1
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Zhou L, Wu Q, Yang Y, Li Q, Li R, Ye J. Regulation of Oil Biosynthesis and Genetic Improvement in Plants: Advances and Prospects. Genes (Basel) 2024; 15:1125. [PMID: 39336716 PMCID: PMC11431182 DOI: 10.3390/genes15091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Triglycerides are the main storage form of oil in plant seeds. Both fatty acids and triglycerides possess important functions in the process of plant growth and development. To improve the seed oil content and improve its fatty acid composition, this paper analyzed the research progress on the oil regulation and synthesis metabolism process of plant seeds and summarized the strategies for the improvement of plant seed oil: (a) To regulate carbon distribution by inhibiting the expression of genes encoding key enzymes, allocating carbon sources into the protein synthesis pathway, and enhancing the expression of key genes encoding key enzymes, leading carbon sources into the synthesis pathway of fatty acids; (b) To intervene in lipid synthesis by promoting the biosynthesis of fatty acids and improving the expression level of key genes encoding enzymes in the triacylglycerol (TAG) assembly process; (c) To improve seed oil quality by altering the plant fatty acid composition and regulating the gene expression of fatty acid desaturase, as well as introducing an exogenous synthesis pathway of long chain polyunsaturated fatty acids; (d) To regulate the expression of transcription factors for lipid synthesis metabolism to increase the seed oil content. In addition, this article reviews the key enzymes involved in the biosynthesis of plant fatty acids, the synthesis of triacylglycerol, and the regulation process. It also summarizes the regulatory roles of transcription factors such as WRI, LEC, and Dof on the key enzymes during the synthesis process. This review holds significant implications for research on the genetic engineering applications in plant seed lipid metabolism.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
3
|
John R, Rajan AP. Bioreactor level optimization of chromium(VI) reduction through Pseudomonas putida APRRJVITS11 and sustainable remediation of pathogenic DNA in water. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bioremediation is one of the indispensable features of Pseudomonas putida. The use of Pseudomonas has been proved to be an effective treatment of tannery released chromium (VI). The current study is the first attempt for the optimization of chromate reduction by Pseudomonas putida strain APRRJVITS11 in an optimized bench-scale bioreactor with successful thermo-pressure elimination of the strain thereby eliminating the health risk caused by antibiotic resistant genes (ARGs).
Results
The growth media, modified with optimized 1.0% nitrogen, 0.5% yeast extract and 0.3% sodium, showed enhanced bacterial growth for 72 h of incubation. The optimization of aeration (1.0 vvm) and agitation (150 rpm) rates enhanced the chromate reduction by about 40% at 72 h fermentation. Thermo-pressure pathogenic DNA degradation was achieved at 90 °C and 5868 Pa for 10 min.
Conclusions
Successful chromium reduction and total elimination of ARGs from effluent. A two-step treatment train was proposed for chromium reduction in the environment, which should be incorporated by the existing leather industries running on conventional treatment units.
Graphical Abstract
Collapse
|
4
|
Nowak A, Żur-Pińska J, Piński A, Pacek G, Mrozik A. Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112431. [PMID: 34146980 DOI: 10.1016/j.ecoenv.2021.112431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Detailed characterization of new Pseudomonas strains that degrade toxic pollutants is required and utterly necessary before their potential use in environmental microbiology and biotechnology applications. Therefore, phenol degradation by Pseudomonas putida KB3 under suboptimal temperatures, pH, and salinity was examined in this study. Parallelly, adaptive mechanisms of bacteria to stressful growth conditions concerning changes in cell membrane properties during phenol exposure as well as the expression level of genes encoding catechol 2,3-dioxygenase (xylE) and cyclopropane fatty acid synthase (cfaB) were determined. It was found that high salinity and the low temperature had the most significant effect on the growth of bacteria and the rate of phenol utilization. Degradation of phenol (300 mg L-1) proceeded 12-fold and seven-fold longer at 10 °C and 5% NaCl compared to the optimal conditions. The ability of bacteria to degrade phenol was coupled with a relatively high activity of catechol 2,3-dioxygenase. The only factor that inhibited enzyme activity by approximately 80% compared to the control sample was salinity. Fatty acid methyl ester (FAMEs) profiling, membrane permeability measurements, and hydrophobicity tests indicated severe alterations in bacteria membrane properties during phenol degradation in suboptimal growth conditions. The highest values of pH, salinity, and temperature led to a decrease in membrane permeability. FAME analysis showed fatty acid saturation indices and cyclopropane fatty acid participation at high temperature and salinity. Genetic data showed that suboptimal growth conditions primarily resulted in down-regulation of xylE and cfaB gene expression.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Joanna Żur-Pińska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Gabriela Pacek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
5
|
Mauger M, Ferreri C, Chatgilialoglu C, Seemann M. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J Inorg Biochem 2021; 224:111564. [PMID: 34418715 DOI: 10.1016/j.jinorgbio.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Bacteria have evolved several outstanding strategies to resist to compounds or factors that compromise their survival. The first line of defense of the cell against environmental stresses is the membrane with fatty acids as fundamental building blocks of phospholipids. In this review, we focus on a periplasmic heme enzyme that catalyzes the cis-trans isomerization of unsaturated fatty acids to trigger a decrease in the fluidity of the membrane in order to rapidly counteract the danger. We particularly detailed the occurrence of such cis-trans isomerase in Nature, the different stresses that are at the origin of the double bond isomerization, the first steps in the elucidation of the mechanism of this peculiar metalloenzyme and some aspects of its regulation.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche - ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
6
|
Dong H, Ma J, Chen Q, Chen B, Liang L, Liao Y, Song Y, Wang H, Cronan JE. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway. J Biol Chem 2021; 297:100920. [PMID: 34181948 PMCID: PMC8319022 DOI: 10.1016/j.jbc.2021.100920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
The Pseudomonas putida F1 genome contains five genes annotated as encoding 3-ketoacyl-acyl carrier protein (ACP) synthases. Four are annotated as encoding FabF (3-ketoacyl-ACP synthase II) proteins, and the fifth is annotated as encoding a FabB (3-ketoacyl-ACP synthase I) protein. Expression of one of the FabF proteins, FabF2, is cryptic in the native host and becomes physiologically important only when the repressor controlling fabF2 transcription is inactivated. When derepressed, FabF2 can functionally replace FabB, and when expressed from a foreign promoter, had weak FabF activity. Complementation of Escherichia coli fabB and fabF mutant strains with high expression showed that P. putida fabF1 restored E. coli fabF function, whereas fabB restored E. coli fabB function and fabF2 restored the functions of both E. coli fabF and fabB. The P. putida ΔfabF1 deletion strain was almost entirely defective in synthesis of cis-vaccenic acid, whereas the ΔfabB strain is an unsaturated fatty acid (UFA) auxotroph that accumulated high levels of spontaneous suppressors in the absence of UFA supplementation. This was due to increased expression of fabF2 that bypasses loss of fabB because of the inactivation of the regulator, Pput_2425, encoded in the same operon as fabF2. Spontaneous suppressor accumulation was decreased by high levels of UFA supplementation, whereas competition by the P. putida β-oxidation pathway gave increased accumulation. The ΔfabB ΔfabF2 strain is a stable UFA auxotroph indicating that suppressor accumulation requires FabF2 function. However, at low concentrations of UFA supplementation, the ΔfabF2 ΔPput_2425 double-mutant strain still accumulated suppressors at low UFA concentrations.
Collapse
Affiliation(s)
- Huijuan Dong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qunyi Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lujie Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yulu Song
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
7
|
Żur J, Piński A, Wojcieszyńska D, Smułek W, Guzik U. Diclofenac Degradation-Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. Int J Mol Sci 2020; 21:ijms21186786. [PMID: 32947916 PMCID: PMC7555183 DOI: 10.3390/ijms21186786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac (DCF) constitutes one of the most significant ecopollutants detected in various environmental matrices. Biological clean-up technologies that rely on xenobiotics-degrading microorganisms are considered as a valuable alternative for chemical oxidation methods. Up to now, the knowledge about DCF multi-level influence on bacterial cells is fragmentary. In this study, we evaluate the degradation potential and impact of DCF on Pseudomonas moorei KB4 strain. In mono-substrate culture KB4 metabolized 0.5 mg L−1 of DCF, but supplementation with glucose (Glc) and sodium acetate (SA) increased degraded doses up to 1 mg L−1 within 12 days. For all established conditions, 4′-OH-DCF and DCF-lactam were identified. Gene expression analysis revealed the up-regulation of selected genes encoding biotransformation enzymes in the presence of DCF, in both mono-substrate and co-metabolic conditions. The multifactorial analysis of KB4 cell exposure to DCF showed a decrease in the zeta-potential with a simultaneous increase in the cell wall hydrophobicity. Magnified membrane permeability was coupled with the significant increase in the branched (19:0 anteiso) and cyclopropane (17:0 cyclo) fatty acid accompanied with reduced amounts of unsaturated ones. DCF injures the cells which is expressed by raised activities of acid and alkaline phosphatases as well as formation of lipids peroxidation products (LPX). The elevated activity of superoxide dismutase (SOD) and catalase (CAT) testified that DCF induced oxidative stress.
Collapse
Affiliation(s)
- Joanna Żur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (A.P.); (D.W.)
- Correspondence: (J.Ż.); (U.G.); Tel.: +48-32-2009-462 (J.Ż.); +48-32-2009-567 (U.G.)
| |
Collapse
|
8
|
Kondakova T, Kumar S, Cronan JE. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2. Chem Phys Lipids 2019; 222:23-35. [PMID: 31054954 PMCID: PMC7392533 DOI: 10.1016/j.chemphyslip.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
A key mechanism of Pseudomonas spp. adaptation to environmental stressors is their ability to convert the cis-unsaturated fatty acids of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Although this Cti-catalyzed enzymatic isomerization has been well investigated in the P. putida paradigm, several bacterial species have been found to produce trans-unsaturated fatty acids. Although cti orthologs have only been reported in Gram-negative bacteria, we report that E. faecalis FA2-2 cultures synthesize trans-unsaturated fatty acids during growth by a mechanism similar of P. putida. Although the role of trans-unsaturated fatty acids (trans-UFAs) in E. faecalis remains obscure, our results indicate that organic solvents, as well as the membrane altering antibiotic, daptomycin, had no effect on trans-UFA formation in E. faecalis FA2-2. Moreover trans-UFA production in E. faecalis FA2-2 membranes was constant in oxidative stress conditions or when metal chelator EDTA was added, raising the question about the role of heme domain in cis-trans isomerization in E. faecalis FA2-2. Although growth temperature and growth phase had significant effects on cis-trans isomerization, the bulk physical properties of the membranes seems unlikely to be altered by the low levels of trans-UFA. Hence, any effects seems likely to be on membrane proteins and membrane enzyme activities. We also report investigations of cti gene distribution in bacteria was and suggest the distribution to be triggered by habitat population associations. Three major Cti clusters were defined, corresponding to Pseudomonas, Pseudoalteromonas and Vibrio Cti proteins.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Sneha Kumar
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|