1
|
Chemel M, Peru E, Binsarhan M, Logares R, Lartaud F, Galand PE. Cold-water coral mortality under ocean warming is associated with pathogenic bacteria. ENVIRONMENTAL MICROBIOME 2024; 19:76. [PMID: 39407340 PMCID: PMC11481251 DOI: 10.1186/s40793-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality concomitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the presence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature increase should be considered in future estimates of the global distribution of cold-water corals.
Collapse
Affiliation(s)
- Mathilde Chemel
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France.
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | | | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
2
|
Maier SR, Brooke S, De Clippele LH, de Froe E, van der Kaaden AS, Kutti T, Mienis F, van Oevelen D. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biol Rev Camb Philos Soc 2023; 98:1768-1795. [PMID: 37236916 DOI: 10.1111/brv.12976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the non-productive season. Secondly, CWCs, particularly the most common reef-builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium-carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Collapse
Affiliation(s)
- Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk, 3900, Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Sandra Brooke
- Coastal & Marine Laboratory, Florida State University, 3618 Coastal Highway 98, St. Teresa, FL, 32327, USA
| | - Laurence H De Clippele
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Grant Institute, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Evert de Froe
- Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute at Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL A1C 5R3, Newfoundland and Labrador, Canada
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Anna-Selma van der Kaaden
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Tina Kutti
- Institute of Marine Research (IMR), PO box 1870 Nordnes, Bergen, NO-5817, Norway
| | - Furu Mienis
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| |
Collapse
|
3
|
Osman EO, Vohsen SA, Girard F, Cruz R, Glickman O, Bullock LM, Anderson KE, Weinnig AM, Cordes EE, Fisher CR, Baums IB. Capacity of deep-sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization. GLOBAL CHANGE BIOLOGY 2023; 29:189-205. [PMID: 36271605 PMCID: PMC10092215 DOI: 10.1111/gcb.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
Collapse
Affiliation(s)
- Eslam O. Osman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Marine Biology LabZoology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
- Red Sea Research Center (RSRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Samuel A. Vohsen
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Fanny Girard
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Rafaelina Cruz
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Orli Glickman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Lena M. Bullock
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Kaitlin E. Anderson
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | | | | | - Charles R. Fisher
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Iliana B. Baums
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)AmmerländerHeerstraße 231, 26129 OldenburgGermany
| |
Collapse
|
4
|
Krueger QA, Shore MH, Reitzel AM. Comparative transmission of bacteria from Artemia salina and Brachionus plicatilis to the cnidarian Nematostella vectensis. FEMS Microbiol Ecol 2022; 98:fiac096. [PMID: 36036952 PMCID: PMC9521339 DOI: 10.1093/femsec/fiac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
The microbial community associated with animals (microbiome) is essential for development, physiology, and health of host organisms. A critical step to understand the assembly of microbiomes is to determine how effectively bacteria colonize and establish within the host. Bacteria commonly colonize hosts through vertical transmission, passively from the environment, or through food consumption. Using the prey feeding method (PFM), we test transmittance of Bacillus velezensis, Pseudoalteromonas spiralis, and Vibrio alginolyticus to Nematostella vectensis using two prey, Artemia salina and Brachionus plicatilis. We compare PFM to a solution uptake method (SUM) to quantify the concentration of bacteria in these host organisms, with plate counts. Larvae had a similar uptake with SUM at 6 h but had greater concentrations at 48 h versus PFM. Juveniles acquired similar concentrations at 6 h for SUM and PFM using B. plicatilis and A. salina. At 2 days, the quantity of bacteria vectored from PFM increased. After 7 days the CFUs decreased 2-fold with B. plicatilis and A. salina relative to the 2-day concentrations, and further decreased after 14 days. Therefore, prey-mediated methods provide greater microbe transplantation than SUM after 24 h, supporting this approach as a more successful inoculation method of individual bacterial species.
Collapse
Affiliation(s)
- Quinton A Krueger
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| | - Madisun H Shore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Woodward Hall, Charlotte, NC 28223, United States
| |
Collapse
|
5
|
Quintanilla E, Rodrigues CF, Henriques I, Hilário A. Microbial Associations of Abyssal Gorgonians and Anemones (>4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Front Microbiol 2022; 13:828469. [PMID: 35432234 PMCID: PMC9006452 DOI: 10.3389/fmicb.2022.828469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.
Collapse
Affiliation(s)
- Elena Quintanilla
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Clara F. Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Chapron L, Galand PE, Pruski AM, Peru E, Vétion G, Robin S, Lartaud F. Resilience of cold-water coral holobionts to thermal stress. Proc Biol Sci 2021; 288:20212117. [PMID: 34905712 PMCID: PMC8670956 DOI: 10.1098/rspb.2021.2117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (-3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.
Collapse
Affiliation(s)
- Leila Chapron
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Pierre E. Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Audrey M. Pruski
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Gilles Vétion
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Sarah Robin
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| |
Collapse
|
7
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Thatcher C, Høj L, Bourne DG. Probiotics for coral aquaculture: challenges and considerations. Curr Opin Biotechnol 2021; 73:380-386. [PMID: 34749049 DOI: 10.1016/j.copbio.2021.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023]
Abstract
Globally, coral reefs are under pressure from climate change, with concerning declines in coral abundance observed due to increasing cumulative impacts. Active intervention measures that mitigate the declines are increasingly being applied to buy time for coral reefs as the world transitions to a low-carbon economy. One such mitigation strategy is coral restoration based on large-scale coral aquaculture to provide stock for reseeding reefs, with the added potential of selecting corals that better tolerate environmental stress. Application of probiotics during production and deployment, to modulate the naturally occurring bacteria associated with corals, may confer health benefits such as disease resistance, increased environmental tolerance or improved coral nutrition. Here, we briefly describe coral associated bacteria and their role in the coral holobiont, identify probiotics traits potentially beneficial to coral, and discuss current research directions required to develop, test and verify the feasibility for probiotics to improve coral aquaculture at industrial scales.
Collapse
Affiliation(s)
- Callaway Thatcher
- College of Science and Engineering, James Cook University, 1 Angus Smith Drive, Douglas, QLD 4814, Australia; Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia
| | - Lone Høj
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, 1 Angus Smith Drive, Douglas, QLD 4814, Australia; Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia.
| |
Collapse
|
9
|
Rouzé H, Galand PE, Medina M, Bongaerts P, Pichon M, Pérez-Rosales G, Torda G, Moya A, Raina JB, Hédouin L. Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). THE ISME JOURNAL 2021; 15:1564-1568. [PMID: 33452473 PMCID: PMC8115523 DOI: 10.1038/s41396-020-00857-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0-172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.
Collapse
Affiliation(s)
- Héloïse Rouzé
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, LabEx CORAIL, BP 1013 Papetoai, 98729 Moorea, French Polynesia
| | - Pierre E. Galand
- Sorbonne Université, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Mónica Medina
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, State College, PA 16802 USA
| | - Pim Bongaerts
- grid.242287.90000 0004 0461 6769California Academy of Sciences, San Francisco, CA 94118 USA
| | - Michel Pichon
- Museum of Tropical Queensland, Townsville, QLD 4810 Australia
| | - Gonzalo Pérez-Rosales
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, LabEx CORAIL, BP 1013 Papetoai, 98729 Moorea, French Polynesia
| | - Gergely Torda
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Aurelie Moya
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia ,grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | | | - Jean-Baptiste Raina
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Laetitia Hédouin
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, LabEx CORAIL, BP 1013 Papetoai, 98729 Moorea, French Polynesia
| |
Collapse
|
10
|
McCauley M, Jackson CR, Goulet TL. Microbiomes of Caribbean Octocorals Vary Over Time but Are Resistant to Environmental Change. Front Microbiol 2020; 11:1272. [PMID: 32595627 PMCID: PMC7304229 DOI: 10.3389/fmicb.2020.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The bacterial microbiome is an essential component of many corals, although knowledge of the microbiomes in scleractinian corals far exceeds that for octocorals. This study characterized the bacterial communities present in shallow water Caribbean gorgonian octocorals over time and space, in addition to determining the bacterial assemblages in gorgonians exposed to environmental perturbations. We found that seven shallow water Caribbean gorgonian species maintained distinct microbiomes and predominantly harbored two bacterial genera, Mycoplasma and Endozoicomonas. Representatives of these taxa accounted for over 70% of the sequences recovered, made up the three most common operational taxonomic units (OTUs), and were present in most of the gorgonian species. Gorgonian species sampled in different seasons and/or in different years, exhibited significant shifts in the abundances of these bacterial OTUs, though there were few changes to overall bacterial diversity, or to the specific OTUs present. These shifts had minimal impact on the relative abundance of inferred functional proteins within the gorgonian corals. Sequences identified as Escherichia were ubiquitous in gorgonian colonies sampled from a lagoon but not in colonies sampled from a back reef. Exposure to increased temperature and/or ultraviolet radiation (UVR) or nutrient enrichment led to few significant changes in the gorgonian coral microbiomes. While there were some shifts in the abundance of the prevalent bacteria, more commonly observed was “microbial switching” between different OTUs identified within the same bacterial genus. The relative stability of gorgonian coral bacterial microbiome may potentially explain some of the resistance and resilience of Caribbean gorgonian corals against changing environmental conditions.
Collapse
Affiliation(s)
- Mark McCauley
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Colin R Jackson
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Tamar L Goulet
- Department of Biology, The University of Mississippi, University, MS, United States
| |
Collapse
|
11
|
Chapron L, Lartaud F, Le Bris N, Peru E, Galand PE. Local Variability in Microbiome Composition and Growth Suggests Habitat Preferences for Two Reef-Building Cold-Water Coral Species. Front Microbiol 2020; 11:275. [PMID: 32153549 PMCID: PMC7047212 DOI: 10.3389/fmicb.2020.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cold-water coral (CWC) ecosystems provide niches and nurseries for many deep-sea species. Lophelia pertusa and Madrepora oculata, two cosmopolitan species forming three dimensional structures, are found in cold waters under specific hydrological regimes that provide food and reoxygenation. There is now more information about their feeding, their growth and their associated microbiome, however, little is known about the influence of their habitat on their physiology, or on the composition of their bacterial community. The goal of this study was to test if the habitat of L. pertusa and M. oculata influenced the hosts associated bacterial communities, the corals’ survival and their skeletal growth along the slope of a submarine canyon. A transplant experiment was used, based on sampling and cross-redeployment of coral fragments at two contrasted sites, one deeper and one shallower. Our results show that M. oculata had significantly higher skeletal growth rates in the shallower site and that it had a specific microbiome that did not change between sites. Inversely, L. pertusa had the same growth rates at both sites, but its bacterial community compositions differed between locations. Additionally, transplanted L. pertusa acquired the microbial signature of the local corals. Thus, our results suggest that M. oculata prefer the shallower habitat.
Collapse
Affiliation(s)
- Leila Chapron
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Nadine Le Bris
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, France
| |
Collapse
|