1
|
Peng J, Zhang L, Lu K, Chen X, Pang H, Yao X, Li P, Cao P, Li X, Wang Z, Qin L, Zhou M, Wang M, Li Q, Qiu C, Sun M, Li Y, Gong L, Wei X, Wang S, Chen J, Lu C, Zou S, Ding X, Chen L, Zhang M, Dong H. Plant PI4P is required for bacteria to translocate type-3 effectors. THE NEW PHYTOLOGIST 2025; 245:748-766. [PMID: 39568298 DOI: 10.1111/nph.20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Type-3 effectors (T3E) of phytopathogenic Gram-negative bacteria fulfill a virulent role, causing disease, or an avirulent role, inducing immunity, following their translocation into plant cells. This study aimed to validate the hypothesis that bacterial T3E translocation requires lipidic compounds in plant cell membranes. Based on genetic, molecular, and biochemical assays, we determined that phosphatidylinositol 4-phosphate (PI4P) associated with plant cell membranes is essential for the translocation of T3E by bacterial pathogens. Replicate experimental data revealed that PI4P cooperates with the type-3 translocase HrpF to facilitate the translocation of effectors TAL and Xop from Xanthomonas oryzae and Hop from Pseudomonas syringae into the cells of Oryza sativa and Nicotiana benthamiana, respectively. Genetic and molecular analyses confirmed that, once translocated into plant cells, the distinct effectors induce disease or immunity. Combined genetic and pharmacological analyses revealed that when PI4P content is suppressed via genetic or pharmacological measures, the T3 effector translocation is considerably suppressed, resulting in serious inhibition of bacterial infection. Overall, these findings demonstrate that cooperative functioning of HrpF-PI4P is conserved in bacterial effectors and plants.
Collapse
Affiliation(s)
- Jinfeng Peng
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Kai Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Hao Pang
- Hainan Province Sanya City Bureau for Business Environment Construction, Sanya, 572022, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Ping Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Zhou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Maoling Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Qizhen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Chunyu Qiu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Mingxin Sun
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Yufen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Liping Gong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinlin Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Siyi Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chongchong Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
2
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
3
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
4
|
Liu YN, Wu FY, Tian RY, Shi YX, Xu ZQ, Liu JY, Huang J, Xue FF, Liu BY, Liu GQ. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol 2023; 6:1. [PMID: 36596887 PMCID: PMC9810662 DOI: 10.1038/s42003-022-04154-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/21/2022] [Indexed: 01/04/2023] Open
Abstract
Ganoderic acids (GAs) are well recognized as important pharmacological components of the medicinal species belonging to the basidiomycete genus Ganoderma. However, transcription factors directly regulating the expression of GA biosynthesis genes remain poorly understood. Here, the genome of Ganoderma lingzhi is de novo sequenced. Using DNA affinity purification sequencing, we identify putative targets of the transcription factor sterol regulatory element-binding protein (SREBP), including the genes of triterpenoid synthesis and lipid metabolism. Interactions between SREBP and the targets are verified by electrophoretic mobility gel shift assay. RNA-seq shows that SREBP targets, mevalonate kinase and 3-hydroxy-3-methylglutaryl coenzyme A synthetase in mevalonate pathway, sterol isomerase and lanosterol 14-demethylase in ergosterol biosynthesis, are significantly upregulated in the SREBP overexpression (OE::SREBP) strain. In addition, 3 targets involved in glycerophospholipid/glycerolipid metabolism are upregulated. Then, the contents of mevalonic acid, lanosterol, ergosterol and 13 different GAs as well as a variety of lipids are significantly increased in this strain. Furthermore, the effects of SREBP overexpression on triterpenoid and lipid metabolisms are recovered when OE::SREBP strain are treated with exogenous fatostatin, a specific inhibitor of SREBP. Taken together, our genome-wide study clarify the role of SREBP in triterpenoid and lipid metabolisms of G. lingzhi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Feng-Yuan Wu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Ren-Yuan Tian
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Yi-Xin Shi
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Zi-Qi Xu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Ji-Ye Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Jia Huang
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Fei-Fei Xue
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Bi-Yang Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Gao-Qiang Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| |
Collapse
|
5
|
Han X, Wang Z, Shi L, Zhu J, Shi L, Ren A, Zhao M. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating
GlMyb
in
Ganoderma lucidum
under heat stress. Environ Microbiol 2022; 24:5345-5361. [DOI: 10.1111/1462-2920.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| |
Collapse
|
6
|
Luo L, Zhang S, Wu J, Sun X, Ma A. Heat stress in macrofungi: effects and response mechanisms. Appl Microbiol Biotechnol 2021; 105:7567-7576. [PMID: 34536103 DOI: 10.1007/s00253-021-11574-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Temperature is one of the key factors that affects the growth and development of macrofungi. Heat stress not only negatively affects the morphology and growth rate of macrofungi, but also destroys cell structures and influences cell metabolism. Due to loosed structure of cell walls and increased membrane fluidity, which caused by heat stress, the outflow of intracellular nutrients makes macrofungi more vulnerable to invasion by pathogens. Macrofungi accumulate reactive oxygen species (ROS), Ca2+, and nitric oxide (NO) when heat-stressed, which transmit and amplify the heat stimulation signal through intracellular signal transduction pathways. Through regulation of some transcription factors including heat response factors (HSFs), POZCP26 and MYB, macrofungi respond to heat stress by different mechanisms. In this paper, we present mechanisms used by macrofungi to adapt and survive under heat stress conditions, including antioxidant defense systems that eliminate the excess ROS, increase in trehalose levels that prevent enzymes and proteins deformation, and stabilize cell structures and heat shock proteins (HSPs) that repair damaged proteins and synthesis of auxins, which increase the activity of antioxidant enzymes. All of these help macrofungi resist and adapt to heat stress. KEY POINTS: • The effects of heat stress on macrofungal growth and development were described. • The respond mechanisms to heat stress in macrofungi were summarized. • The further research directions of heat stress in macrofungi were discussed.
Collapse
Affiliation(s)
- Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyue Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
7
|
Sun S, Lin M, Qi X, Chen J, Gu H, Zhong Y, Sun L, Muhammad A, Bai D, Hu C, Fang J. Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances. BMC PLANT BIOLOGY 2021; 21:365. [PMID: 34380415 PMCID: PMC8356467 DOI: 10.1186/s12870-021-03152-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia Lindl.) is considered an important fruit species worldwide. Due to its temperate origin, this species is highly vulnerable to freezing injury while under low-temperature stress. To obtain further knowledge of the mechanism underlying freezing tolerance, we carried out a hybrid transcriptome analysis of two A. arguta (Actinidi arguta) genotypes, KL and RB, whose freezing tolerance is high and low, respectively. Both genotypes were subjected to - 25 °C for 0 h, 1 h, and 4 h. RESULTS SMRT (single-molecule real-time) RNA-seq data were assembled using the de novo method, producing 24,306 unigenes with an N50 value of 1834 bp. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that they were involved in the 'starch and sucrose metabolism', the 'mitogen-activated protein kinase (MAPK) signaling pathway', the 'phosphatidylinositol signaling system', the 'inositol phosphate metabolism', and the 'plant hormone signal transduction'. In particular, for 'starch and sucrose metabolism', we identified 3 key genes involved in cellulose degradation, trehalose synthesis, and starch degradation processes. Moreover, the activities of beta-GC (beta-glucosidase), TPS (trehalose-6-phosphate synthase), and BAM (beta-amylase), encoded by the abovementioned 3 key genes, were enhanced by cold stress. Three transcription factors (TFs) belonging to the AP2/ERF, bHLH (basic helix-loop-helix), and MYB families were involved in the low-temperature response. Furthermore, weighted gene coexpression network analysis (WGCNA) indicated that beta-GC, TPS5, and BAM3.1 were the key genes involved in the cold response and were highly coexpressed together with the CBF3, MYC2, and MYB44 genes. CONCLUSIONS Cold stress led various changes in kiwifruit, the 'phosphatidylinositol signaling system', 'inositol phosphate metabolism', 'MAPK signaling pathway', 'plant hormone signal transduction', and 'starch and sucrose metabolism' processes were significantly affected by low temperature. Moreover, starch and sucrose metabolism may be the key pathway for tolerant kiwifruit to resist low temperature damages. These results increase our understanding of the complex mechanisms involved in the freezing tolerance of kiwifruit under cold stress and reveal a series of candidate genes for use in breeding new cultivars with enhanced freezing tolerance.
Collapse
Affiliation(s)
- Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Lin
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Abid Muhammad
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Danfeng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
8
|
The type II phosphoinositide 4-kinase FgLsb6 is important for the development and virulence of Fusarium graminearum. Fungal Genet Biol 2020; 144:103443. [PMID: 32800918 DOI: 10.1016/j.fgb.2020.103443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Fusarium graminearum is the main pathogenic fungus causing Fusarium head blight (FHB), which is a wheat disease with a worldwide prevalence. In eukaryotes, phosphatidylinositol 4-phosphate (PI4P), which participates in many physiological processes, is located primarily in different organelles, including the trans-Golgi network (TGN), plasma membrane and endosomes. Type II phosphatidylinositol 4-kinases (PI4Ks) are involved in regulating the production of PI4P in yeast, plants and mammalian cells. However, the role of these proteins in phytopathogenic fungi is not well understood. In this study, we characterized the type II PI4K protein FgLsb6 in F. graminearum, a homolog of Lsb6 in Saccharomyces cerevisiae. Unlike Lsb6, FgLsb6 localizes to the vacuoles and endosomes. The ΔFglsb6 mutant displayed defects in vegetative growth, deoxynivalenol (DON) production and pathogenicity. Furthermore, the ΔFglsb6 deletion mutant also exhibited increased resistance to osmotic, oxidative and cell wall stresses. Further analyses of the ΔFglsb6 mutant showed that it was defective in the generation of PI4P on endosomes and endocytosis. Collectively, our data suggest that the decreased vegetative growth and pathogenicity of ΔFglsb6 was due to the conservative roles of FgLsb6 in the generation of PI4P on endosomes and endocytosis.
Collapse
|
9
|
Nitric Oxide Improves the Tolerance of Pleurotus ostreatus to Heat Stress by Inhibiting Mitochondrial Aconitase. Appl Environ Microbiol 2020; 86:AEM.02303-19. [PMID: 31862720 PMCID: PMC7028963 DOI: 10.1128/aem.02303-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/06/2019] [Indexed: 11/20/2022] Open
Abstract
Heat stress is one of the abiotic stresses that affect the growth and development of edible fungi. Our previous study found that exogenous NO had a protective effect on mycelia under heat stress. However, its regulatory mechanism had not been elucidated. In this study, we found that NO altered the respiratory pathway of mycelia under heat stress by regulating aco. The results have enhanced our understanding of NO signaling pathways in P. ostreatus. Pleurotus ostreatus is widely cultivated in China. However, its cultivation is strongly affected by seasonal temperature changes, especially the high temperatures of summer. Nitric oxide (NO) was previously reported to alleviate oxidative damage to mycelia by regulating trehalose. In this study, we found that NO alleviated oxidative damage to P. ostreatus mycelia by inhibiting the protein and gene expression of aconitase (ACO), and additional studies found that the overexpression and interference of aco could affect the content of citric acid (CA). Furthermore, the addition of exogenous CA can induce alternative oxidase (aox) gene expression under heat stress, reduce the content of H2O2 in mycelium, and consequently protect the mycelia under heat stress. An additional analysis focused on the function of the aox gene in the heat stress response of mycelia. The results show that the colony diameter of the aox overexpression (OE-aox) strains was significantly larger than that of the wild-type (WT) strain under heat stress (32°C). In addition, the mycelia of OE-aox strains showed significantly enhanced tolerance to H2O2. In conclusion, this study demonstrates that NO can affect CA accumulation by regulating aco gene and ACO protein expression and that CA can induce aox gene expression and thereby be a response to heat stress. IMPORTANCE Heat stress is one of the abiotic stresses that affect the growth and development of edible fungi. Our previous study found that exogenous NO had a protective effect on mycelia under heat stress. However, its regulatory mechanism had not been elucidated. In this study, we found that NO altered the respiratory pathway of mycelia under heat stress by regulating aco. The results have enhanced our understanding of NO signaling pathways in P. ostreatus.
Collapse
|
10
|
Integrated Proteomics and Metabolomics Analysis Provides Insights into Ganoderic Acid Biosynthesis in Response to Methyl Jasmonate in Ganoderma Lucidum. Int J Mol Sci 2019; 20:ijms20246116. [PMID: 31817230 PMCID: PMC6941157 DOI: 10.3390/ijms20246116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Ganoderma lucidum is widely recognized as a medicinal basidiomycete. It was previously reported that the plant hormone methyl jasmonate (MeJA) could induce the biosynthesis of ganoderic acids (GAs), which are the main active ingredients of G. lucidum. However, the regulatory mechanism is still unclear. In this study, integrated proteomics and metabolomics were employed on G. lucidum to globally identify differences in proteins and metabolites under MeJA treatment for 15 min (M15) and 24 h (M24). Our study successfully identified 209 differential abundance proteins (DAPs) in M15 and 202 DAPs in M24. We also identified 154 metabolites by GC-MS and 70 metabolites by LC-MS in M24 that are involved in several metabolic pathways. With an in-depth analysis, we found some DAPs and metabolites that are involved in the oxidoreduction process, secondary metabolism, energy metabolism, transcriptional and translational regulation, and protein synthesis. In particular, our results reveal that MeJA treatment leads to metabolic rearrangement that inhibited the normal glucose metabolism, energy supply, and protein synthesis of cells but promoted secondary metabolites, including GAs. In conclusion, our proteomics and metabolomics data further confirm the promoting effect of MeJA on the biosynthesis of GAs in G. lucidum and will provide a valuable resource for further investigation of the molecular mechanisms of MeJA signal response and GA biosynthesis in G. lucidum and other related species.
Collapse
|
11
|
Ren A, Shi L, Zhu J, Yu H, Jiang A, Zheng H, Zhao M. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genet Biol 2019; 128:43-48. [PMID: 30951869 DOI: 10.1016/j.fgb.2019.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 12/23/2022]
Abstract
The secondary metabolites of fungi are often produced at very low concentrations, and until recently the regulatory mechanisms of secondary metabolite biosynthesis have been unclear. Ganoderma lucidum is a macrofungus that is widely used as a traditional Chinese medicine or medicinal mushroom: ganoderic acid (GA) is one of the main active ingredients. Here, we review research from the last decade on which and how environmental factors regulate GA biosynthesis. These environmental factors are mainly three components: a single chemical/biological or biochemical signal, physical triggers, and nutritional conditions. Because G. lucidum is a non-model Basidiomycete, a combination of physiological and genetic research is needed to determine how those environmental factors regulate GA biosynthesis. The regulation of GA biosynthesis includes ROS, Ca2+, cAMP and phospholipid signaling, and cross-talk between different signaling pathways. The regulatory mechanisms for the synthesis of this secondary metabolite, from the perspective of physiology and genetics, in G. lucidum will provide ideas for studying the regulation of fungal secondary metabolism in other non-model species, especially those fungi with limitations in genetic manipulation.
Collapse
Affiliation(s)
- Ang Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Liang Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Hanshou Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ailiang Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Huihua Zheng
- Jiangsu Alphay Bio-technology Co., Ltd./Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture, Nantong 226009, Jiangsu, PR China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|