1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Dubois Q, Brual T, Oriol C, Mandin P, Condemine G, Gueguen E. Function and mechanism of action of the small regulatory RNA ArcZ in Enterobacterales. RNA (NEW YORK, N.Y.) 2024; 30:1107-1121. [PMID: 38839110 PMCID: PMC11331407 DOI: 10.1261/rna.080010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
ArcZ is a small regulatory RNA conserved in Enterobacterales It is an Hfq-dependent RNA that is cleaved by RNase E in a processed form of 55-60 nucleotides. This processed form is highly conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant oxygen levels and reaches its peak during the stationary growth phase. This control is mediated by the oxygen-responsive two-component system ArcAB, leading to the repression of arcZ transcription under low-oxygen conditions in most bacteria in which it has been studied. ArcZ displays multiple targets, and it can control up to 10% of a genome and interact directly with more than 300 mRNAs in Escherichia coli and Salmonella enterica ArcZ displays a multifaceted ability to regulate its targets through diverse mechanisms such as RNase recruitment, modulation of ribosome accessibility on the mRNA, and interaction with translational enhancing regions. By influencing stress response, motility, and virulence through the regulation of master regulators such as FlhDC or RpoS, ArcZ emerges as a major orchestrator of cell physiology within Enterobacterales.
Collapse
Affiliation(s)
- Quentin Dubois
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Typhaine Brual
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Guy Condemine
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| |
Collapse
|
3
|
Smith LM, Hampton HG, Yevstigneyeva MS, Mahler M, Paquet ZM, Fineran PC. CRISPR-Cas immunity is repressed by the LysR-type transcriptional regulator PigU. Nucleic Acids Res 2024; 52:755-768. [PMID: 38059344 PMCID: PMC10810281 DOI: 10.1093/nar/gkad1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacteria protect themselves from infection by bacteriophages (phages) using different defence systems, such as CRISPR-Cas. Although CRISPR-Cas provides phage resistance, fitness costs are incurred, such as through autoimmunity. CRISPR-Cas regulation can optimise defence and minimise these costs. We recently developed a genome-wide functional genomics approach (SorTn-seq) for high-throughput discovery of regulators of bacterial gene expression. Here, we applied SorTn-seq to identify loci influencing expression of the two type III-A Serratia CRISPR arrays. Multiple genes affected CRISPR expression, including those involved in outer membrane and lipopolysaccharide synthesis. By comparing loci affecting type III CRISPR arrays and cas operon expression, we identified PigU (LrhA) as a repressor that co-ordinately controls both arrays and cas genes. By repressing type III-A CRISPR-Cas expression, PigU shuts off CRISPR-Cas interference against plasmids and phages. PigU also represses interference and CRISPR adaptation by the type I-F system, which is also present in Serratia. RNA sequencing demonstrated that PigU is a global regulator that controls secondary metabolite production and motility, in addition to CRISPR-Cas immunity. Increased PigU also resulted in elevated expression of three Serratia prophages, indicating their likely induction upon sensing PigU-induced cellular changes. In summary, PigU is a major regulator of CRISPR-Cas immunity in Serratia.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mariya S Yevstigneyeva
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Marina Mahler
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Zacharie S M Paquet
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Banerjee B, Yuan X, Yang CH. Dissecting the molecular dance: c-di-GMP, cAMP-CRP, and VfmH collaboration in pectate lyase regulation for Dickeya dadantii-unveiling the soft rot pathogen's strategy. Microbiol Spectr 2023; 11:e0153723. [PMID: 37811940 PMCID: PMC10714721 DOI: 10.1128/spectrum.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Bacteria respond to environmental changes and adapt to host systems. The response regulator VfmH of the Vfm quorum sensing system regulates a crucial virulence factor, pectate lyase (Pel), in Dickeya dadantii. At high c-di-GMP concentrations, VfmH binds c-di-GMP, resulting in the loss of its activation property in the Pel and virulence regulation in D. dadantii. VfmH binds to c-di-GMP via three conserved arginine residues, and mutations of these residues eliminate the c-di-GMP-related phenotypes of VfmH in Pel synthesis. Our data also show that VfmH interacts with CRP to regulate pelD transcription, thus integrating cyclic AMP and c-di-GMP signaling pathways to control virulence in D. dadantii. We propose that VfmH is an important intermediate factor incorporating quorum sensing and nucleotide signaling pathways for the collective regulation of D. dadantii pathogenesis.
Collapse
Affiliation(s)
- Biswarup Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Yuan X, Sundin GW, Zeng Q, Johnson KB, Cox KD, Yu M, Huang J, Yang CH. Erwinia amylovora Type III Secretion System Inhibitors Reduce Fire Blight Infection Under Field Conditions. PHYTOPATHOLOGY 2023; 113:2197-2204. [PMID: 37344783 DOI: 10.1094/phyto-04-23-0111-sa] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is an economically important disease in apples and pears worldwide. This pathogen relies on the type III secretion system (T3SS) to cause disease. Compounds that inhibit the function of the T3SS (T3SS inhibitors) have emerged as alternative strategies for bacterial plant disease management, as they block bacterial virulence without affecting growth, unlike traditional antibiotics. In this study, we investigated the mode of action of a T3SS inhibitor named TS108, a plant phenolic acid derivative, in E. amylovora. We showed that adding TS108 to an in vitro culture of E. amylovora repressed the expression of several T3SS regulon genes, including the master regulator gene hrpL. Further studies demonstrated that TS108 negatively regulates CsrB, a global regulatory small RNA, at the posttranscriptional level, resulting in a repression of hrpS, which encodes a key activator of hrpL. Additionally, TS108 has no impact on the expression of T3SS in Dickeya dadantii or Pseudomonas aeruginosa, suggesting that its inhibition of the E. amylovora T3SS is likely species specific. To better evaluate the performance of T3SS inhibitors in fire blight management, we conducted five independent field experiments in four states (Michigan, New York, Oregon, and Connecticut) from 2015 to 2022 and observed reductions in blossom blight incidence as high as 96.7% compared with untreated trees. In summary, the T3SS inhibitors exhibited good efficacy against fire blight.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Kenneth B Johnson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jian Huang
- T3 Bioscience, Lapham Hall 181, Milwaukee, WI 53211
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
6
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
7
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
8
|
Jiang D, Zeng Q, Banerjee B, Lin H, Srok J, Yu M, Yang C. The phytopathogen Dickeya dadantii 3937 cpxR locus gene participates in the regulation of virulence and the global c-di-GMP network. MOLECULAR PLANT PATHOLOGY 2022; 23:1187-1199. [PMID: 35460168 PMCID: PMC9276944 DOI: 10.1111/mpp.13219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 05/20/2023]
Abstract
Bacteria use signal transduction systems to sense and respond to their external environment. The two-component system CpxA/CpxR senses misfolded envelope protein stress and responds by up-regulating envelope protein factors and down-regulating virulence factors in several animal pathogens. Dickeya dadantii is a phytopathogen equipped with a type III secretion system (T3SS) for manipulating the host immune response. We found that deletion of cpxR enhanced the expression of the T3SS marker gene hrpA in a designated T3SS-inducing minimal medium (MM). In the ∆cpxR mutant, multiple T3SS and c-di-GMP regulators were also up-regulated. Subsequent analysis revealed that deletion of the phosphodiesterase gene egcpB in ∆cpxR abolished the enhanced T3SS expression. This suggested that CpxR suppresses EGcpB levels, causing low T3SS expression in MM. Furthermore, we found that the ∆cpxR mutant displayed low c-di-GMP phenotypes in biofilm formation and swimming. Increased production of cellular c-di-GMP by in trans expression of the diguanylate cyclase gene gcpA was negated in the ∆cpxR mutant. Here, we propose that CpxA/CpxR regulates T3SS expression by manipulating the c-di-GMP network, in turn modifying the multiple physiological activities involved in the response to environmental stresses in D. dadantii.
Collapse
Affiliation(s)
- Daqing Jiang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenConnecticutUSA
| | - Biswarup Banerjee
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Haiping Lin
- School of Forestry and BiotechnologyZhejiang Agricultural and Forestry UniversityHangzhouChina
| | - John Srok
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Manda Yu
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| |
Collapse
|
9
|
Shi Z, Wang Q, Wang S, Wang C, Zhang LH, Liang Z. Hfq Is a Critical Modulator of Pathogenicity of Dickeya oryzae in Rice Seeds and Potato Tubers. Microorganisms 2022; 10:microorganisms10051031. [PMID: 35630473 PMCID: PMC9144144 DOI: 10.3390/microorganisms10051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The frequent outbreaks of soft-rot diseases caused by Dickeya oryzae have emerged as severe problems in plant production in recent years and urgently require the elucidation of the virulence mechanisms of D. oryzae. Here, we report that Hfq, a conserved RNA chaperone protein in bacteria, is involved in modulating a series of virulence-related traits and bacterial virulence in D. oryzae EC1. The findings show that the null mutation of the hfqEC1 gene totally abolished the production of zeamine phytotoxins and protease, significantly attenuated the production of two other types of cell wall degrading enzymes, i.e., pectate lyase and cellulase, as well as attenuating swarming motility, biofilm formation, the development of hypersensitive response to Nicotiana benthamiana, and bacterial infections in rice seeds and potato tubers. QRT-PCR analysis and promoter reporter assay further indicated that HfqEC1 regulates zeamine production via modulating the expression of the key zeamine biosynthesis (zms) cluster genes. Taken together, these findings highlight that the Hfq of D. oryzae is one of the key regulators in modulating the production of virulence determinants and bacterial virulence in rice seeds and potato tubers.
Collapse
Affiliation(s)
- Zurong Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingwei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
| | - Shunchang Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- Correspondence: (L.-H.Z.); (Z.L.)
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- Correspondence: (L.-H.Z.); (Z.L.)
| |
Collapse
|
10
|
Chen Y, Li Y, Zhu M, Lv M, Liu Z, Chen Z, Huang Y, Gu W, Liang Z, Chang C, Zhou J, Zhang LH, Liu Q. The GacA-GacS Type Two-Component System Modulates the Pathogenicity of Dickeya oryzae EC1 Mainly by Regulating the Production of Zeamines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:369-379. [PMID: 35100009 DOI: 10.1094/mpmi-11-21-0292-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yanchang Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Minya Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhongqiao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihan Gu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Banerjee B, Zeng Q, Yu M, Hsueh BY, Waters CM, Yang CH. Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii. Microbiol Spectr 2022; 10:e0180521. [PMID: 35352959 PMCID: PMC9045272 DOI: 10.1128/spectrum.01805-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii is a phytopathogenic bacterium that causes diseases on a wide range of host plants. The pathogen secretes pectate lyases (Pel) through the type II secretion system (T2SS) that degrades the cell wall in host plants. The virulence of D. dadantii is controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP), and the homeostasis of c-di-GMP is maintained by a number of diguanylate cyclases and phosphodiesterases. Deletion of a phosphodiesterase ecpC repressed pelD transcription, and such repression can be suppressed by an additional deletion in vfmE. VfmE is an AraC type of transcriptional regulator in the Vfm quorum-sensing system. Our results suggest that VfmE is a c-di-GMP effector that functions as an activator of pel at low c-di-GMP concentrations and a repressor of pel at high c-di-GMP concentrations through regulation of the transcriptional activator SlyA. Multiple sequence alignment with known c-di-GMP effectors identified an RWIWR motif in VfmE that we demonstrate is required for the c-di-GMP binding. Mutation of R93D in the RxxxR motif eliminates the c-di-GMP-related phenotypes in Pel activity. Our results show that VfmE is not only a quorum-sensing regulator but also a c-di-GMP effector, suggesting that D. dadantii integrates the c-di-GMP signaling network with the Vfm quorum-sensing pathway during environmental adaptation. IMPORTANCE How bacteria integrate environmental cues from multiple sources to appropriately regulate adaptive phenotypes is a central question in microbiology. In Dickeya dadantii, the quorum-sensing regulator VfmE controls the key virulence factor pectate lyase (Pel). Here, we demonstrate that VfmE also binds to c-di-GMP, resulting in VfmE functioning as an activator of pel at low c-di-GMP concentrations and repressor of pel at high c-di-GMP concentrations. The RWIWR motif in VfmE is required for c-di-GMP binding, and mutation of the motif in the mutant R93D eliminates the c-di-GMP-related phenotypes in Pel activity. We propose that VfmE is an important mediator to integrate quorum-sensing signals with c-di-GMP to collectively regulate D. dadantii pathogenesis.
Collapse
Affiliation(s)
- Biswarup Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0023922. [PMID: 35416685 DOI: 10.1128/aem.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.
Collapse
|
13
|
Schachterle JK, Huang Q. Implication of the Type III Effector RipS1 in the Cool-Virulence of Ralstonia solanacearum Strain UW551. FRONTIERS IN PLANT SCIENCE 2021; 12:705717. [PMID: 34367225 PMCID: PMC8339923 DOI: 10.3389/fpls.2021.705717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Members of the Ralstonia solanacearum species complex cause a variety of wilting diseases across a wide range of hosts by colonizing and blocking xylem vessels. Of great concern are race 3 biovar 2 strains of R. solanacearum capable of causing brown rot of potato at cool temperatures, which are select agents in the United States. To gain a better understanding of cool-virulence mechanisms, we generated libraries of transposon mutants in the cool-virulent R. solanacearum strain UW551 and screened 10,000 mutants using our seedling assay for significantly reduced virulence at 20°C. We found several mutants that exhibited reduced virulence at 28 and 20°C and also mutants that were only affected at the cooler temperature. One mutant of the latter chosen for further study had the transposon inserted in an intergenic region between a type III secretion system effector gene ripS1 and a major facilitator superfamily (MFS) protein gene. Gene expression analysis showed that expression of ripS1 was altered by the transposon insertion, but not the MFS protein gene. An independent mutant with this insertion upstream of ripS1 was generated and used to confirm virulence and gene expression phenotypes. The effector, RipS1, has unknown function and is part of a family of effectors belonging to the largest known type III effectors. The functional connection between RipS1 and cool-virulence of R. solanacearum UW551 suggests that RipS1 (and/or its upstream promoter element) may serve as a potential target for development of cool-virulence-specific diagnostic tools to differentiate the highly regulated cool-virulent strains from non-cool-virulent strains of R. solanacearum. Our results provide important information for continued work toward a better understanding of cool-virulence of R. solanacearum and development of proper control strategies to combat this important plant pathogen.
Collapse
Affiliation(s)
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
14
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Leonard S, Villard C, Nasser W, Reverchon S, Hommais F. RNA Chaperones Hfq and ProQ Play a Key Role in the Virulence of the Plant Pathogenic Bacterium Dickeya dadantii. Front Microbiol 2021; 12:687484. [PMID: 34248909 PMCID: PMC8264596 DOI: 10.3389/fmicb.2021.687484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 12/01/2022] Open
Abstract
Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investigated the involvement of the RNA chaperones Hfq and ProQ in the production of the main D. dadantii virulence functions. Phenotypic assays on the hfq and proQ mutants showed that inactivation of hfq resulted in a growth defect, a modified capacity for biofilm formation and strongly reduced motility, and in the production of degradative extracellular enzymes (proteases, cellulase, and pectate lyases). Accordingly, the hfq mutant failed to cause soft rot on chicory leaves. The proQ mutant had reduced resistance to osmotic stress, reduced extracellular pectate lyase activity compared to the wild-type strain, and reduced virulence on chicory leaves. Most of the phenotypes of the hfq and proQ mutants were related to the low amounts of mRNA of the corresponding virulence factors. Complementation of the double mutant hfq-proQ by each individual protein and cross-complementation of each chaperone suggested that they might exert their effects via partially overlapping but different sets of targets. Overall, it clearly appeared that the two Hfq and ProQ RNA chaperones are important regulators of pathogenicity in D. dadantii. This underscores that virulence genes are regulated post-transcriptionally by non-coding RNAs.
Collapse
Affiliation(s)
- Simon Leonard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Camille Villard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5240 MAP, Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| |
Collapse
|
16
|
Peng J, Schachterle JK, Sundin GW. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. MOLECULAR PLANT PATHOLOGY 2021; 22:255-270. [PMID: 33314618 PMCID: PMC7814967 DOI: 10.1111/mpp.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is the causative agent of the devastating disease fire blight of pome fruit trees. After infection of host plant leaves at apple shoot tips, E. amylovora cells form biofilms in xylem vessels, restrict water flow, and cause wilting symptoms. Although E. amylovora is well known to be able to cause systemic infection, how biofilm cells of E. amylovora transit from the sessile mode of growth in xylem to the planktonic mode of growth in cortical parenchyma remains unknown. Increasing evidence has suggested the important modulatory roles of Hfq-dependent small RNAs (sRNAs) in the pathogenesis of E. amylovora. Here, we demonstrate that the sRNA RprA acts as a positive regulator of amylovoran exopolysaccharide production, the type III secretion system (T3SS), and flagellar-dependent motility, and as a negative regulator of levansucrase activity and cellulose production. We also show that RprA affects the promoter activity of multiple virulence factor genes and regulates hrpS, a critical T3SS regulator, at the posttranscriptional level. We determined that rprA expression can be activated by the Rcs phosphorelay, and that expression is active during T3SS-mediated host infection in an immature pear fruit infection model. We further showed that overexpression of rprA activated the in vitro dispersal of E. amylovora cells from biofilms. Thus, our investigation of the varied role of RprA in affecting E. amylovora virulence provides important insights into the functions of this sRNA in biofilm control and systemic infection.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey K. Schachterle
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Present address:
US National Arboretum – Floral and Nursery Plants Research UnitUSDA‐ARSBeltsvilleMarylandUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
17
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
18
|
González Plaza JJ. Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Front Mol Biosci 2020; 7:101. [PMID: 32613006 PMCID: PMC7308464 DOI: 10.3389/fmolb.2020.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.
Collapse
Affiliation(s)
- Juan José González Plaza
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
19
|
Yuan X, Zeng Q, Xu J, Severin GB, Zhou X, Waters CM, Sundin GW, Ibekwe AM, Liu F, Yang CH. Tricarboxylic Acid (TCA) Cycle Enzymes and Intermediates Modulate Intracellular Cyclic di-GMP Levels and the Production of Plant Cell Wall-Degrading Enzymes in Soft Rot Pathogen Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:296-307. [PMID: 31851880 PMCID: PMC9354473 DOI: 10.1094/mpmi-07-19-0203-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dickeya dadantii is a plant-pathogenic bacterium that causes soft-rot in a wide range of plants. Although we have previously demonstrated that cyclic bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial secondary messenger, plays a central role in virulence regulation in D. dadantii, the upstream signals that modulate c-di-GMP remain enigmatic. Using a genome-wide transposon mutagenesis approach of a Δhfq mutant strain that has high c-di-GMP and reduced motility, we uncovered transposon mutants that recovered the c-di-GMP-mediated repression on swimming motility. A number of these mutants harbored transposon insertions in genes encoding tricarboxylic acid (TCA) cycle enzymes. Two of these TCA transposon mutants were studied further by generating chromosomal deletions of the fumA gene (encoding fumarase) and the sdhCDAB operon (encoding succinate dehydrogenase). Disruption of the TCA cycle in these deletion mutants resulted in reduced intracellular c-di-GMP and enhanced production of pectate lyases (Pels), a major plant cell wall-degrading enzyme (PCWDE) known to be transcriptionally repressed by c-di-GMP. Consistent with this result, addition of TCA cycle intermediates such as citrate also resulted in increased c-di-GMP levels and decreased production of Pels. Additionally, we found that a diguanylate cyclase GcpA was solely responsible for the observed citrate-mediated modulation of c-di-GMP. Finally, we demonstrated that addition of citrate induced not only an overproduction of GcpA protein but also a concomitant repression of the c-di-GMP-degrading phosphodiesterase EGcpB which, together, resulted in an increase in the intracellular concentration of c-di-GMP. In summary, our report demonstrates that bacterial respiration and respiration metabolites serve as signals for the regulation of c-di-GMP signaling.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, U.S.A
| | - Jingsheng Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Geoffrey B. Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Xiang Zhou
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | | | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University
| | - Abasiofiok M. Ibekwe
- Agricultural Research Service-US Salinity Laboratory, United States Department of Agriculture, Riverside, CA 92507, U.S.A
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|
20
|
Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW. Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Front Microbiol 2019; 10:2075. [PMID: 31572315 PMCID: PMC6749038 DOI: 10.3389/fmicb.2019.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
To successfully infect plant hosts, the collective regulation of virulence factors in a bacterial pathogen is crucial. Hfq is an RNA chaperone protein that facilitates the small RNA (sRNA) regulation of global gene expression at the post-transcriptional level. In this study, the functional role of Hfq in a broad host range phytopathogen Pantoea ananatis was determined. Inactivation of the hfq gene in P. ananatis LMG 2665T resulted in the loss of pathogenicity and motility. In addition, there was a significant reduction of quorum sensing signal molecule acyl-homoserine lactone (AHL) production and biofilm formation. Differential sRNA expression analysis between the hfq mutant and wild-type strains of P. ananatis revealed 276 sRNAs affected in their abundance by the loss of hfq at low (OD600 = 0.2) and high cell (OD600 = 0.6) densities. Further analysis identified 25 Hfq-dependent sRNAs, all showing a predicted Rho-independent terminator of transcription and mapping within intergenic regions of the P. ananatis genome. These included known sRNAs such as ArcZ, FnrS, GlmZ, RprA, RyeB, RyhB, RyhB2, Spot42, and SsrA, and 16 novel P. ananatis sRNAs. The current study demonstrated that Hfq is an important component of the collective regulation of virulence factors and sets a foundation for understanding Hfq-sRNA mediated regulation in the phytopathogen P. ananatis.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Divine Y Shyntum
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Xie Y, Shao X, Deng X. Regulation of type III secretion system inPseudomonas syringae. Environ Microbiol 2019; 21:4465-4477. [DOI: 10.1111/1462-2920.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen 518057 China
| |
Collapse
|