1
|
Kulik T, van Diepeningen AD, Hausner G. Editorial: The significance of mitogenomics in mycology, volume II. Front Microbiol 2023; 14:1344877. [PMID: 38192293 PMCID: PMC10773717 DOI: 10.3389/fmicb.2023.1344877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D. van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial genome diversity across the subphylum Saccharomycotina. Front Microbiol 2023; 14:1268944. [PMID: 38075892 PMCID: PMC10701893 DOI: 10.3389/fmicb.2023.1268944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. Methods By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Results Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. Discussion As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
- Biology Department, Villanova University, Villanova, PA, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial Genome Diversity across the Subphylum Saccharomycotina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551029. [PMID: 37577532 PMCID: PMC10418067 DOI: 10.1101/2023.07.28.551029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC, 28223, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
5
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Kulik T, Molcan T, Fiedorowicz G, van Diepeningen A, Stakheev A, Treder K, Olszewski J, Bilska K, Beyer M, Pasquali M, Stenglein S. Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol 2022; 13:885978. [PMID: 35923405 PMCID: PMC9339996 DOI: 10.3389/fmicb.2022.885978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Tomasz Kulik,,
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
| | - Grzegorz Fiedorowicz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kinga Treder
- Department of Agriculture Systems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marco Beyer
- Agro-Environmental Systems, Environmental Monitoring and Sensing Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
7
|
Mukhopadhyay J, Wai A, Hutchison LJ, Hausner G. The mitogenome of Urnula craterium. Can J Microbiol 2022; 68:561-568. [PMID: 35623096 DOI: 10.1139/cjm-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urnula craterium (Schwein.) Fr. (1851) has been reported from North America, Europe, and Asia, and can be a pathogen on various hardwood species. In this study we investigated the mitochondrial genome of U. craterium. The biology and taxonomy of this fungus is poorly studied and there are no mitogenomes currently available for any member of the Sarcosomataceae (Order Pezizales). The complete mitogenome of U. craterium comprises 43 967 bps and encodes 14 protein-coding genes, a complete set of tRNAs and rRNA genes. A novel feature of the mitogenome is the presence of a single subunit DNA polymerase coding region that is typically associated with linear invertron-type plasmids. The mitogenome may offer insights into the evolution of mitogenomes among members of the Pezizales with regards to gene content and order, mobile elements, and genome sizes.
Collapse
Affiliation(s)
| | - Alvan Wai
- University of Manitoba, 8664, Winnipeg, Canada;
| | - Leonard J Hutchison
- Lakehead University Faculty of Natural Resources Management, 157776, Thunder Bay, Ontario, Canada;
| | - Georg Hausner
- University of Manitoba, 8664, Buller Building 213, Winnipeg, Manitoba, Canada;
| |
Collapse
|
8
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
9
|
Lin R, Xia Y, Liu Y, Zhang D, Xiang X, Niu X, Jiang L, Wang X, Zheng A. Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Front Microbiol 2021; 12:707281. [PMID: 34616376 PMCID: PMC8488467 DOI: 10.3389/fmicb.2021.707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Xia
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xing Xiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Linjia Jiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Wang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Agriculture College, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
10
|
Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A Persistent Predator of Vibrio cholerae. Annu Rev Virol 2021; 8:285-304. [PMID: 34314595 PMCID: PMC9040626 DOI: 10.1146/annurev-virology-091919-072020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kishen M Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
11
|
Megarioti AH, Kouvelis VN. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol Evol 2021; 12:1337-1354. [PMID: 32585032 PMCID: PMC7487136 DOI: 10.1093/gbe/evaa126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal mitochondrial (mt) genomes exhibit great diversity in size which is partially attributed to their variable intergenic regions and most importantly to the inclusion of introns within their genes. These introns belong to group I or II, and both of them are self-splicing. The majority of them carry genes encoding homing endonucleases, either LAGLIDADG or GIY-YIG. In this study, it was found that these intronic homing endonucleases genes (HEGs) may originate from mt free-standing open reading frames which can be found nowadays in species belonging to Early Diverging Fungi as “living fossils.” A total of 487 introns carrying HEGs which were located in the publicly available mt genomes of representative species belonging to orders from all fungal phyla was analyzed. Their distribution in the mt genes, their insertion target sequence, and the phylogenetic analyses of the HEGs showed that these introns along with their HEGs form a composite structure in which both selfish elements coevolved. The invasion of the ancestral free-standing HEGs in the introns occurred through a perpetual mechanism, called in this study as “aenaon” hypothesis. It is based on recombination, transpositions, and horizontal gene transfer events throughout evolution. HEGs phylogenetically clustered primarily according to their intron hosts and secondarily to the mt genes carrying the introns and their HEGs. The evolutionary models created revealed an “intron-early” evolution which was enriched by “intron-late” events through many different independent recombinational events which resulted from both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
12
|
Wai A, Hausner G. The mitochondrial genome of Ophiostoma himal-ulmi and comparison with other fungi causing Dutch elm disease. Can J Microbiol 2021; 67:584-598. [PMID: 33566742 DOI: 10.1139/cjm-2020-0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial genome of Ophiostoma himal-ulmi, a species endemic to the Western Himalayas and one of the fungi that cause Dutch elm disease, has been sequenced and characterized. The mitochondrial genome was compared with other available genomes for members of the Ophiostomatales, including other agents of Dutch elm disease (Ophiostoma ulmi, Ophiostoma novo-ulmi subspecies novo-ulmi, and Ophiostoma novo-ulmi subspecies americana), and it was observed that gene synteny is highly conserved, and variability among members of the fungi that cause Dutch-elm disease is primarily due to the number of intron insertions. Among the fungi that cause Dutch elm disease that we examined, O. himal-ulmi has the largest mitochondrial genomes (ranging from 94 934 to 111 712 bp), owing to the expansion of the number of introns.
Collapse
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Kulik T, Van Diepeningen AD, Hausner G. Editorial: The Significance of Mitogenomics in Mycology. Front Microbiol 2021; 11:628579. [PMID: 33488569 PMCID: PMC7817700 DOI: 10.3389/fmicb.2020.628579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D Van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Nguyen DT, Wu B, Xiao S, Hao W. Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias. Genome Biol Evol 2020; 12:2344-2354. [PMID: 32986811 PMCID: PMC7846184 DOI: 10.1093/gbe/evaa202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-wide nucleotide composition varies widely among species. Despite extensive research, the source of genome-wide nucleotide composition diversity remains elusive. Yeast mitochondrial genomes (mitogenomes) are highly A + T rich, and they provide a unique opportunity to study the evolution of AT-biased landscape. In this study, we sequenced ten complete mitogenomes of the Saccharomycodes ludwigii yeast with 8% G + C content, the lowest genome-wide %(G + C) in all published genomes to date. The S. ludwigii mitogenomes have high densities of short tandem repeats but severely underrepresented mononucleotide repeats. Comparative population genomics of these record-setting A + T-rich genomes shows dynamic indel mutations and strong mutation bias toward A/T. Indel mutations play a greater role in genomic variation among very closely related strains than nucleotide substitutions. Indels have resulted in presence–absence polymorphism of tRNAArg (ACG) among S. ludwigii mitogenomes. Interestingly, these mitogenomes have undergone recombination, a genetic process that can increase G + C content by GC-biased gene conversion. Finally, the expected equilibrium G + C content under mutation pressure alone is higher than observed G + C content, suggesting existence of mechanisms other than AT-biased mutation operating to increase A/T. Together, our findings shed new lights on mechanisms driving extremely AT-rich genomes.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
16
|
Vieira D, Esteves S, Santiago C, Conde-Sousa E, Fernandes T, Pais C, Soares P, Franco-Duarte R. Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms 2020; 8:E1001. [PMID: 32635509 PMCID: PMC7409325 DOI: 10.3390/microorganisms8071001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/30/2023] Open
Abstract
The study of mitogenomes allows the unraveling of some paths of yeast evolution that are often not exposed when analyzing the nuclear genome. Although both nuclear and mitochondrial genomes are known to determine phenotypic diversity and fitness, no concordance has yet established between the two, mainly regarding strains' technological uses and/or geographical distribution. In the current work, we proposed a new method to align and analyze yeast mitogenomes, overcoming current difficulties that make it impossible to obtain comparable mitogenomes for a large number of isolates. To this end, 12,016 mitogenomes were considered, and we developed a novel approach consisting of the design of a reference sequence intended to be comparable between all mitogenomes. Subsequently, the population structure of 6646 Saccharomyces cerevisiae mitogenomes was assessed. Results revealed the existence of particular clusters associated with the technological use of the strains, in particular regarding clinical isolates, laboratory strains, and yeasts used for wine-associated activities. As far as we know, this is the first time that a positive concordance between nuclear and mitogenomes has been reported for S. cerevisiae, in terms of strains' technological applications. The results obtained highlighted the importance of including the mtDNA genome in evolutionary analysis, in order to clarify the origin and history of yeast species.
Collapse
Affiliation(s)
- Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Soraia Esteves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Carolina Santiago
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Eduardo Conde-Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- CMUP—Centro de Matemática da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ticiana Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
18
|
Kwak Y. Complete Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma atroviride: Genomic Features, Comparative Analysis and Insight Into the Mitochondrial Evolution in Trichoderma. Front Microbiol 2020; 11:785. [PMID: 32457712 PMCID: PMC7228111 DOI: 10.3389/fmicb.2020.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The improvement of biopesticides for use in the agriculture industry requires an understanding of the biological- and ecological principles underlying their behavior in natural environments. The nuclear genomes of members of the genus Trichoderma, which are representative fungal biocontrol agents, have been actively studied in relation to the unique characteristics of these species as effective producers of CAZymes/secondary metabolites and biopesticides, but their mitochondrial genomes have received much less attention. In this study, the mitochondrial genome of Trichoderma atroviride (Hypocreales, Sordariomycetes), which targets wood-decaying fungal pathogens and has the ability to degrade chemical fungicides, was assembled de novo. A 32,758 bp circular DNA molecule was revealed with specific features, such as a few more protein CDS and trn genes, two homing endonucleases (LAGLIDADG-/GIY-YIG-type), and even a putative overlapping tRNA gene, on a closer phylogenetic relationship with T. gamsii among hypocrealean fungi. Particularly, introns were observed with several footprints likely to be evolutionarily associated with the intron dynamics of the Trichoderma mitochondrial genomes. This study is the first to report the complete de novo mitochondrial genome of T. atroviride, while comparative analyses of Trichoderma mitochondrial genomes were also conducted from the perspective of mitochondrial evolution for the first time.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, Orsay, France
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu, South Korea
| |
Collapse
|