1
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
2
|
Yarkent Ç, Oncel SS. Recent Progress in Microalgal Squalene Production and Its Cosmetic Application. BIOTECHNOL BIOPROC E 2022; 27:295-305. [PMID: 35789811 PMCID: PMC9244377 DOI: 10.1007/s12257-021-0355-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Squalene, [oxidized form squalane] is a terpenoid with biological activity that produced by animals and plants. In the human body, a significant excretion named as sebum includes squalene in 12 percent. This bioactive compound shows anti-inflammatory, detoxifying, moisturizing and antioxidant effects on the human body. In addition to having these properties, it is known that squalene production decreases as less sebum is produced with age. Because of that, the need for supplementation of squalene through products has arisen. As a result, squalene production has been drawn attention due to its many application possibilities by cosmetic, cosmeceutical and pharmaceutical fields. At this point, approximately 3,000 of sharks, the major and the most popular source of squalene must be killed to obtain 1 ton of squalene. These animals are on the verge of extinction. This situation has caused to focus on finding microalgae strains, which are sustainable producers of squalene as alternative to sharks. This review paper summarizes the recent progresses in the topic of squalene. For this purpose, it contains information on squalene producers, microalgal squalene production and cosmetic evaluation of squalene.
Collapse
Affiliation(s)
- Çağla Yarkent
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, 35100 Izmir, Turkey
| | - Suphi S. Oncel
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
3
|
Hanrahan-Tan DG, Henderson L, Kertesz MA, Lilje O. The Effects of Nitrogen and Phosphorus on Colony Growth and Zoospore Characteristics of Soil Chytridiomycota. J Fungi (Basel) 2022; 8:jof8040341. [PMID: 35448572 PMCID: PMC9024642 DOI: 10.3390/jof8040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
The Chytridiomycota phylum contributes to nutrient cycling and the flow of energy between trophic levels in terrestrial and aquatic ecosystems yet remains poorly described or absent from publications discussing fungal communities in these environments. This study contributes to the understanding of three species of soil chytrids in vitro—Gaertneriomyces semiglobifer, Spizellomyces sp. and Rhizophlyctis rosea—in the presence of elevated concentrations of nitrogen and phosphorus and with different sources of nitrogen. Colony growth was measured after 4 weeks as dry weight and total protein. To determine the impacts on zoospore reproduction, motility, lipid content, and attachment to organic substrates, 4- and 8-week incubation times were investigated. Whilst all isolates were able to assimilate ammonium as a sole source of nitrogen, nitrate was less preferred or even unsuitable as a nutrient source for G. semiglobifer and R. rosea, respectively. Increasing phosphate concentrations led to diverse responses between isolates. Zoospore production was also variable between isolates, and the parameters for zoospore motility appeared only to be influenced by the phosphate concentration for Spizellomyces sp. and R. rosea. Attachment rates increased for G. semiglobifer in the absence of an inorganic nitrogen source. These findings highlight variability between the adaptive responses utilised by chytrids to persist in a range of environments and provide new techniques to study soil chytrid biomass and zoospore motility by total protein quantification and fluorescent imaging respectively.
Collapse
Affiliation(s)
- Deirdre G. Hanrahan-Tan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (D.G.H.-T.); (O.L.)
| | - Linda Henderson
- Department of Planning and Environment, Locked Bag 5022, Parramatta, NSW 2124, Australia;
| | - Michael A. Kertesz
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Osu Lilje
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (D.G.H.-T.); (O.L.)
| |
Collapse
|
4
|
Chou SC, Su YM, Liu T, Li ZW, Liao HE, Renta PP, Chen YM. Novel potential functions of amoeboid cells in thraustochytrids revealed by Aurantiochytrium limacinum BL10. Eur J Protistol 2021; 82:125860. [PMID: 34990900 DOI: 10.1016/j.ejop.2021.125860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023]
Abstract
The current study investigated the potential functions of amoeboid cell formation and migration in a thraustochytrid strain, Aurantiochytrium limacinum BL10. Our results showed that: (1) When the surface of an agar plate was inoculated with BL10, amoeboid cells mainly emerged on the periphery of isolated colonies. The amoeboid cells then migrated outwards to form small vegetative cell clusters, which favored rapid colony expansion. In addition, amoeboid cells were capable of self-recognition (i.e. they were able to distinguish BL10 from other thraustochytrid species), and could choose whether to evade (self colonies) or approach (non-self colonies). These observations indicated that amoeboid cells were employed by BL10 to help colonize empty territories and to outcompete other thraustochytrid species in previously colonized territories. (2) When the agar medium was soft, amoeboid cells were able to penetrate the surface and migrate throughout, thereby allowing BL10 to colonize the interior of the solid matrix. This finding suggested that amoeboid cell formation and migration may help Aurantiochytrium colonize the interior of solid matrices to obtain additional nutrients and spatial resources. The mechanisms underlying the regulation of amoeboid cell formation and migration as well as the extraordinary microbial social behaviors of BL10 are also discussed in this article.
Collapse
Affiliation(s)
- Szu-Cheng Chou
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ming Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhen-Wei Li
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-En Liao
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Person Pesona Renta
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
5
|
Deragon E, Schuler M, Aiese Cigliano R, Dellero Y, Si Larbi G, Falconet D, Jouhet J, Maréchal E, Michaud M, Amato A, Rébeillé F. An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in Aurantiochytrium limacinum. Cells 2021; 10:2680. [PMID: 34685660 PMCID: PMC8534400 DOI: 10.3390/cells10102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Thraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids.
Collapse
Affiliation(s)
- Etienne Deragon
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | | | - Younès Dellero
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA, Agrocampus Ouest Rennes, Université Rennes 1, Domaine de la Motte BP35327, CEDEX, 35653 Le Rheu, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| |
Collapse
|
6
|
Guéguen N, Le Moigne D, Amato A, Salvaing J, Maréchal E. Lipid Droplets in Unicellular Photosynthetic Stramenopiles. FRONTIERS IN PLANT SCIENCE 2021; 12:639276. [PMID: 33968100 PMCID: PMC8100218 DOI: 10.3389/fpls.2021.639276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid deriving from a secondary endosymbiosis, limited by four membranes, the outermost one being connected to the endomembrane system. Recent cell imaging and proteomic studies suggest that at least some cytosolic LDs might be associated to the surface of the complex plastid, via still uncharacterized contact sites. The carbon length and number of double bonds of the acyl groups contained in the TAG molecules depend on their origin. De novo synthesis produces long-chain saturated or monounsaturated fatty acids (SFA, MUFA), whereas subsequent maturation processes lead to very long-chain polyunsaturated FA (VLC-PUFA). TAG composition in SFA, MUFA, and VLC-PUFA reflects therefore the metabolic context that gave rise to the formation of the LD, either via an early partitioning of carbon following FA de novo synthesis and/or a recycling of FA from membrane lipids, e.g., plastid galactolipids or endomembrane phosphor- or betaine lipids. In this review, we address the relationship between cytosolic LDs and the complex membrane compartmentalization within stramenopile cells, the metabolic routes leading to TAG accumulation, and the physiological conditions that trigger LD production, in response to various environmental factors.
Collapse
|
7
|
Lin HC, Li WH, Chen CC, Cheng TH, Lan YH, Huang MD, Chen WM, Chang JS, Chang HY. Diverse Enzymes With Industrial Applications in Four Thraustochytrid Genera. Front Microbiol 2020; 11:573907. [PMID: 33193181 PMCID: PMC7641610 DOI: 10.3389/fmicb.2020.573907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
Thraustochytrids are heterotrophic fungus-like protists that can dissolve organic matters with enzymes. Four strains, AP45, ASP1, ASP2, and ASP4, were isolated from the coastal water of Taiwan, and respectively identified as Aurantiochytrium sp., Schizochytrium sp., Parietichytrium sp., and Botryochytrium sp. based on 18S rRNA sequences. Transcriptome datasets of these four strains at days 3-5 were generated using Next Generation Sequencing technology, and screened for enzymes with potential industrial applications. Functional annotations based on KEGG database suggest that many unigenes of all four strains were related to the pathways of industrial enzymes. Most of all four strains contained homologous genes for 15 out of the 17 targeted enzymes, and had extra- and/or intra-cellular enzymatic activities, including urease, asparaginase, lipase, glucosidase, alkaline phosphatase and protease. Complete amino sequences of the first-time identified L-asparaginase and phytase in thraustochytrids were retrieved, and respectively categorized to the Type I and BPPhy families based on phylogenetic relationships, protein structural modeling and active sites. Milligram quantities of highly purified, soluble protein of urease and L-asparaginase were successfully harvested and analyzed for recombinant enzymatic activities. These analytical results highlight the diverse enzymes for wide-range applications in thraustochytrids.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Hao Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tien-Hsing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Lan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Ming Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Morabito C, Aiese Cigliano R, Maréchal E, Rébeillé F, Amato A. Illumina and PacBio DNA sequencing data, de novo assembly and annotation of the genome of Aurantiochytrium limacinum strain CCAP_4062/1. Data Brief 2020; 31:105729. [PMID: 32490088 PMCID: PMC7262427 DOI: 10.1016/j.dib.2020.105729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
The complete genome of the thraustochytrid Aurantiochytrium limacinum strain CCAP_4062/1 was sequenced using both Illumina Novaseq 6000 and third generation sequencing technology PacBio RSII in order to obtain trustworthy assembly and annotation. The reads from both platforms were combined at multiple levels in order to obtain a reliable assembly, then compared to the A. limacinum ATCCⓇ MYA1381™ reference genome. The final assembly was annotated with the help of strain CCAP_4062/1 RNAseq data. A. limacinum strain CCAP_4062/1 is an industrial strain used for the production of very long chain polyunsaturated fatty acids, like the docosahexaenoic acid that is an essential fatty acid synthesised only at very low pace in humans and vertebrates . Thraustochytrids in general and Aurantiochytrium more specifically, are used for carotenoid and squalene production as well. Beside their biotechnological interest, thraustochytrids play a crucial role in both inshore and oceanic basins ecosystems. Genome sequences will foster biotechnological as well as ecological studies.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRAE, IRIG-LPCV, 38054 Grenoble Cedex 9, France
| | | | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRAE, IRIG-LPCV, 38054 Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRAE, IRIG-LPCV, 38054 Grenoble Cedex 9, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRAE, IRIG-LPCV, 38054 Grenoble Cedex 9, France
| |
Collapse
|
9
|
Miranda AF, Nham Tran TL, Abramov T, Jehalee F, Miglani M, Liu Z, Rochfort S, Gupta A, Cheirsilp B, Adhikari B, Puri M, Mouradov A. Marine Protists and Rhodotorula Yeast as Bio-Convertors of Marine Waste into Nutrient-Rich Deposits for Mangrove Ecosystems. Protist 2020; 171:125738. [PMID: 32544845 DOI: 10.1016/j.protis.2020.125738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023]
Abstract
This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carbon sources: glycerol, glucose, fructose, galactose, xylose, and sucrose, starch, cellulose, malt extract, and potato peels. Up to 14g DW/L (4.6gDW/L-day and 2.8gDW/L-day) of biomass were produced by Aurantiochytrium and Thraustochytrium species, respectively. Thraustochytrids biomass contained up to 33% DW of lipids, rich in omega-3 polyunsaturated docosahexaenoic acid (C22:6, 124mg/g DW); up to 10.2mg/gDW of squalene and up to 61μg/gDW of total carotenoids, composed of astaxanthin, canthaxanthin, echinenone, and β-carotene. Along with the accumulation of these added-value chemicals in biomass, thraustochytrid representatives showed the ability to secrete extracellular polysaccharide matrixes containing lipids and proteins. Rhodotorula sp lipids (26% DW) were enriched in palmitic acid (C16:0, 18mg/gDW) and oleic acid (C18:1, 41mg/gDW). Carotenoids (87μg/gDW) were mainly represented by β-carotene (up to 54μg/gDW). Efficient growth on organic and inorganic sources of carbon and nitrogen from natural and anthropogenic wastewater pollutants along with intracellular and extracellular production of valuable nutrients makes the production of valuable chemicals from isolated species economical and sustainable.
Collapse
Affiliation(s)
- Ana F Miranda
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Tomer Abramov
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Faridah Jehalee
- School of Sciences, RMIT University, Melbourne, VIC, Australia; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Mohini Miglani
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhiqian Liu
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone Rochfort
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Benu Adhikari
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Lupette J, Benning C. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 2020; 178:15-25. [PMID: 32389760 DOI: 10.1016/j.biochi.2020.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Microalgae are single-cell, photosynthetic organisms whose biodiversity places them at the forefront of biological producers of high-value molecules including lipids and pigments. Some of these organisms particular are capable of synthesizing n-3 very long chain polyunsaturated fatty acids (VLC-PUFAs), known to have beneficial effects on human health. Indeed, VLC-PUFAs are the precursors of many signaling molecules in humans involved in the complexities of inflammatory processes. This mini-review provides an inventory of knowledge on the synthesis of VLC-PUFAs in microalgae and on the diversity of signaling molecules (prostanoids, leukotrienes, SPMs, EFOX, isoprostanoids) that arise in humans from VLC-PUFAs.
Collapse
Affiliation(s)
- Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
11
|
Dellero Y, Maës C, Morabito C, Schuler M, Bournaud C, Aiese Cigliano R, Maréchal E, Amato A, Rébeillé F. The zoospores of the thraustochytridAurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions. Environ Microbiol 2020; 22:1901-1916. [DOI: 10.1111/1462-2920.14978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Younès Dellero
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Christian Morabito
- INRAE Metagenopolis Unit, Domaine de Vilvert Bât. 325. 78 352 Jouy‐en‐Josas France
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n 08193 Bellaterra (Cerdanyola del Vallès) Spain
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire VégétaleUniversité Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV 38054 Grenoble Cedex 9 France
| |
Collapse
|
12
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
13
|
A thraustochytrid-specific lipase/phospholipase with unique positional specificity contributes to microbial competition and fatty acid acquisition from the environment. Sci Rep 2019; 9:16357. [PMID: 31705036 PMCID: PMC6841712 DOI: 10.1038/s41598-019-52854-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are heterotrophic marine protists that are considered as important decomposers in the marine ecosystem; however, how they digest and uptake lipid nutrients from the environment is largely unknown. Genomic clustering analysis using thraustochytrid draft genome databases revealed that novel proteins with a Lipase_3 domain are commonly present in thraustochytrids, including Aurantiochytrium limacinum. After heterologous expression and His tag-based purification, protein ID: 145138 was identified as lipase/phospholipase capable of hydrolyzing triacylglycerol (TG) and phosphatidylcholine (PC). 145138 was secreted into the medium, and deletion of the 145138 gene in A. limacinum reduced the degradation of extracellular lipids. Fatty acids generated by 145138 were reused for the biosynthesis of PC and TG, and 145138 allowed A. limacinum to survive in the medium containing TG as a sole carbon source. 145138 hydrolyzed all the acyl-ester linkages of TG; however, the enzyme showed strict positional specificity toward phospholipids, generating 2-acyl lysophospholipids. The 2-acyl lysophospholipids showed stronger antimicrobial activity compared with 1-acyl lysophospholipids. These results suggested that 145138 is a bifunctional enzyme that contributes to the acquisition of lipid nutrients from the environment, as well as to generate antimicrobial lysophospholipids that are beneficial for competition with bacteria over lipid nutrients in the marine environment.
Collapse
|
14
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
15
|
Nutahara E, Abe E, Uno S, Ishibashi Y, Watanabe T, Hayashi M, Okino N, Ito M. The glycerol-3-phosphate acyltransferase PLAT2 functions in the generation of DHA-rich glycerolipids in Aurantiochytrium limacinum F26-b. PLoS One 2019; 14:e0211164. [PMID: 30699157 PMCID: PMC6353168 DOI: 10.1371/journal.pone.0211164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022] Open
Abstract
Thraustochytrids possess docosahexaenoic acid (DHA, 22:6n-3) as acyl chain(s) of triacylglycerol (TG) and phosphatidylcholine (PC), some of which contain multiple DHAs. However, little is known about how these DHA-rich glycerolipids are produced in thraustochytrids. In this study, we identified PLAT2 in Aurantiochytrium limacinum F26-b as a glycerol-3-phosphate (G3P) acyltransferase (GPAT) by heterologous expression of the gene in budding yeast. Subsequently, we found that GPAT activity was reduced by disruption of the PLAT2 gene in A. limacinum, resulting in a decrease in DHA-containing lysophosphatidic acid (LPA 22:6). Conversely, overexpression of PLAT2 increased both GPAT activity and LPA 22:6. These results indicate that PLAT2 is a GPAT that transfers DHA to G3P in vivo as well as in vitro. Overexpression of the PLAT2 gene increased the production of a two DHA-containing diacylglycerol (DG 44:12), followed by an increase in the three DHA-containing TG (TG 66:18), two-DHA-containing TG (TG 60:12), and two DHA-containing PC (PC 44:12). However, overexpression of PLAT2 did not increase DHA-free DG (DG32:0), which was preferentially converted to three 16:0-containing TG (TG 48:0) but not two 16:0-containing PC (PC 32:0). Collectively, we revealed that DHA-rich glycerolipids are produced from a precursor, LPA 22:6, which is generated by incorporating DHA to G3P by PLAT2 in the A. limacinum.
Collapse
Affiliation(s)
- Eri Nutahara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Shinya Uno
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1–1 Gakuen-Kibanadai-Nishi, Miyazaki, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
- Innovative Bio-architecture Center, Kyushu University, Moto-oka, Nishi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
16
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|