1
|
Zhang W, Zhang Y, Shao Z, Sun Y, Li H. Differences in Biogeographic Patterns and Mechanisms of Assembly in Estuarine Bacterial and Protist Communities. Microorganisms 2025; 13:214. [PMID: 39858982 PMCID: PMC11767756 DOI: 10.3390/microorganisms13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques. The results revealed a higher alpha diversity for the bacteria than for protists, and the beta diversity pattern was dominated by species turnover in both communities. In addition, the two community assemblages were shown to be dominated by deterministic and stochastic processes, respectively. Furthermore, our results emphasized the influence of the local species pool on microbial communities and the fact that, at larger scales, geographic factors played a more significant role than environmental factors in driving microbial community variation. The study also revealed differences in environmental adaptability among different microbial types. Bacteria exhibited strong adaptability to salinity, while protists demonstrated greater resilience to variations in dissolved oxygen, nitrate, and ammonium concentrations. These results suggested differences in environmental adaptation strategies among microorganisms at different trophic levels, with bacteria demonstrating a more pronounced environmental filtering effect.
Collapse
Affiliation(s)
| | | | | | | | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (W.Z.); (Y.Z.); (Z.S.); (Y.S.)
| |
Collapse
|
2
|
de Celis M, Modin O, Arregui L, Persson F, Santos A, Belda I, Wilén BM, Liébana R. Community successional patterns and inter-kingdom interactions during granular biofilm development. NPJ Biofilms Microbiomes 2024; 10:109. [PMID: 39426972 PMCID: PMC11490564 DOI: 10.1038/s41522-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Aerobic granular sludge is a compact and efficient biofilm process used for wastewater treatment which has received much attention and is currently being implemented worldwide. The microbial associations and their ecological implications occurring during granule development, especially those involving inter-kingdom interactions, are poorly understood. In this work, we monitored the prokaryote and eukaryote community composition and structure during the granulation of activated sludge for 343 days in a sequencing batch reactor (SBR) and investigated the influence of abiotic and biotic factors on the granule development. Sludge granulation was accomplished with low-wash-out dynamics at long settling times, allowing for the microbial communities to adapt to the SBR environmental conditions. The sludge granulation and associated changes in microbial community structure could be divided into three stages: floccular, intermediate, and granular. The eukaryotic and prokaryotic communities showed parallel successional dynamics, with three main sub-communities identified for each kingdom, dominating in each stage of sludge granulation. Although inter-kingdom interactions were shown to affect community succession during the whole experiment, during granule development random factors like the availability of settlement sites or drift acquired increasing importance. The prokaryotic community was more affected by deterministic factors, including reactor conditions, while the eukaryotic community was to a larger extent shaped by biotic interactions (including inter-kingdom interactions) and stochasticity.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
- Instituto de Ciencias Agrarias; Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Raquel Liébana
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- AZTI, Marine Research Division, Basque Research Technology Alliance (BRTA), Sukarrieta, Spain.
| |
Collapse
|
3
|
Chandler L, Harford AJ, Hose GC, Humphrey CL, Chariton A, Greenfield P, Davis J. Saline mine water influences eukaryote life in shallow groundwater of a tropical sandy stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174101. [PMID: 38906296 DOI: 10.1016/j.scitotenv.2024.174101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Eukaryotic communities in groundwater may be particularly sensitive to disturbance because they are adapted to stable environmental conditions and often have narrow spatial distributions. Traditional methods for characterising these communities, focussing on groundwater-inhabiting macro- and meiofauna (stygofauna), are challenging because of limited taxonomic knowledge and expertise (particularly in less-explored regions), and the time and expense of morphological identification. The primary objective of this study was to evaluate the vulnerability of eukaryote communities in shallow groundwater to mine water discharge containing elevated concentrations of magnesium (Mg) and sulfate (SO4). The study was undertaken in a shallow sand bed aquifer within a wet-dry tropical setting. The aquifer, featuring a saline mine water gradient primarily composed of elevated Mg and SO4, was sampled from piezometers in the creek channel upstream and downstream of the mine water influence during the dry season when only subsurface water flow was present. Groundwater communities were characterised using both morphological assessments of stygofauna from net samples and environmental DNA (eDNA) targeting the 18S rDNA and COI mtDNA genes. eDNA data revealed significant shifts in community composition in response to mine waters, contrasting with findings from traditional morphological composition data. Changes in communities determined using eDNA data were notably associated with concentrations of SO42-, Mg2+ and Na+, and water levels in the piezometers. This underscores the importance of incorporating molecular approaches in impact assessments, as relying solely on traditional stygofauna sampling methods in similar environments may lead to inaccurate conclusions about the responses of the assemblage to studied impacts.
Collapse
Affiliation(s)
- Lisa Chandler
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia; Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Andrew J Harford
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia; Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Chris L Humphrey
- Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Anthony Chariton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Greenfield
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, New South Wales, Australia
| | - Jenny Davis
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
4
|
Zheng F, Gao J, Tang M, Zhou T, Zhu D, Yang X, Chen B. Urbanization reduces the stability of soil microbial community by reshaping the diversity and network complexity. CHEMOSPHERE 2024; 364:143177. [PMID: 39182733 DOI: 10.1016/j.chemosphere.2024.143177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rapid urbanization considerably alters soil environment, biodiversity, and stability of terrestrial ecosystems. Soil microbial community, a key component of global biodiversity, plays a pivotal role in ecosystem stability and is highly vulnerable to urbanization. However, effects of urbanization on the diversity, stability, and network structure of soil microbial community remain poorly understood. Herein, we investigated the diversity and stability of soil microbial communities, including bacteria, fungi, and protists, across three regions with different levels of urbanization-urban, suburb, and ecoregion-using high-throughput sequencing techniques. Our results revealed that urbanization led to a notable decrease in the alpha diversity of soil microbial community, causing a significant reduction in soil stability, as assessed by the average variation degree (AVD). The loss of stability was linked to the diminished alpha diversity of the soil fungal and protistan communities, along with weakened interactions among bacteria, fungi, and protists. Notably, the majority of keystone species identified through network analysis were classified as bacteria (Proteobacteria) and displayed a strong positive correlation with the environmental factors influencing AVD. This highlights that the variability of bacteria and the immutability of fungi and protists are important to sustain soil microbial stability. Furthermore, structural equation models indicated that protistan diversity primarily drove soil microbial stability across all regions studied. In the suburban and ecoregion areas, soil microbial stability was directly influenced by the soil properties, bacterial diversity, and keystone species, as well as indirectly affected by heavy metals. These results underscore how urbanization can reduce the stability of soil microbial community via declined diversity and network complexity, whereas the establishment of ecoregions maybe contribute to preserve the diversity and stability of soil microbial community.
Collapse
Affiliation(s)
- Fei Zheng
- College of Life Sciences, Hebei University, Baoding, 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jingwei Gao
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mingyang Tang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Tao Zhou
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
5
|
Qiao W, Li H, Zhang J, Liu X, Jin R, Li H. Comparing the Environmental Influences and Community Assembly of Protist Communities in Two Anthropogenic Coastal Areas. Microorganisms 2024; 12:1618. [PMID: 39203460 PMCID: PMC11356250 DOI: 10.3390/microorganisms12081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Anthropogenic stresses are intensively affecting the structure and function of microbial communities in coastal ecosystems. Despite being essential components of coastal ecosystems, the environmental influences and assembly processes of protist communities remain largely unknown in areas with severe disturbance. Here, we used 18S rRNA gene high-throughput sequencing to compare the composition, assembly process, and functional structure of the protist communities from the coastal areas of the Northern Yellow Sea (NYS) and the Eastern Bohai Sea (EBS). These two areas are separated by the Liaodong Peninsula and experience different anthropogenic stresses due to varying degrees of urbanization. We detected significant differences between the protist communities of the two areas. Environmental and geographic factors both influenced the composition of protist communities, with environmental factors playing a greater role. The neutral community model indicated that the assembly of protist communities was governed by deterministic processes, with stochastic processes having a stronger influence in the EBS area compared to the NYS area. The phototrophic and consumer communities, influenced by different environmental factors, differed significantly between the two areas. Our results provide insights into the biogeography and assembly of protist communities in estuaries under anthropogenic stresses, which may inform future coastal management.
Collapse
Affiliation(s)
- Wenwen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongbo Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Xiaohan Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| |
Collapse
|
6
|
Xu J, Wang Y, Liu L, Wang X, Xiao S, Chen J, Jiao N, Zheng Q. Biogeography and dynamics of prokaryotic and microeukaryotic community assembly across 2600 km in the coastal and shelf ecosystems of the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174883. [PMID: 39034013 DOI: 10.1016/j.scitotenv.2024.174883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Marine prokaryotes and microeukaryotes are essential components of microbial food webs, and drive the biogeochemical cycling. However, the underlying ecological mechanisms driving prokaryotic and microeukaryotic community assembly in large-scale coastal ecosystems remain unclear. In this study, we studied biogeographic patterns of prokaryotic and microeukaryotic communities in the coastal and shelf ecosystem of the China Seas. Results showed that prokaryotic richness was the highest in the Yangtze River Plume, whereas microeukaryotic richness decreased from south to north. Prokaryotic-microeukaryotic co-occurrence networks display greater complexity in the Yangtze River Plume compared to other regions, potentially indicating higher environmental heterogeneity. Furthermore, the cross-domain networks revealed that prokaryotes were more interconnected with each other than with microeukaryotes or between microeukaryotes, and all hub nodes were bacterial taxa, suggesting that prokaryotes may be more important for sustaining the stability and multifunctionality of coastal ecosystem than microeukaryotes. Variation Partitioning Analysis revealed that approximately equal proportions of environmental, biotic and spatial factors contribute to variations in microbial community composition. Temperature was the primary environmental driver of both prokaryotic and microeukaryotic communities across the China Seas. Additionally, stochastic processes (dispersal limitation) and deterministic processes (homogeneous selection) were two major ecological factors in shaping microeukaryotic and prokaryotic assemblages, respectively, suggesting their different environmental plasticity and evolutionary mechanisms. Overall, these results demonstrate both prokaryotic and microeukaryotic communities displayed a latitude-driven distribution pattern and different assembly mechanisms, improving our understanding of microbial biogeography patterns under global change and anthropogenic activity driven habitat diversification in the coastal and shelf ecosystem.
Collapse
Affiliation(s)
- Jinxin Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Lu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Xiaomeng Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Shicong Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Jiaxin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiang'an Campus, Xiang'an South Road, Xiamen 361102, PR China.
| |
Collapse
|
7
|
Karlicki M, Bednarska A, Hałakuc P, Maciszewski K, Karnkowska A. Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning. FEMS Microbiol Ecol 2024; 100:fiae104. [PMID: 39039016 DOI: 10.1093/femsec/fiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Bednarska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Shah M, Bornemann TLV, Nuy JK, Hahn MW, Probst AJ, Beisser D, Boenigk J. Genome-resolved metagenomics reveals the effect of nutrient availability on bacterial genomic properties across 44 European freshwater lakes. Environ Microbiol 2024; 26:e16634. [PMID: 38881319 DOI: 10.1111/1462-2920.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Understanding intricate microbial interactions in the environment is crucial. This is especially true for the relationships between nutrients and bacteria, as phosphorus, nitrogen and organic carbon availability are known to influence bacterial population dynamics. It has been suggested that low nutrient conditions prompt the evolutionary process of genome streamlining. This process helps conserve scarce nutrients and allows for proliferation. Genome streamlining is associated with genomic properties such as %GC content, genes encoding sigma factors, percent coding regions, gene redundancy, and functional shifts in processes like cell motility and ATP binding cassette transporters, among others. The current study aims to unveil the impact of nutrition on the genome size, %GC content, and functional properties of pelagic freshwater bacteria. We do this at finer taxonomic resolutions for many metagenomically characterized communities. Our study confirms the interplay of trophic level and genomic properties. It also highlights that different nutrient types, particularly phosphorus and nitrogen, impact these properties differently. We observed a covariation of functional traits with genome size. Larger genomes exhibit enriched pathways for motility, environmental interaction, and regulatory genes. ABC transporter genes reflect the availability of nutrients in the environment, with small genomes presumably relying more on metabolites from other organisms. We also discuss the distinct strategies different phyla adopt to adapt to oligotrophic environments. The findings contribute to our understanding of genomic adaptations within complex microbial communities.
Collapse
Affiliation(s)
- Manan Shah
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondsee, Austria
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
10
|
Sieber G, Drees F, Shah M, Stach TL, Hohrenk-Danzouma L, Bock C, Vosough M, Schumann M, Sures B, Probst AJ, Schmidt TC, Beisser D, Boenigk J. Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:167457. [PMID: 37777125 DOI: 10.1016/j.scitotenv.2023.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.
Collapse
Affiliation(s)
- Guido Sieber
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Manan Shah
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom L Stach
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Lotta Hohrenk-Danzouma
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Maryam Vosough
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Mark Schumann
- Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Alexander J Probst
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| |
Collapse
|
11
|
Kajan K, Osterholz H, Stegen J, Gligora Udovič M, Orlić S. Mechanisms shaping dissolved organic matter and microbial community in lake ecosystems. WATER RESEARCH 2023; 245:120653. [PMID: 37742402 DOI: 10.1016/j.watres.2023.120653] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Lakes are active components of the global carbon cycle and host a range of processes that degrade and modify dissolved organic matter (DOM). Through the degradation of DOM molecules and the synthesis of new compounds, microbes in aquatic environments strongly and continuously influence chemodiversity, which can feedback to influence microbial diversity. Developing a better understanding of the biodiversity patterns that emerge along spatial and environmental gradients is one of the key objectives of community ecology. A changing climate may affect ecological feedback, including those that affect microbial communities. To maintain the function of a lake ecosystem and predict carbon cycling in the environment, it is increasingly important to understand the coupling between microbial and DOM diversity. To unravel the biotic and abiotic mechanisms that control the structure and patterns of DOM and microbial communities in lakes, we combined high-throughput sequencing and ultra-high resolution mass spectrometry together with a null modeling approach. The advantage of null models is their ability to evaluate the relative influences of stochastic and deterministic assembly processes in both DOM and microbial community assemblages. The present study includes spatiotemporal signatures of DOM and the microbial community in six temperate lakes contrasting continental and Mediterranean climates during the productive season. Different environmental conditions and nutrient sources characterized the studied lakes. Our results have shown high covariance between molecular-level DOM diversity and the diversity of individual microbial communities especially with diversity of microeukaryotes and free-living bacteria indicating their dynamic feedback. We found that the differences between lakes and climatic regions were mainly reflected in the diversity of DOM at the molecular formula-level and the microeukaryota community. Furthermore, using null models the DOM assembly was governed by deterministic variable selection operating consistently and strongly within and among lakes. In contrast, microbial community assembly processes were highly variable across lakes with different trophic status and climatic regions. Difference in the processes governing DOM and microbial composition does not indicate weak coupling between these components, rather it suggests that distinct factors may be influencing microbial communities and DOM assemblages separately. Further understanding of the DOM-microbe coupling (or lack thereof) is key to formulating predictive models of future lake ecology and function.
Collapse
Affiliation(s)
- Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Helena Osterholz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - James Stegen
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, WA 99352, USA
| | - Marija Gligora Udovič
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia.
| |
Collapse
|
12
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
13
|
Deng W, Zhang F, Fornacca D, Yang XY, Xiao W. Those Nematode-Trapping Fungi That are not Everywhere: Hints Towards Soil Microbial Biogeography. J Microbiol 2023:10.1007/s12275-023-00043-7. [PMID: 37022590 DOI: 10.1007/s12275-023-00043-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
The existence of biogeography for microorganisms is a raising topic in ecology and researchers are employing better distinctions between single species, including the most rare ones, to reveal potential hidden patterns. An important volume of evidence supporting heterogeneous distributions for bacteria, archaea and protists is accumulating, and more recently a few efforts have targeted microscopic fungi. We propose an insight into this latter kingdom by looking at a group of soil nematode-trapping fungi whose species are well-known and easily recognizable. We chose a pure culture approach because of its reliable isolation procedures for this specific group. After morphologically and molecularly identifying all species collected from 2250 samples distributed in 228 locations across Yunnan province of China, we analyzed occurrence frequencies and mapped species, genera, and richness. Results showed an apparent cosmopolitan tendency for this group of fungi, including species richness among sites. However, only four species were widespread across the region, while non-random heterogeneous distributions were observed for the remaining 40 species, both in terms of statistical distribution of species richness reflected by a significant variance-to-mean ratio, as well as in terms of visually discernible spatial clusters of rare species and genera on the map. Moreover, several species were restricted to only one location, raising the question of whether endemicity exists for this microbial group. Finally, environmental heterogeneity showed a marginal contribution in explaining restricted distributions, suggesting that other factors such as geographical isolation and dispersal capabilities should be explored. These findings contribute to our understanding of the cryptic geographic distribution of microorganisms and encourage further research in this direction.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
| | - Fa Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
| | - Davide Fornacca
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China.
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China.
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, People's Republic of China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, People's Republic of China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, People's Republic of China
- The Key Laboratory of Yunnan Education Department on Er'hai Catchment Conservation and Sustainable Development, Dali, 671003, Yunnan, People's Republic of China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 671003, Yunnan, People's Republic of China
| |
Collapse
|
14
|
From the Sunlit to the Aphotic Zone: Assembly Mechanisms and Co-Occurrence Patterns of Protistan-Bacterial Microbiotas in the Western Pacific Ocean. mSystems 2023; 8:e0001323. [PMID: 36847533 PMCID: PMC10134807 DOI: 10.1128/msystems.00013-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
We know little about the assembly processes and association patterns of microbial communities below the photic zone. In marine pelagic systems, there are insufficient observational data regarding why and how the microbial assemblies and associations vary from photic to aphotic zones. In this study, we investigated size-fractionated oceanic microbiotas, specifically free-living (FL; 0.22 to 3 μm) and particle-associated (PA; >3 μm) bacteria and protists (0.22 to 200 μm) collected from the surface to 2,000 m in the western Pacific Ocean, to see how assembly mechanisms and association patterns changed from photic to aphotic zones. Taxonomic analysis revealed a distinct community composition between photic and aphotic zones that was largely driven by biotic associations rather than abiotic factors. Aphotic community co-occurrence was less widespread and robust than its photic counterparts, and biotic associations were crucial in microbial co-occurrence, having a higher influence on photic than aphotic co-occurrences. The decrease in biotic associations and the increase in dispersal limitation from the photic to the aphotic zone affect the deterministic-stochastic balance, leading to a more stochastic-process-driven community assembly for all three microbial groups in the aphotic zone. Our findings significantly contribute to our understanding of how and why microbial assembly and co-occurrence vary from photic to aphotic zones, offering insight into the dynamics of the protistan-bacterial microbiota in the western Pacific's photic and aphotic zones. IMPORTANCE We know little about the assembly processes and association patterns of microbial communities below the photic zone in marine pelagic systems. We discovered that community assembly processes differed between photic and aphotic zones, with all three microbial groups studied (protists and FL and PA bacteria) being more influenced by stochastic processes than in the photic zone. The decrease in organismic associations and the increase in dispersal limitation from the photic to the aphotic zone both have an impact on the deterministic-stochastic balance, resulting in a more stochastic process-driven community assembly for all three microbial groups in the aphotic zone. Our findings significantly contribute to the understanding of how and why microbial assembly and co-occurrence change between photic and aphotic zones, offering insight into the dynamics of the protist-bacteria microbiota in the western Pacific oceans.
Collapse
|
15
|
Kulaš A, Žutinić P, Gulin Beljak V, Kepčija RM, Perić MS, Orlić S, Petrić IS, Marković T, Gligora Udovič M. Diversity of protist genera in periphyton of tufa-depositing karstic river. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-023-01712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Abstract
Purpose
In aquatic ecosystems, protists play a crucial role and cover numerous ecological functions. The karstic Krka River (Croatia) is a unique hotspot for high diversity of aquatic organisms, especially protists. The main objective of the present study was to obtain a detailed overview of the protist community structure in the periphyton of the Krka River and to determine the differences in protist diversity along the river.
Methods
Protist diversity was detected by amplicon sequencing of the hypervariable region V9 of the 18S rRNA gene, using the universal eukaryotic primer pair.
Results
The three main groups of protists were as follows: Ciliophora, Cercozoa, and Bacillariophyta. In terms of abundance of protist OTUs, the shade plot revealed an evident difference from the upstream to downstream river section, which increased between locations from Krka spring to Skradinski buk. Diversity was explored using measures of alpha and beta diversity. Alpha diversity showed an increasing trend in the downstream direction of the river. The location effect, or clustering/grouping of samples by location, was confirmed by the PERMANOVA permutation test of beta diversity.
Conclusion
The combination of alpha and beta diversity can help provide deeper insight into the study of diversity patterns, but also point out to decline in species diversity and allow for effective ways to protect aquatic karst habitats in future management.
Collapse
|
16
|
Tichá A, Vondrák D, Moravcová A, Chiverrell R, Kuneš P. Climate-related soil saturation and peatland development may have conditioned surface water brownification at a central European lake for millennia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159982. [PMID: 36356759 DOI: 10.1016/j.scitotenv.2022.159982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Water brownification has long altered freshwater ecosystems across the northern hemisphere. The intensive surface water brownification of the last 30 years was however preceded by previous long-lasting more humic browning episodes in many catchments. To disentangle a cascade of browning-induced environmental stressors this longer temporal perspective is essential and can be reconstructed using paleolimnological investigations. Here we present a Holocene duration multi-proxy paleolimnological record from a small forest mountain lake in the Bohemian Forest (Czechia) and show that climate-related soil saturation and peatland development has driven surface water brownification for millennia there. A long core retrieved from the central part of the lake was dated using 14C and 210Pb, subsampled and analyzed for diatoms and zoological indicator (chironomids, planktonic cladocerans) remains. X-ray fluorescence (XRF) provided a record of elements sensitive to biogeochemical processes connected to browning and catchment development (P, Ti, Al/Rb, Fe/Ti, Mn/Ti, Si/Ti). Three threshold shifts related to the processes of water browning were detected in both diatom and chironomid successions at ~10.7, ~5.5 and ~4.2 cal. ky BP. Since, postglacial afforestation of the catchment ~10.7 cal. ky BP the lake experienced strong thermal stratification of the waters, but after ~6.8 cal. ky BP soil saturation and expansion of peatlands led to effective shading and probable nutrient limitation within the lake ecosystem. The more intensive in-wash of dissolved organic matter appears to decline after ~4.2 cal. ky BP, when the paludified catchment soils became permanently anoxic. Two temporary negative and positive anomalies of browning progress occur at the same time and may be connected with the "8.2 ka event" and the "4.2 ka event", respectively. The key role of peatlands presence in the catchment was manifested in millennial-scaled browning process and a climatic forcing of long-lasting browning is evidenced by coincidence with the moistening of climate across the northern hemisphere after ~6 cal. ky BP.
Collapse
Affiliation(s)
- Anna Tichá
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague 2, Czech Republic.
| | - Daniel Vondrák
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague 2, Czech Republic
| | - Alice Moravcová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague 2, Czech Republic; Department of Information Sources and Landscape Archaeology, Institute of Archaeology of the CAS, Prague, Letenská 4, 11801 Prague 1, Czech Republic
| | - Richard Chiverrell
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Petr Kuneš
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague 2, Czech Republic
| |
Collapse
|
17
|
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores. THE ISME JOURNAL 2023; 17:84-94. [PMID: 36207492 PMCID: PMC9751141 DOI: 10.1038/s41396-022-01326-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and ¼ of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.
Collapse
|
18
|
Xu X, Yuan Y, Wang Z, Zheng T, Cai H, Yi M, Li T, Zhao Z, Chen Q, Sun W. Environmental DNA metabarcoding reveals the impacts of anthropogenic pollution on multitrophic aquatic communities across an urban river of western China. ENVIRONMENTAL RESEARCH 2023; 216:114512. [PMID: 36208790 DOI: 10.1016/j.envres.2022.114512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.
Collapse
Affiliation(s)
- Xuming Xu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Yibin Yuan
- College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Zhaoli Wang
- Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Malan Yi
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin, 300000, China
| | - Tianhong Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Zhijie Zhao
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| |
Collapse
|
19
|
Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion. Sci Rep 2022; 12:18684. [PMID: 36333419 PMCID: PMC9636222 DOI: 10.1038/s41598-022-22906-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aquatic environments serve as a sink for anthropogenic discharges. A significant part of the discharge is tire wear, which is increasingly being released into the environment, causing environmental disasters due to their longevity and the large number of pollutants they contain. Main components of tires are plastic and zinc, which therefore can be used as substitutes for tire abrasion to study the effect on microbial life. We investigate environmentally realistic concentrations of plastic and zinc on a freshwater microeukaryotic community using high-throughput sequencing of the 18S V9 region over a 14-day exposure period. Apart from a generally unchanged diversity upon exposure to zinc and nanoplastics, a change in community structure due to zinc is evident, but not due to nanoplastics. Evidently, nanoplastic particles hardly affect the community, but zinc exposure results in drastic functional abundance shifts concerning the trophic mode. Phototrophic microorganisms were almost completely diminished initially, but photosynthesis recovered. However, the dominant taxa performing photosynthesis changed from bacillariophytes to chlorophytes. While phototrophic organisms are decreasing in the presence of zinc, the mixotrophic fraction initially benefitted and the heterotrophic fraction were benefitting throughout the exposure period. In contrast to lasting changes in taxon composition, the functional community composition is initially strongly imbalanced after application of zinc but returns to the original state.
Collapse
|
20
|
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, Teira E. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02125-2. [PMID: 36305941 DOI: 10.1007/s00248-022-02125-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciéncies del Mar (ICM), CSIC, Catalonia, Barcelona, Spain
| | - Marta Hernández-Ruiz
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
21
|
Brindefalk B, Brolin H, Säve‐Söderbergh M, Karlsson E, Sundell D, Wikström P, Jacobsson K, Toljander J, Stenberg P, Sjödin A, Dryselius R, Forsman M, Ahlinder J. Bacterial composition in Swedish raw drinking water reveals three major interacting ubiquitous metacommunities. Microbiologyopen 2022; 11:e1320. [PMID: 36314747 PMCID: PMC9511821 DOI: 10.1002/mbo3.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Surface raw water used as a source for drinking water production is a critical resource, sensitive to contamination. We conducted a study on Swedish raw water sources, aiming to identify mutually co-occurring metacommunities of bacteria, and environmental factors driving such patterns. METHODS The water sources were different regarding nutrient composition, water quality, and climate characteristics, and displayed various degrees of anthropogenic impact. Water inlet samples were collected at six drinking water treatment plants over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint model for taxa abundance. RESULTS Two major groups of well-defined metacommunities of microorganisms were identified, in addition to a third, less distinct, and taxonomically more diverse group. These three metacommunities showed various associations to the measured environmental data. Predictions for the well-defined metacommunities revealed differing sets of favored metabolic pathways and life strategies. In one community, taxa with methanogenic metabolism were common, while a second community was dominated by taxa with carbohydrate and lipid-focused metabolism. CONCLUSION The identification of ubiquitous persistent co-occurring bacterial metacommunities in freshwater habitats could potentially facilitate microbial source tracking analysis of contamination issues in freshwater sources.
Collapse
Affiliation(s)
- Björn Brindefalk
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Harald Brolin
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Melle Säve‐Söderbergh
- Science DivisionSwedish Food AgencyUppsalaSweden
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Edvin Karlsson
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
- Department of Ecology and Environmental Science (EMG)Umeå UniversityUmeåSweden
| | - David Sundell
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Per Wikström
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Karin Jacobsson
- Department of Biomedical Science and Veterinary Public HealthSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Per Stenberg
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
- Department of Ecology and Environmental Science (EMG)Umeå UniversityUmeåSweden
| | - Andreas Sjödin
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | | | - Mats Forsman
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Jon Ahlinder
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| |
Collapse
|
22
|
Šimek K, Mukherjee I, Nedoma J, de Paula CCP, Jezberová J, Sirová D, Vrba J. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environ Microbiol 2022; 24:4256-4273. [PMID: 34933408 PMCID: PMC9788210 DOI: 10.1111/1462-2920.15846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.
Collapse
Affiliation(s)
- Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| | - Indranil Mukherjee
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jiří Nedoma
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | | | - Jitka Jezberová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Dagmara Sirová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jaroslav Vrba
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| |
Collapse
|
23
|
Pilgrim EM, Smucker NJ, Wu H, Martinson J, Nietch CT, Molina M, Darling JA, Johnson BR. Developing Indicators of Nutrient Pollution in Streams Using 16S rRNA Gene Metabarcoding of Periphyton-Associated Bacteria. WATER 2022; 14:1-24. [PMID: 36213613 PMCID: PMC9534034 DOI: 10.3390/w14152361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Indicators based on nutrient-biota relationships in streams can inform water quality restoration and protection programs. Bacterial assemblages could be particularly useful indicators of nutrient effects because they are species-rich, important contributors to ecosystem processes in streams, and responsive to rapidly changing conditions. Here, we sampled 25 streams weekly (12-14 times each) and used 16S rRNA gene metabarcoding of periphyton-associated bacteria to quantify the effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis identified assemblage-level changes and amplicon sequence variants (ASVs) that increased or decreased with increasing TP and TN concentrations (i.e., low P, high P, low N, and high N ASVs). Boosted regression trees confirmed that relative abundances of gene sequence reads for these four indicator groups were associated with nutrient concentrations. Gradient forest analysis complemented these results by using multiple predictors and random forest models for each ASV to identify portions of TP and TN gradients at which the greatest changes in assemblage structure occurred. Synthesized statistical results showed bacterial assemblage structure began changing at 24 μg TP/L with the greatest changes occurring from 110 to 195 μg/L. Changes in the bacterial assemblages associated with TN gradually occurred from 275 to 855 μg/L. Taxonomic and phylogenetic analyses showed that low nutrient ASVs were commonly Firmicutes, Verrucomicrobiota, Flavobacteriales, and Caulobacterales, Pseudomonadales, and Rhodobacterales of Proteobacteria, whereas other groups, such as Chitinophagales of Bacteroidota, and Burkholderiales, Rhizobiales, Sphingomonadales, and Steroidobacterales of Proteobacteria comprised the high nutrient ASVs. Overall, the responses of bacterial ASV indicators in this study highlight the utility of metabarcoding periphyton-associated bacteria for quantifying biotic responses to nutrient inputs in streams.
Collapse
Affiliation(s)
- Erik M. Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Nathan J. Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Huiyun Wu
- School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - John Martinson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Christopher T. Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Marirosa Molina
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - John A. Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Brent R. Johnson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| |
Collapse
|
24
|
Protist Diversity and Metabolic Strategy in Freshwater Lakes Are Shaped by Trophic State and Watershed Land Use on a Continental Scale. mSystems 2022; 7:e0031622. [PMID: 35730947 PMCID: PMC9426515 DOI: 10.1128/msystems.00316-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protists play key roles in aquatic food webs as primary producers, predators, nutrient recyclers, and symbionts. However, a comprehensive view of protist diversity in freshwaters has been challenged by the immense environmental heterogeneity among lakes worldwide. We assessed protist diversity in the surface waters of 366 freshwater lakes across a north temperate to subarctic range covering nearly 8.4 million km2 of Canada. Sampled lakes represented broad gradients in size, trophic state, and watershed land use. Hypereutrophic lakes contained the least diverse and most distinct protist communities relative to nutrient-poor lakes. Greater taxonomic variation among eutrophic lakes was mainly a product of heterotroph and mixotroph diversity, whereas phototroph assemblages were more similar under high-nutrient conditions. Overall, local physicochemical factors, particularly ion and nutrient concentrations, elicited the strongest responses in community structure, far outweighing the effects of geographic gradients. Despite their contrasting distribution patterns, obligate phototroph and heterotroph turnover was predicted by an overlapping set of environmental factors, while the metabolic plasticity of mixotrophs may have made them less predictable. Notably, protist diversity was associated with variation in watershed soil pH and agricultural crop coverage, pointing to human impact on the land-water interface that has not been previously identified in studies on smaller scales. Our study exposes the importance of both within-lake and external watershed characteristics in explaining protist diversity and biogeography, critical information for further developing an understanding of how freshwater lakes and their watersheds are impacted by anthropogenic stressors. IMPORTANCE Freshwater lakes are experiencing rapid changes under accelerated anthropogenic stress and a warming climate. Microorganisms underpin aquatic food webs, yet little is known about how freshwater microbial communities are responding to human impact. Here, we assessed the diversity of protists and their myriad ecological roles in lakes varying in size across watersheds experiencing a range of land use pressures by leveraging data from a continental-scale survey of Canadian lakes. We found evidence of human impact on protist assemblages through an association with lake trophic state and extending to agricultural activity and soil characteristics in the surrounding watershed. Furthermore, trophic state appeared to explain the distributions of phototrophic and heterotrophic protists in contrasting ways. Our findings highlight the vulnerability of lake ecosystems to increased land use and the importance of assessing terrestrial interfaces to elucidate freshwater ecosystem dynamics.
Collapse
|
25
|
Sperlea T, Schenk JP, Dreßler H, Beisser D, Hattab G, Boenigk J, Heider D. The relationship between land cover and microbial community composition in European lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153732. [PMID: 35157872 DOI: 10.1016/j.scitotenv.2022.153732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Microbes are essential for element cycling and ecosystem functioning. However, many questions central to understanding the role of microbes in ecology are still open. Here, we analyze the relationship between lake microbiomes and the lakes' land cover. By applying machine learning methods, we quantify the covariance between land cover categories and the microbial community composition recorded in the largest amplicon sequencing dataset of European lakes available to date. Our results show that the aggregation of environmental features or microbial taxa before analysis can obscure ecologically relevant patterns. We observe a comparatively high covariation of the lakes' microbial community with herbaceous and open spaces surrounding the lake; nevertheless, the microbial covariation with land cover categories is generally lower than the covariation with physico-chemical parameters. Combining land cover and physico-chemical bioindicators identified from the same amplicon sequencing dataset, we develop analytical data structures that facilitate insights into the ecology of the lake microbiome. Among these, a list of the environmental parameters sorted by the number of microbial bioindicators we have identified for them points towards apparent environmental drivers of the lake microbial community composition, such as the altitude, conductivity, and area covered herbaceous vegetation surrounding the lake. Furthermore, the response map, a similarity matrix calculated from the Jaccard similarity of the environmental parameters' lists of bioindicators, allows us to study the ecosystem's structure from the standpoint of the microbiome. More specifically, we identify multiple clusters of highly similar and possibly functionally linked ecological parameters, including one that highlights the importance of the calcium-bicarbonate equilibrium for lake ecology. Taken together, we demonstrate the use of machine learning approaches in studying the interplay between microbial diversity and environmental factors and introduce novel approaches to integrate environmental molecular diversity into monitoring and water quality assessments.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Lahn, Germany; Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Jan Philip Schenk
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Lahn, Germany
| | - Hagen Dreßler
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Lahn, Germany
| | - Daniela Beisser
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Georges Hattab
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Lahn, Germany
| | - Jens Boenigk
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Lahn, Germany.
| |
Collapse
|
26
|
Sun P, Wang Y, Huang X, Huang B, Wang L. Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. WATER RESEARCH 2022; 215:118274. [PMID: 35298994 DOI: 10.1016/j.watres.2022.118274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Disentangling the drivers and mechanisms that shape microbial communities in a river-influenced coastal upwelling system requires considering a hydrologic dimension that can drive both deterministic and stochastic community assembly by generating hydrological heterogeneity and dispersal events. Additionally, ubiquitous and complex microbial interactions can play a significant role in community structuring. However, how the hydrology, biotic, and abiotic factors collectively shape microbial distribution in the hydrologically complicated river plume-upwelling coupling system remains unknown. Through underway sampling and daily observations, we employed 16S and 18S ribosomal RNA sequencing to disentangle drivers and mechanisms shaping the protist-bacteria microbiota in a river-influenced coastal upwelling system. Our findings indicate that the composition of microbial communities was water mass specific. Collectively, water mass, local water chemistry (mostly temperature) and biotic interaction (mostly cross-domain biotic interaction) shaped the protistan-bacterial communities. In comparison to protists, bacteria were more influenced by abiotic factors such as temperature than by cross-domain biotic factors, implying a stronger coupling of geochemical cycles. Both deterministic and stochastic processes had an effect on the distribution of microbial communities, but deterministic processes were more important for bacteria and were especially pronounced for upwelling communities. The co-occurrence network revealed strong associations between the protistan assemblages Orchrophyta and Ciliophora and the bacterial assemblages Alphaproteobacteria, Deltaproteobacteria, and Bacteroidetes, which may reflect predation and mutualism interactions. Overall, this study emphasizes the importance of taking water masses, temperature and domains of life into account when seeking to understand the drivers and assemblies of protist-bacteria microbiome dynamics in coastal upwelling systems, which is especially true given the complex and dynamic nature of the coastal ecosystem.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Bangqin Huang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
| | - Lei Wang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| |
Collapse
|
27
|
Bock C, Olefeld JL, Vogt JC, Albach DC, Boenigk J. Phylogenetic and functional diversity of Chrysophyceae in inland waters. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00554-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractChrysophyceae are a diverse group of planktonic protists widely distributed in freshwater. They encompass a variety of orders, whereby heterotrophy has evolved independently in several phylogenetic lineages. Therefore, closely related taxa evolved that developed different feeding strategies (photo-, mixo-, heterotrophy). In high-throughput sequencing studies, the Chrysophyceae were usually addressed as a group rather than split in individual phylogenetic orders. Also because of the close relationship of the distinct nutritional strategies, no functional statements were made about nutritional patterns. Based on an extensive phylogenetic tree and phylogenetic placement, we link OTU diversity of Chrysophyceae from 218 freshwater lakes with phylogenetic affiliations. This provides information on the relative importance of lineages affiliated with different nutrition modes. Our study demonstrates that Chrysophyceae are one of the most common groups in freshwaters. We found Chrysophyceae in 213 out of 218 sample sites across Europe and in several sites they belong to the most commonly retrieved taxa. Ochromonadales and a Chrysosacca-Apoikiida clade (including Apoikiida, Chrysosaccales, Chrysastrella) are the most widespread Chrysophyceae groups and show a high degree of OTU diversity. Most detected and assignable OTUs were affiliated with mixotrophic Chrysophyceae. Niche width differs only slightly between members of different clades and between the different trophic modes. We found several OTUs within the Ochromonadales, Synurales, and Chrysosacca-Apoikiida clade, that show a wide distribution and large tolerance ranges concerning ecophysiological factors.
Collapse
|
28
|
Sauer HM, Hamilton TL, Anderson RE, Umbanhowar CE, Heathcote AJ. Diversity and distribution of sediment bacteria across an ecological and trophic gradient. PLoS One 2022; 17:e0258079. [PMID: 35312685 PMCID: PMC8936460 DOI: 10.1371/journal.pone.0258079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties (e.g., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.
Collapse
Affiliation(s)
- Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Rika E. Anderson
- Biology Department, Carleton College, Northfield, Minnesota, United States of America
| | - Charles E. Umbanhowar
- Department of Biology and Environmental Studies, St. Olaf College, Northfield, Minnesota, United States of America
| | - Adam J. Heathcote
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| |
Collapse
|
29
|
Gill JG, Hill-Spanik KM, Whittaker KA, Jones ML, Plante C. Sargasso Sea bacterioplankton community structure and drivers of variance as revealed by DNA metabarcoding analysis. PeerJ 2022; 10:e12835. [PMID: 35251777 PMCID: PMC8893026 DOI: 10.7717/peerj.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Marine microbes provide the backbone for pelagic ecosystems by cycling and fixing nutrients and establishing the base of food webs. Microbial communities are often assumed to be highly connected and genetically mixed, with localized environmental filters driving minor changes in structure. Our study applied high-throughput Illumina 16S ribosomal RNA gene amplicon sequencing on whole-community bacterial samples to characterize geographic, environmental, and stochastic drivers of community diversity. DNA was extracted from seawater collected from the surface (N = 18) and at depth just below the deep chlorophyll-a maximum (DCM mean depth = 115.4 m; N = 22) in the Sargasso Sea and adjacent oceanographic regions. Discrete bacterioplankton assemblages were observed at varying depths in the North Sargasso Sea, with a signal for distance-decay of bacterioplankton community similarity found only in surface waters. Bacterial communities from different oceanic regions could be distinguished statistically but exhibited a low magnitude of divergence. Redundancy analysis identified temperature as the key environmental variable correlated with community structuring. The effect of dispersal limitation was weak, while variation partitioning and neutral community modeling demonstrated stochastic processes influencing the communities. This study advances understanding of microbial biogeography in the pelagic ocean and highlights the use of high-throughput sequencing methods in studying microbial community structure.
Collapse
Affiliation(s)
- John Geoffrey Gill
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| | | | - Kerry A. Whittaker
- Sea Education Association, Woods Hole, MA, United States,Maine Maritime Academy, Castine, Maine, United States
| | - Martin L. Jones
- Department of Mathematics, College of Charleston, Charleston, SC, United States
| | - Craig Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| |
Collapse
|
30
|
Pettersen JP, Gundersen MS, Almaas E. Robust bacterial co-occurence community structures are independent of r- and K-selection history. Sci Rep 2021; 11:23497. [PMID: 34873246 PMCID: PMC8648916 DOI: 10.1038/s41598-021-03018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Selection for bacteria which are K-strategists instead of r-strategists has been shown to improve fish health and survival in aquaculture. We considered an experiment where microcosms were inoculated with natural seawater and the selection regime was switched from K-selection (by continuous feeding) to r-selection (by pulse feeding) and vice versa. We found the networks of significant co-occurrences to contain clusters of taxonomically related bacteria having positive associations. Comparing this with the time dynamics, we found that the clusters most likely were results of similar niche preferences of the involved bacteria. In particular, the distinction between r- or K-strategists was evident. Each selection regime seemed to give rise to a specific pattern, to which the community converges regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with relative abundances, and the choice of similarity measure. Even though our data and approaches cannot directly predict ecological interactions, our approach provides insights on how the selection regime affects the composition of the microbial community, providing a basis for aquaculture experiments targeted at eliminating opportunistic fish pathogens.
Collapse
Affiliation(s)
- Jakob Peder Pettersen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Madeleine S Gundersen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Public Health and General Practice, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
31
|
Metz S, Huber P, Accattatis V, Lopes Dos Santos A, Bigeard E, Unrein F, Chambouvet A, Not F, Lara E, Devercelli M. Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol 2021; 24:1731-1745. [PMID: 34783136 DOI: 10.1111/1462-2920.15838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Metz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, F-29280, France.,Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil.,Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Victoria Accattatis
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| | | | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | | | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, 28014, Spain
| | - Melina Devercelli
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
32
|
Protistan-Bacterial Microbiota Exhibit Stronger Species Sorting and Greater Network Connectivity Offshore than Nearshore across a Coast-to-Basin Continuum. mSystems 2021; 6:e0010021. [PMID: 34636671 PMCID: PMC8510552 DOI: 10.1128/msystems.00100-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known regarding how community assembly and species association vary with habitat and depth. Here, we examined the assembly and association of protistan and bacterial communities across a coast-shelf-slope-basin gradient of the South China Sea using high-throughput sequencing of the V3 and V4 regions of the rRNA gene transcript. Our study revealed that homogenizing dispersal and drift exerted an influence on protistan communities comparable to that on bacterial communities. In contrast, selection and dispersal limitation exerted contrasting effects on the two microbial communities. Community assembly was governed to a greater degree by selection than by dispersal limitation in the bacterial community, and this was much lower in the protistan community. Moreover, this organismal assembly pattern was robust with habitat and depth. However, the relative importance of selection to dispersal limitation varied with habitat and depth in both communities, where horizontally it was higher offshore than nearshore and vertically it was lower in the bottom or deep chlorophyll maximum (DCM) than on the surface. The offshore possessed more microbial network complexity and more associations among microbial taxa than the nearshore, and vertically, the bottom possessed more complexity than the surface and the DCM. Moreover, temperature is strongly associated with the composition and co-occurrence of microbial communities, implying that temperature plays a dominant role in the selection of the protistan-bacterial microbiome across a coast-to-basin continuum. This study contributes to our understanding of the assembly mechanism and species association of protistan-bacterial microbiota across multiple habitats and depths. IMPORTANCE Microbial organisms play a crucial role in global nutrient cycling. Few studies have attempted to simultaneously investigate the community assembly of microeukaryotes and prokaryotes and their association patterns in oceanic waters. This is especially true regarding how they vary with habitats and depths despite the fact that they are essential for developing a more holistic understanding of marine ecosystems. This study revealed the differential actions of selection and dispersal limitation and species association across a coast-to-basin continuum on the marine protistan-bacterial microbiome. Moreover, temperature was identified as a crucial factor driving the structure and co-occurrence of protistan and bacterial communities. The results emphasize that the differences in community assembly and association patterns between nearshore and offshore of the main constituents of the ocean microbiota should be considered to understand their current and future configurations. This is especially crucial in the context of climate change, as the response of ocean microbiota to nearshore and offshore temperature changes remains unknown.
Collapse
|
33
|
Burki F, Sandin MM, Jamy M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol 2021; 31:R1267-R1280. [PMID: 34637739 DOI: 10.1016/j.cub.2021.07.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protists are the dominant eukaryotes in the biosphere where they play key functional roles. While protists have been studied for over a century, it is the high-throughput sequencing of molecular markers from environmental samples - the approach of metabarcoding - that has revealed just how diverse, and abundant, these small organisms are. Metabarcoding is now routine to survey environmental diversity, so data have rapidly accumulated from a multitude of environments and at different sampling scales. This mass of data has provided unprecedented opportunities to study the taxonomic and functional diversity of protists, and how this diversity is organised in space and time. Here, we use metabarcoding as a common thread to discuss the state of knowledge in protist diversity research, from technical considerations of the approach to important insights gained on diversity patterns and the processes that might have structured this diversity. In addition to these insights, we conclude that metabarcoding is on the verge of an exciting added dimension thanks to the maturation of high-throughput long-read sequencing, so that a robust eco-evolutionary framework of protist diversity is within reach.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden; Science For Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
| | - Miguel M Sandin
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden
| |
Collapse
|
34
|
Zhang D, Zhu Z, Li Y, Li X, Guan Z, Zheng J. Comparative Genomics of Exiguobacterium Reveals What Makes a Cosmopolitan Bacterium. mSystems 2021; 6:e0038321. [PMID: 34282940 PMCID: PMC8407118 DOI: 10.1128/msystems.00383-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Although the strategies used by bacteria to adapt to specific environmental conditions are widely reported, fewer studies have addressed how microbes with a cosmopolitan distribution can survive in diverse ecosystems. Exiguobacterium is a versatile genus whose members are commonly found in various habitats. To better understand the mechanisms underlying the universality of Exiguobacterium, we collected 105 strains from diverse environments and performed large-scale metabolic and adaptive ability tests. We found that most Exiguobacterium members have the capacity to survive under wide ranges of temperature, salinity, and pH. According to phylogenetic and average nucleotide identity analyses, we identified 27 putative species and classified two genetic groups: groups I and II. Comparative genomic analysis revealed that the Exiguobacterium members utilize a variety of complex polysaccharides and proteins to support survival in diverse environments and also employ a number of chaperonins and transporters for this purpose. We observed that the group I species can be found in more diverse terrestrial environments and have a larger genome size than the group II species. Our analyses revealed that the expansion of transporter families drove genomic expansion in group I strains, and we identified 25 transporter families, many of which are involved in the transport of important substrates and resistance to environmental stresses and are enriched in group I strains. This study provides important insights into both the overall general genetic basis for the cosmopolitan distribution of a bacterial genus and the evolutionary and adaptive strategies of Exiguobacterium. IMPORTANCE The wide distribution characteristics of Exiguobacterium make it a valuable model for studying the adaptive strategies of bacteria that can survive in multiple habitats. In this study, we reveal that members of the Exiguobacterium genus have a cosmopolitan distribution and share an extensive adaptability that enables them to survive in various environments. The capacities shared by Exiguobacterium members, such as their diverse means of polysaccharide utilization and environmental-stress resistance, provide an important basis for their cosmopolitan distribution. Furthermore, the selective expansion of transporter families has been a main driving force for genomic evolution in Exiguobacterium. Our findings improve our understanding of the adaptive and evolutionary mechanisms of cosmopolitan bacteria and the vital genomic traits that can facilitate niche adaptation.
Collapse
Affiliation(s)
- Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ziyu Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Anslan S, Sachs M, Rancilhac L, Brinkmann H, Petersen J, Künzel S, Schwarz A, Arndt H, Kerney R, Vences M. Diversity and substrate-specificity of green algae and other micro-eukaryotes colonizing amphibian clutches in Germany, revealed by DNA metabarcoding. Naturwissenschaften 2021; 108:29. [PMID: 34181110 PMCID: PMC8238718 DOI: 10.1007/s00114-021-01734-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 02/17/2023]
Abstract
Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.
Collapse
Affiliation(s)
- Sten Anslan
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Maria Sachs
- Institute of Zoology, University of Cologne, Zülpicherstr. 47b, 50674, Köln, Germany
| | - Lois Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hartmut Arndt
- Institute of Zoology, University of Cologne, Zülpicherstr. 47b, 50674, Köln, Germany
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
36
|
Yang Y, Banos S, Gerdts G, Wichels A, Reich M. Mycoplankton Biome Structure and Assemblage Processes Differ Along a Transect From the Elbe River Down to the River Plume and the Adjacent Marine Waters. Front Microbiol 2021; 12:640469. [PMID: 33967979 PMCID: PMC8102988 DOI: 10.3389/fmicb.2021.640469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Rivers are transport systems and supply adjacent ecosystems with nutrients. They also serve human well-being, for example as a source of food. Microorganism biodiversity is an important parameter for the ecological balance of river ecosystems. Despite the knowledge that fungi are key players in freshwater nutrient cycling and food webs, data on planktonic fungi of streams with higher stream order are scarce. This study aims to fill this knowledge gap by a fungi-specific 18S ribosomal RNA (rRNA) gene tag sequencing approach, investigating mycoplankton diversity in the Elbe River along a transect from shallow freshwater, to the estuary and river plume down to the adjacent marine waters (sections of seventh stream order number). Using multivariate analyses and the quantitative process estimates (QPEs) method, questions (i) of how mycoplankton communities as part of the river continuum change along the transect, (ii) what factors, spatial and environmental, play a role, and (iii) what assembly processes, such as selection or dispersion, operate along the transect, were addressed. The partitioning of mycoplankton communities into three significant distant biomes was mainly driven by local environmental conditions that were partly under spatial control. The assembly processes underlying the biomes also differed significantly. Thus, variable selection dominated the upstream sections, while undominated processes like ecological drift dominated the sections close to the river mouth and beyond. Dispersal played a minor role. The results suggest that the ecological versatility of the mycoplankton communities changes along the transect as response, for example, to a drastic change from an autotrophic to a heterotrophic system caused by an abrupt increase in the river depth. Furthermore, a significant salinity-dependent occurrence of diverse basal fungal groups was observed, with no clade found exclusively in marine waters. These results provide an important framework to help understand patterns of riverine mycoplankton communities and serve as basis for a further in-depth work so that fungi, as an important ecological organism group, can be integrated into models of, e.g., usage-balance considerations of rivers.
Collapse
Affiliation(s)
- Yanyan Yang
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| | - Stefanos Banos
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Marlis Reich
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| |
Collapse
|
37
|
Sperlea T, Kreuder N, Beisser D, Hattab G, Boenigk J, Heider D. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework. Mol Ecol 2021; 30:2131-2144. [PMID: 33682183 DOI: 10.1111/mec.15872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
It is known that microorganisms are essential for the functioning of ecosystems, but the extent to which microorganisms respond to different environmental variables in their natural habitats is not clear. In the current study, we present a methodological framework to quantify the covariation of the microbial community of a habitat and environmental variables of this habitat. It is built on theoretical considerations of systems ecology, makes use of state-of-the-art machine learning techniques and can be used to identify bioindicators. We apply the framework to a data set containing operational taxonomic units (OTUs) as well as more than twenty physicochemical and geographic variables measured in a large-scale survey of European lakes. While a large part of variation (up to 61%) in many environmental variables can be explained by microbial community composition, some variables do not show significant covariation with the microbial lake community. Moreover, we have identified OTUs that act as "multitask" bioindicators, i.e., that are indicative for multiple environmental variables, and thus could be candidates for lake water monitoring schemes. Our results represent, for the first time, a quantification of the covariation of the lake microbiome and a wide array of environmental variables for lake ecosystems. Building on the results and methodology presented here, it will be possible to identify microbial taxa and processes that are essential for functioning and stability of lake ecosystems.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Nico Kreuder
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Georges Hattab
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| | - Jens Boenigk
- Department of Biodiversity, Center for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Marburg (Lahn), Germany
| |
Collapse
|
38
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
39
|
Qu Z, Forster D, Bruni EP, Frantal D, Kammerlander B, Nachbaur L, Pitsch G, Posch T, Pröschold T, Teubner K, Sonntag B, Stoeck T. Aquatic food webs in deep temperate lakes: Key species establish through their autecological versatility. Mol Ecol 2020; 30:1053-1071. [PMID: 33306859 DOI: 10.1111/mec.15776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022]
Abstract
Microbial planktonic communities are the basis of food webs in aquatic ecosystems since they contribute substantially to primary production and nutrient recycling. Network analyses of DNA metabarcoding data sets emerged as a powerful tool to untangle the complex ecological relationships among the key players in food webs. In this study, we evaluated co-occurrence networks constructed from time-series metabarcoding data sets (12 months, biweekly sampling) of protistan plankton communities in surface layers (epilimnion) and bottom waters (hypolimnion) of two temperate deep lakes, Lake Mondsee (Austria) and Lake Zurich (Switzerland). Lake Zurich plankton communities were less tightly connected, more fragmented and had a higher susceptibility to a species extinction scenario compared to Lake Mondsee communities. We interpret these results as a lower robustness of Lake Zurich protistan plankton to environmental stressors, especially stressors resulting from climate change. In all networks, the phylum Ciliophora contributed the highest number of nodes, among them several in key positions of the networks. Associations in ciliate-specific subnetworks resembled autecological species-specific traits that indicate adaptions to specific environmental conditions. We demonstrate the strength of co-occurrence network analyses to deepen our understanding of plankton community dynamics in lakes and indicate biotic relationships, which resulted in new hypotheses that may guide future research in climate-stressed ecosystems.
Collapse
Affiliation(s)
- Zhishuai Qu
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Forster
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Estelle P Bruni
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.,Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniela Frantal
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Barbara Kammerlander
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Laura Nachbaur
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Gianna Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Thomas Pröschold
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Katrin Teubner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Bettina Sonntag
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
40
|
Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep 2020; 10:20025. [PMID: 33208814 PMCID: PMC7675990 DOI: 10.1038/s41598-020-77045-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/14/2022] Open
Abstract
Freshwater and soil habitats hold rich microbial communities. Here we address commonalities and differences between both habitat types. While freshwater and soil habitats differ considerably in habitat characteristics organismic exchange may be high and microbial communities may even be inoculated by organisms from the respective other habitat. We analyze diversity pattern and the overlap of taxa of eukaryotic microbial communities in freshwater and soil based on Illumina HiSeq high-throughput sequencing of the amplicon V9 diversity. We analyzed corresponding freshwater and soil samples from 30 locations, i.e. samples from different lakes across Germany and soil samples from the respective catchment areas. Aside from principle differences in the community composition of soils and freshwater, in particular with respect to the relative contribution of fungi and algae, soil habitats have a higher richness. Nevertheless, community similarity between different soil sites is considerably lower as compared to the similarity between different freshwater sites. We show that the overlap of organisms co-occurring in freshwater and soil habitats is surprisingly low. Even though closely related taxa occur in both habitats distinct OTUs were mostly habitat–specific and most OTUs occur exclusively in either soil or freshwater. The distribution pattern of the few co-occurring lineages indicates that even most of these are presumably rather habitat-specific. Their presence in both habitat types seems to be based on a stochastic drift of particularly abundant but habitat-specific taxa rather than on established populations in both types of habitats.
Collapse
|