1
|
Wannicke N, Stüeken EE, Bauersachs T, Gehringer MM. Exploring the influence of atmospheric CO 2 and O 2 levels on the utility of nitrogen isotopes as proxy for biological N 2 fixation. Appl Environ Microbiol 2024; 90:e0057424. [PMID: 39320082 PMCID: PMC11497790 DOI: 10.1128/aem.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Biological N2 fixation (BNF) is traced to the Archean. The nitrogen isotopic fractionation composition (δ15N) of sedimentary rocks is commonly used to reconstruct the presence of ancient diazotrophic ecosystems. While δ15N has been validated mostly using organisms grown under present-day conditions; it has not under the pre-Cambrian conditions, when atmospheric pO2 was lower and pCO2 was higher. Here, we explore δ15N signatures under three atmospheres with (i) elevated CO2 and no O2 (Archean), (ii) present-day CO2, and O2 and (iii) future elevated CO2, in marine and freshwater, heterocytous cyanobacteria. Additionally, we augment our data set from literature for more generalized dependencies of δ15N and the associated fractionation factor epsilon (ε = δ15Nbiomass - δ15NN2) during BNF in Archaea and Bacteria, including cyanobacteria, and habitats. The ε ranges between 3.70‰ and -4.96‰ with a mean ε value of -1.38 ± 0.95‰, for all bacteria, including cyanobacteria, across all tested conditions. The expanded data set revealed correlations of isotopic fractionation of BNF with CO2 concentrations, toxin production, and light, although within 1‰. Moreover, correlation showed significant dependency of ε to species type, C/N ratios and toxin production in cyanobacteria, albeit it within a small range (-1.44 ± 0.89‰). We therefore conclude that δ15N is likely robust when applied to the pre-Cambrian-like atmosphere, stressing the strong cyanobacterial bias. Interestingly, the increased fractionation (lower ε) observed in the toxin-producing Nodularia and Nostoc spp. suggests a heretofore unknown role of toxins in modulating nitrogen isotopic signals that warrants further investigation.IMPORTANCENitrogen is an essential element of life on Earth; however, despite its abundance, it is not biologically accessible. Biological nitrogen fixation is an essential process whereby microbes fix N2 into biologically usable NH3. During this process, the enzyme nitrogenase preferentially uses light 14N, resulting in 15N depleted biomass. This signature can be traced back in time in sediments on Earth, and possibly other planets. In this paper, we explore the influence of pO2 and pCO2 on this fractionation signal. We find the signal is stable, especially for the primary producers, cyanobacteria, with correlations to CO2, light, and toxin-producing status, within a small range. Unexpectedly, we identified higher fractionation signals in toxin-producing Nodularia and Nostoc species that offer insight into why some organisms produce these N-rich toxic secondary metabolites.
Collapse
Affiliation(s)
- Nicola Wannicke
- Leibniz Institute for Plasma Science and Technology e.V., Greifswald, Germany
| | - Eva E. Stüeken
- School of Earth & Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Thorsten Bauersachs
- Institute of Organic Biochemistry in Geo-Systems, RWTH Aachen University, Aachen, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany
| |
Collapse
|
2
|
Rose SA, Robicheau BM, Tolman J, Fonseca-Batista D, Rowland E, Desai D, Ratten JM, Kantor EJH, Comeau AM, Langille MG, Jerlström-Hultqvist J, Devred E, Sarthou G, Bertrand EM, LaRoche J. Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni. SCIENCE ADVANCES 2024; 10:eadn1476. [PMID: 39083619 PMCID: PMC11290528 DOI: 10.1126/sciadv.adn1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The high diversity and global distribution of heterotrophic bacterial diazotrophs (HBDs) in the ocean has recently become apparent. However, understanding the role these largely uncultured microorganisms play in marine N2 fixation poses a challenge due to their undefined growth requirements and the complex regulation of the nitrogenase enzyme. We isolated and characterized Candidatus Thalassolituus haligoni, a member of a widely distributed clade of HBD belonging to the Oceanospirillales. Analysis of its nifH gene via amplicon sequencing revealed the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic, and Arctic Oceans. Pangenome analysis indicates that the isolate shares >99% identity with an uncultured metagenome-assembled genome called Arc-Gamma-03, recently recovered from the Arctic Ocean. Through combined genomic, proteomic, and physiological approaches, we confirmed that the isolate fixes N2 gas. However, the mechanisms governing nitrogenase regulation in Cand. T. haligoni remain unclear. We propose Cand. T. haligoni as a globally distributed, cultured HBD model species within this understudied clade of Oceanospirillales.
Collapse
Affiliation(s)
- Sonja A. Rose
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Debany Fonseca-Batista
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ella Joy H. Kantor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - André M. Comeau
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G.I. Langille
- Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Emmanuel Devred
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Halifax, Nova Scotia, Canada
| | | | - Erin M. Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Ribeiro IDA, Paes JA, Wendisch VF, Ferreira HB, Passaglia LMP. Proteome profiling of Paenibacillus sonchi genomovar Riograndensis SBR5 T under conventional and alternative nitrogen fixation. J Proteomics 2024; 294:105061. [PMID: 38154550 DOI: 10.1016/j.jprot.2023.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo‑nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Volker F Wendisch
- Institute for Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
LaSarre B, Morlen R, Neumann GC, Harwood CS, McKinlay JB. Nitrous oxide reduction by two partial denitrifying bacteria requires denitrification intermediates that cannot be respired. Appl Environ Microbiol 2024; 90:e0174123. [PMID: 38078768 PMCID: PMC10807417 DOI: 10.1128/aem.01741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 01/25/2024] Open
Abstract
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ryan Morlen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Gina C. Neumann
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, Zuñiga C, Zepeda A, Zengler K. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. PLoS Comput Biol 2023; 19:e1011371. [PMID: 37556472 PMCID: PMC10441798 DOI: 10.1371/journal.pcbi.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Camila Posadas
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Deepan Thiruppathy
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
| | - Nathan Glonek
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Sheng Y, Baars O, Guo D, Whitham J, Srivastava S, Dong H. Mineral-Bound Trace Metals as Cofactors for Anaerobic Biological Nitrogen Fixation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7206-7216. [PMID: 37116091 DOI: 10.1021/acs.est.3c01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrogenase is the only known biological enzyme capable of reducing N2 to bioavailable NH3. Most nitrogenases use Mo as a metallocofactor, while alternative cofactors V and Fe are also viable. Both geological and bioinformatic evidence suggest an ancient origin of Mo-based nitrogenase in the Archean, despite the low concentration of dissolved Mo in the Archean oceans. This apparent paradox would be resolvable if mineral-bound Mo were bioavailable for nitrogen fixation by ancient diazotrophs. In this study, the bioavailability of mineral-bound Mo, V, and Fe was determined by incubating an obligately anaerobic diazotroph Clostridium kluyveri with Mo-, V-, and Fe-bearing minerals (molybdenite, cavansite, and ferrihydrite, respectively) and basalt under diazotrophic conditions. The results showed that C. kluyveri utilized mineral-associated metals to express nitrogenase genes and fix nitrogen, as measured by the reverse transcription quantitative polymerase chain reaction and acetylene reduction assay, respectively. C. kluyveri secreted chelating molecules to extract metals from the minerals. As a result of microbial weathering, mineral surface chemistry significantly changed, likely due to surface coating by microbial exudates for metal extraction. These results provide important support for the ancient origin of Mo-based nitrogenase, with profound implications for coevolution of the biosphere and geosphere.
Collapse
Affiliation(s)
- Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dongyi Guo
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Jason Whitham
- Department of Plant and Molecular Biology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
7
|
Ortiz-Medina JF, Poole MR, Grunden AM, Call DF. Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells. Appl Environ Microbiol 2023; 89:e0207322. [PMID: 36975810 PMCID: PMC10132095 DOI: 10.1128/aem.02073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Nitrogen gas (N2) fixation in the anode-respiring bacterium Geobacter sulfurreducens occurs through complex, multistep processes. Optimizing ammonium (NH4+) production from this bacterium in microbial electrochemical technologies (METs) requires an understanding of how those processes are regulated in response to electrical driving forces. In this study, we quantified gene expression levels (via RNA sequencing) of G. sulfurreducens growing on anodes fixed at two different potentials (-0.15 V and +0.15 V versus standard hydrogen electrode). The anode potential had a significant impact on the expression levels of N2 fixation genes. At -0.15 V, the expression of nitrogenase genes, such as nifH, nifD, and nifK, significantly increased relative to that at +0.15 V, as well as genes associated with NH4+ uptake and transformation, such as glutamine and glutamate synthetases. Metabolite analysis confirmed that both of these organic compounds were present in significantly higher intracellular concentrations at -0.15 V. N2 fixation rates (estimated using the acetylene reduction assay and normalized to total protein) were significantly larger at -0.15 V. Genes expressing flavin-based electron bifurcation complexes, such as electron-transferring flavoproteins (EtfAB) and the NADH-dependent ferredoxin:NADP reductase (NfnAB), were also significantly upregulated at -0.15 V, suggesting that these mechanisms may be involved in N2 fixation at that potential. Our results show that in energy-constrained situations (i.e., low anode potential), the cells increase per-cell respiration and N2 fixation rates. We hypothesize that at -0.15 V, they increase N2 fixation activity to help maintain redox homeostasis, and they leverage electron bifurcation as a strategy to optimize energy generation and use. IMPORTANCE Biological nitrogen fixation coupled with ammonium recovery provides a sustainable alternative to the carbon-, water-, and energy-intensive Haber-Bosch process. Aerobic biological nitrogen fixation technologies are hindered by oxygen gas inhibition of the nitrogenase enzyme. Electrically driving biological nitrogen fixation in anaerobic microbial electrochemical technologies overcomes this challenge. Using Geobacter sulfurreducens as a model exoelectrogenic diazotroph, we show that the anode potential in microbial electrochemical technologies has a significant impact on nitrogen gas fixation rates, ammonium assimilation pathways, and expression of genes associated with nitrogen gas fixation. These findings have important implications for understanding regulatory pathways of nitrogen gas fixation and will help identify target genes and operational strategies to enhance ammonium production in microbial electrochemical technologies.
Collapse
Affiliation(s)
- Juan F. Ortiz-Medina
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mark R. Poole
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Douglas F. Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Chowdhury NB, Alsiyabi A, Saha R. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model. Microbiol Spectr 2022; 10:e0146322. [PMID: 35730964 PMCID: PMC9431616 DOI: 10.1128/spectrum.01463-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective. IMPORTANCE In this work, we reconstructed the first ME model for a purple nonsulfur bacterium (PNSB). Using the ME model, different aspects of R. palustris metabolism were examined. First, the ME model was used to analyze how reducing power entering the R. palustris cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. Furthermore, the ME model predicted electron flux through ferredoxin as a major bottleneck in distributing electrons to nitrogenase enzymes. Next, the ME model characterized different nitrogenase enzymes and successfully recapitulated experimentally observed temperature regulations of those enzymes. Identifying the bottleneck responsible for transferring an electron to nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase enzymes can have profound implications in metabolic engineering, such as hydrogen production from R. palustris. Another interesting application of this ME model can be to take advantage of its redox balancing strategy to gain an understanding of the regulatory mechanism of biodegradable plastic production precursors, such as polyhydroxybutyrate (PHB).
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Adil Alsiyabi
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
9
|
Luxem KE, Kraepiel AML, Zhang L, Waldbauer JR, Zhang X. Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation. Environ Microbiol 2022; 24:2170-2176. [PMID: 35478483 PMCID: PMC9175542 DOI: 10.1111/1462-2920.16001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Darnajoux R, Bradley R, Bellenger JP. In Vivo Temperature Dependency of Molybdenum and Vanadium Nitrogenase Activity in the Heterocystous Cyanobacteria Anabaena variabilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2760-2769. [PMID: 35073047 DOI: 10.1021/acs.est.1c05279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reduction of atmospheric dinitrogen by nitrogenase is a key component of terrestrial nitrogen cycling. Nitrogenases exist in several isoforms named after the metal present within their active center: the molybdenum (Mo), the vanadium (V), and the iron (Fe)-only nitrogenase. While earlier in vitro studies hint that the relative contribution of V nitrogenase to total BNF could be temperature-dependent, the effect of temperature on in vivo activity remains to be investigated. In this study, we characterize the in vivo effect of temperature (3-42 °C) on the activities of Mo nitrogenase and V nitrogenase in the heterocystous cyanobacteria Anabaena variabilis ATTC 29413 using the acetylene reduction assay by cavity ring-down absorption spectroscopy. We demonstrate that V nitrogenase becomes as efficient as Mo nitrogenase at temperatures below 10-15 °C. At temperatures above 22 °C, BNF seems to be limited by O2 availability to respiration in both enzymes. Furthermore, Anabaena variabilis cultures grown in Mo or V media achieved similar growth rates at temperatures below 20 °C. Considering the average temperature on earth is 15 °C, our findings further support the role of V nitrogenase as a viable backup enzymatic system for BNF in natural ecosystems.
Collapse
Affiliation(s)
- Romain Darnajoux
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
- Centre Sève, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Robert Bradley
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
- Centre Sève, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jean-Philippe Bellenger
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
- Centre Sève, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
11
|
Berthomieu R, Pérez-Bernal MF, Santa-Catalina G, Desmond-Le Quéméner E, Bernet N, Trably E. Mechanisms underlying Clostridium pasteurianum's metabolic shift when grown with Geobacter sulfurreducens. Appl Microbiol Biotechnol 2021; 106:865-876. [PMID: 34939136 DOI: 10.1007/s00253-021-11736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Recently, a study showed that glycerol fermentation by Clostridium pasteurianum could be metabolically redirected when the electroactive bacterium Geobacter sulfurreducens was added in the culture. It was assumed that this metabolic shift of the fermentative species resulted from an interspecies electron transfer. The aim of this study was to find out the mechanisms used for this interaction and how they affect the metabolism of C. pasteurianum. To get insights into the mechanisms involved, several coculture setups and RNA sequencing with differential expression analysis were performed. As a result, a putative interaction model was proposed: G. sulfurreducens produces cobamide molecules that possibly modify C. pasteurianum metabolic pathway at the key enzyme glycerol dehydratase, and affect its vanadium nitrogenase expression. In addition, the results suggested that G. sulfurreducens' electrons could enter C. pasteurianum through its transmembrane flavin-bound polyferredoxin and cellular cytochrome b5-rubredoxin interplay, putatively reinforcing the metabolic shift. Unravelling the mechanisms behind the interaction between fermentative and electroactive bacteria helps to better understand the role of bacterial interactions in fermentation setups. KEY POINTS: • C. pasteurianum-G. sulfurreducens interaction inducing a metabolic shift is mediated • C. pasteurianum's metabolic shift in coculture might be induced by cobamides • Electrons possibly enter C. pasteurianum through a multiflavin polyferredoxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric Trably
- INRAE, Univ Montpellier, LBE, Narbonne, France.
| |
Collapse
|
12
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Parison K, Gies-Elterlein J, Trncik C, Einsle O. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii. Methods Mol Biol 2021; 2353:97-121. [PMID: 34292546 DOI: 10.1007/978-1-0716-1605-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogenases are the sole enzymes known to mediate biological nitrogen fixation, an essential process for sustaining life on earth. Among the three known variants, molybdenum nitrogenase is the best-studied to date. Recent work on the alternative vanadium nitrogenase provided important insights into the mechanism of nitrogen fixation since this enzyme differs from its molybdenum counterpart in some important aspects. Here, we present a protocol to obtain unmodified vanadium nitrogenase in high yield and purity from the paradigmatic diazotroph Azotobacter vinelandii, including procedures for cell cultivation, purification, and protein characterization.
Collapse
Affiliation(s)
- Katharina Parison
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Luxem KE, Leavitt WD, Zhang X. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources. Appl Environ Microbiol 2020; 86:e00849-20. [PMID: 32709722 PMCID: PMC7499036 DOI: 10.1128/aem.00849-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.
Collapse
Affiliation(s)
- Katja E Luxem
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
16
|
Abstract
The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.
Collapse
Affiliation(s)
- Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
17
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|