a number of gene‐coding sequences. In particular, we show that MGII proteorhodopsins were detected in both the surface and the deep chlorophyll maximum layer and that different clusters of these light harvesting proteins were present. Our approach helped describing the set of genes found together with specific MGII subgroups. We could thus define genomic environments that could theoretically describe ecologically meaningful units and the ecological niche that they occupy.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Corentin Hochart
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023, CNRS - Université Blaise Pascal, Aubière, France
| | - Jean Christophe Auguet
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, IFREMER, Montpellier, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023, CNRS - Université Blaise Pascal, Aubière, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
37
|
Wang S, Zheng X, Xia H, Shi D, Fan J, Wang P, Yan Z. Archaeal community variation in the Qinhuangdao coastal aquaculture zone revealed by high-throughput sequencing. PLoS One 2019; 14:e0218611. [PMID: 31226149 PMCID: PMC6588238 DOI: 10.1371/journal.pone.0218611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
The differences in archaeal diversity and community composition in the sediments and waters of the Qinhuangdao coastal aquaculture zone were investigated. Furthermore, the associations between dominant archaeal taxa with geographic and environmental variables were evaluated. High-throughput sequencing of archaeal 16S rRNA genes yielded a total of 176,211 quality-filtered reads and 1,178 operational taxonomic units (OTUs) overall. The most abundant phylum and class among all communities were Thaumarchaeota and Nitrososphaeria, respectively. Beta diversity analysis indicated that community composition was divided into two groups according to the habitat type (i.e., sediments or waters). Only 9.8% OTUs were shared by communities from the two habitats, while 73.9% and 16.3% of the OTUs were unique to sediment or water communities, respectively. Furthermore, the relative abundances of the dominant OTUs differed with habitat type. Investigations of relationships between dominant OTUs and environmental variables indicated that some dominant OTUs were more sensitive to variation in environmental factors, which could be due to individual taxonomic differences in lifestyles and biological processes. Overall, the investigation of archaeal community variation within the Qinhuangdao coastal aquaculture zone provides an important baseline understanding of the microbial ecology in this important ecosystem.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Huijuan Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
38
|
Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat Commun 2019; 10:271. [PMID: 30655514 PMCID: PMC6336850 DOI: 10.1038/s41467-018-07840-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
Despite their discovery over 25 years ago, the Marine Group II Euryarchaea (MGII) remain a difficult group of organisms to study, lacking cultured isolates and genome references. The MGII have been identified in marine samples from around the world, and evidence supports a photoheterotrophic lifestyle combining phototrophy via proteorhodopsins with the remineralization of high molecular weight organic matter. Divided between two clades, the MGII have distinct ecological patterns that are not understood based on the limited number of available genomes. Here, I present a comparative genomic analysis of 250 MGII genomes, providing a comprehensive investigation of these mesophilic archaea. This analysis identifies 17 distinct subclades including nine subclades that previously lacked reference genomes. The metabolic potential and distribution of the MGII genera reveals distinct roles in the environment, identifying algal-saccharide-degrading coastal subclades, protein-degrading oligotrophic surface ocean subclades, and mesopelagic subclades lacking proteorhodopsins, common in all other subclades.
Collapse
Affiliation(s)
- Benjamin J Tully
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
39
|
Zhang C, Dang H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle CA, Jiao N. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwy074] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Carbon is a keystone element in global biogeochemical cycles. It plays a fundamental role in biotic and abiotic processes in the ocean, which intertwine to mediate the chemistry and redox status of carbon in the ocean and the atmosphere. The interactions between abiotic and biogenic carbon (e.g. CO2, CaCO3, organic matter) in the ocean are complex, and there is a half-century-old enigma about the existence of a huge reservoir of recalcitrant dissolved organic carbon (RDOC) that equates to the magnitude of the pool of atmospheric CO2. The concepts of the biological carbon pump (BCP) and the microbial loop (ML) shaped our understanding of the marine carbon cycle. The more recent concept of the microbial carbon pump (MCP), which is closely connected to those of the BCP and the ML, explicitly considers the significance of the ocean's RDOC reservoir and provides a mechanistic framework for the exploration of its formation and persistence. Understanding of the MCP has benefited from advanced ‘omics’ and novel research in biological oceanography and microbial biogeochemistry. The need to predict the ocean's response to climate change makes an integrative understanding of the BCP, ML and MCP a high priority. In this review, we summarize and discuss progress since the proposal of the MCP in 2010 and formulate research questions for the future.
Collapse
Affiliation(s)
- Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Benner
- Department of Biological Sciences and School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Louis Legendre
- Sorbonne Université, Laboratoire d’Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer, France
| | - Uta Passow
- Marine Science Institute, University of California Santa Barbara, CA 93106, USA
| | - Luca Polimene
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Carol Robinson
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Botany, and Microbiology and Immunology, and the Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|