1
|
Gao R, Duceppe MO, Chattaway MA, Goodridge L, Ogunremi D. Application of prophage sequence analysis to investigate a disease outbreak involving Salmonella Adjame, a rare serovar and implications for the population structure. Front Microbiol 2023; 14:1086198. [PMID: 36937281 PMCID: PMC10020630 DOI: 10.3389/fmicb.2023.1086198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Outbreak investigation of foodborne salmonellosis is hindered when the food source is contaminated by multiple strains of Salmonella, creating difficulties matching an incriminated organism recovered from patients with the specific strain in the suspect food. An outbreak of the rare Salmonella Adjame was caused by multiple strains of the organism as revealed by single-nucleotide polymorphism (SNP) variation. The use of highly discriminatory prophage analysis to characterize strains of Salmonella should enable a more precise strain characterization and aid the investigation of foodborne salmonellosis. Methods We have carried out genomic analysis of S. Adjame strains recovered during the course of a recent outbreak and compared them with other strains of the organism (n = 38 strains), using SNPs to evaluate strain differences present in the core genome, and prophage sequence typing (PST) to evaluate the accessory genome. Phylogenetic analyses were performed using both total prophage content and conserved prophages. Results The PST analysis of the S. Adjame isolates showed a high degree of strain heterogeneity. We observed small clusters made up of 2-6 isolates (n = 27) and singletons (n = 11) in stark contrast with the three clusters observed by SNP analysis. In total, we detected 24 prophages of which only four were highly prevalent, namely: Entero_p88 (36/38 strains), Salmon_SEN34 (35/38 strains), Burkho_phiE255 (33/38 strains) and Edward_GF (28/38 strains). Despite the marked strain diversity seen with prophage analysis, the distribution of the four most common prophages matched the clustering observed using core genome. Discussion Mutations in the core and accessory genomes of S. Adjame have shed light on the evolutionary relationships among the Adjame strains and demonstrated a convergence of the variations observed in both fractions of the genome. We conclude that core and accessory genomes analyses should be adopted in foodborne bacteria outbreak investigations to provide a more accurate strain description and facilitate reliable matching of isolates from patients and incriminated food sources. The outcomes should translate to a better understanding of the microbial population structure and an 46 improved source attribution in foodborne illnesses.
Collapse
Affiliation(s)
- Ruimin Gao
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada
| | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- *Correspondence: Dele Ogunremi,
| |
Collapse
|
2
|
Murr L, Huber I, Pavlovic M, Guertler P, Messelhaeusser U, Weiss M, Ehrmann M, Tuschak C, Bauer H, Wenning M, Busch U, Bretschneider N. Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms 2022; 10:2120. [PMID: 36363712 PMCID: PMC9698462 DOI: 10.3390/microorganisms10112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance.
Collapse
Affiliation(s)
- Larissa Murr
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Melanie Pavlovic
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Patrick Guertler
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ute Messelhaeusser
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Manuela Weiss
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Matthias Ehrmann
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christian Tuschak
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Hans Bauer
- Bavarian Health and Food Safety Authority (LGL), 91058 Erlangen, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Nancy Bretschneider
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| |
Collapse
|
3
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 2022; 23:689. [PMID: 36199029 PMCID: PMC9535894 DOI: 10.1186/s12864-022-08909-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. Results Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. Conclusions Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08909-7.
Collapse
Affiliation(s)
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | | |
Collapse
|
4
|
Stanojković A, Skoupý S, Škaloud P, Dvořák P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front Microbiol 2022; 13:977454. [PMID: 36160208 PMCID: PMC9500459 DOI: 10.3389/fmicb.2022.977454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
Collapse
Affiliation(s)
| | - Svatopluk Skoupý
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Palma F, Radomski N, Guérin A, Sévellec Y, Félix B, Bridier A, Soumet C, Roussel S, Guillier L. Genomic elements located in the accessory repertoire drive the adaptation to biocides in Listeria monocytogenes strains from different ecological niches. Food Microbiol 2022; 106:103757. [PMID: 35690455 DOI: 10.1016/j.fm.2021.103757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.
Collapse
Affiliation(s)
- Federica Palma
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France.
| | - Nicolas Radomski
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Alizée Guérin
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Yann Sévellec
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Christophe Soumet
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Sophie Roussel
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Laurent Guillier
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France; Maisons-Alfort Risk Assessment Department, University Paris-Est, ANSES, Maisons-Alfort, France
| |
Collapse
|
6
|
Pervasive Listeria monocytogenes Is Common in the Norwegian Food System and Is Associated with Increased Prevalence of Stress Survival and Resistance Determinants. Appl Environ Microbiol 2022; 88:e0086122. [PMID: 36005805 PMCID: PMC9499026 DOI: 10.1128/aem.00861-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the diversity, distribution, persistence, and prevalence of stress survival and resistance genes of Listeria monocytogenes clones dominating in food processing environments in Norway, genome sequences from 769 L. monocytogenes isolates from food industry environments, foods, and raw materials (512 of which were sequenced in the present study) were subjected to whole-genome multilocus sequence typing (wgMLST), single-nucleotide polymorphism (SNP), and comparative genomic analyses. The data set comprised isolates from nine meat and six salmon processing facilities in Norway collected over a period of three decades. The most prevalent clonal complex (CC) was CC121, found in 10 factories, followed by CC7, CC8, and CC9, found in 7 factories each. Overall, 72% of the isolates were classified as persistent, showing 20 or fewer wgMLST allelic differences toward an isolate found in the same factory in a different calendar year. Moreover, over half of the isolates (56%) showed this level of genetic similarity toward an isolate collected from a different food processing facility. These were designated as pervasive strains, defined as clusters with the same level of genetic similarity as persistent strains but isolated from different factories. The prevalence of genetic determinants associated with increased survival in food processing environments, including heavy metal and biocide resistance determinants, stress response genes, and inlA truncation mutations, showed a highly significant increase among pervasive isolates but not among persistent isolates. Furthermore, these genes were significantly more prevalent among the isolates from food processing environments compared to in isolates from natural and rural environments (n = 218) and clinical isolates (n = 111) from Norway. IMPORTANCEListeria monocytogenes can persist in food processing environments for months to decades and spread through the food system by, e.g., contaminated raw materials. Knowledge of the distribution and diversity of L. monocytogenes is important in outbreak investigations and is essential to effectively track and control this pathogen in the food system. The present study presents a comprehensive overview of the prevalence of persistent clones and of the diversity of L. monocytogenes in Norwegian food processing facilities. The results demonstrate extensive spread of highly similar strains throughout the Norwegian food system, in that 56% of the 769 collected isolates from food processing factories belonged to clusters of L. monocytogenes identified in more than one facility. These strains were associated with an overall increase in the prevalence of plasmids and determinants of heavy metal and biocide resistance, as well as other genetic elements associated with stress survival mechanisms and persistence.
Collapse
|
7
|
Application of metabolomics analysis to aid in understanding the pathogenicity of different lineages and different serotypes of Listeria monocytogenes. Int J Food Microbiol 2022; 373:109694. [DOI: 10.1016/j.ijfoodmicro.2022.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
8
|
Lourenco A, Linke K, Wagner M, Stessl B. The Saprophytic Lifestyle of Listeria monocytogenes and Entry Into the Food-Processing Environment. Front Microbiol 2022; 13:789801. [PMID: 35350628 PMCID: PMC8957868 DOI: 10.3389/fmicb.2022.789801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an environmentally adapted saprophyte that can change into a human and animal bacterial pathogen with zoonotic potential through several regulatory systems. In this review, the focus is on the occurrence of Listeria sensu stricto and sensu lato in different ecological niches, the detection methods, and their analytical limitations. It also highlights the occurrence of L. monocytogenes genotypes in the environment (soil, water, and wildlife), reflects on the molecular determinants of L. monocytogenes for the saprophytic lifestyle and the potential for antibiotic resistance. In particular, the strain-specific properties with which some genotypes circulate in wastewater, surface water, soil, wildlife, and agricultural environments are of particular interest for the continuously updating risk analysis.
Collapse
Affiliation(s)
- Antonio Lourenco
- Department of Food Biosciences, Teagasc Food Research Centre, Co. Cork, Ireland
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Linke
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Beatrix Stessl
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
9
|
WGS analysis of Listeria monocytogenes from rural, urban, and farm environments in Norway: Genetic diversity, persistence, and relation to clinical and food isolates. Appl Environ Microbiol 2022; 88:e0213621. [PMID: 35108102 PMCID: PMC8939345 DOI: 10.1128/aem.02136-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous environmental bacterium associated with a wide variety of natural and human-made environments, such as soil, vegetation, livestock, food processing environments, and urban areas. It is also among the deadliest foodborne pathogens, and knowledge about its presence and diversity in potential sources is crucial to effectively track and control it in the food chain. Isolation of L. monocytogenes from various rural and urban environments showed higher prevalence in agricultural and urban developments than in forest or mountain areas, and that detection was positively associated with rainfall. Whole-genome sequencing (WGS) was performed for the collected isolates and for L. monocytogenes from Norwegian dairy farms and slugs (218 isolates in total). The data were compared to available data sets from clinical and food-associated sources in Norway collected within the last decade. Multiple examples of clusters of isolates with 0 to 8 whole-genome multilocus sequence typing (wgMLST) allelic differences were collected over time in the same location, demonstrating persistence of L. monocytogenes in natural, urban, and farm environments. Furthermore, several clusters with 6 to 20 wgMLST allelic differences containing isolates collected across different locations, times, and habitats were identified, including nine clusters harboring clinical isolates. The most ubiquitous clones found in soil and other natural and animal ecosystems (CC91, CC11, and CC37) were distinct from clones predominating among both clinical (CC7, CC121, and CC1) and food (CC9, CC121, CC7, and CC8) isolates. The analyses indicated that ST91 was more prevalent in Norway than other countries and revealed a high proportion of the hypovirulent ST121 among Norwegian clinical cases. IMPORTANCEListeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment. For effective management, both public health authorities and food producers need reliable tools for source tracking, surveillance, and risk assessment. For this, whole-genome sequencing (WGS) is regarded as the present and future gold standard. In the current study, we use WGS to show that L. monocytogenes can persist for months and years in natural, urban, and dairy farm environments. Notably, clusters of almost identical isolates, with genetic distances within the thresholds often suggested for defining an outbreak cluster, can be collected from geographically and temporally unrelated sources. The work highlights the need for a greater knowledge of the genetic relationships between clinical isolates and isolates of L. monocytogenes from a wide range of environments, including natural, urban, agricultural, livestock, food production, and food processing environments, to correctly interpret and use results from WGS analyses.
Collapse
|
10
|
Hutchins C, Sayavedra L, Diaz M, Gupta P, Tissingh E, Elumogo C, Nolan J, Charles I, Elumogo N, Narbad A. Genomic analysis of a rare recurrent Listeria monocytogenes prosthetic joint infection indicates a protected niche within biofilm on prosthetic materials. Sci Rep 2021; 11:21864. [PMID: 34750463 PMCID: PMC8575960 DOI: 10.1038/s41598-021-01376-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a rare cause of prosthetic joint infections (PJI). In this study, we describe a case of recurrent L. monocytogenes infections, 39 months apart, following debridement and retention of a prosthetic hip. Despite numerous studies reporting persistent L. monocytogenes in human infections, the genomic and phenotypic changes that clinically relevant strains undergo in the host are poorly understood. Improved knowledge of how PJI occurs is needed to improve the management of prosthetic infections. We used a combination of long- and short-read sequencing to identify any potential genomic differences between two L. monocytogenes isolates that occurred over 39-month incubation in the host. The isolates, QI0054 and QI0055, showed three single nucleotide polymorphisms and three insertions or deletions, suggesting that the recurrent infection was caused by the same strain. To identify potential differences in the capacity for persistence of these isolates, their biofilm-forming ability and potential to colonize prosthesis-relevant materials was investigated both in microtitre plates and on prosthetic material titanium, stainless steel 316 and ultra-high molecular weight polyethylene. Whilst the L. monocytogenes isolate from the most recent infection (QI0055) was able to form higher biofilm in microtitre plates, this did not lead to an increase in biomass on prosthetic joint materials compared to the initial isolate (QI0054). Both clinical isolates were able to form significantly more biofilm on the two metal prosthetic materials than on the ultra-high molecular weight polyethylene, in contrast to reference strain Scott A. Transcriptomics revealed 41 genes overexpressed in biofilm state and 643 in planktonic state. Moreover, genes with mutations were actively expressed in both isolates. We conclude the isolates are derived from the same strain and hypothesize that L. monocytogenes formed biofilm on the prosthetic joint materials, with minimal exposure to stresses, which permitted their survival and growth.
Collapse
Affiliation(s)
- Chloe Hutchins
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Lizbeth Sayavedra
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Maria Diaz
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Puja Gupta
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Elizabeth Tissingh
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Chiamaka Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - John Nolan
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Ian Charles
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ngozi Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Arjan Narbad
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
11
|
Zbinden FR, De Ste Croix M, Grandgirard D, Haigh RD, Vacca I, Zamudio R, Goodall ECA, Stephan R, Oggioni MR, Leib SL. Pathogenic Differences of Type 1 Restriction-Modification Allele Variants in Experimental Listeria monocytogenes Meningitis. Front Cell Infect Microbiol 2020; 10:590657. [PMID: 33194838 PMCID: PMC7662400 DOI: 10.3389/fcimb.2020.590657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background: L. monocytogenes meningoencephalitis has a mortality rate of up to 50% and neurofunctional sequelae are common. Type I restriction-modification systems (RMS) are capable of adding methyl groups to the host genome. Some contain multiple sequence recognition (hsdS) genes that recombine, resulting in distinct DNA methylation patterns and patterns of gene expression. These phenotypic switches have been linked to virulence and have recently been discovered in multiple clonal complexes of L. monocytogenes. In the present study, we investigated the significant of RMS on L. monocytogenes virulence during the acute phase of experimental meningitis. Methods: L. monocytogenes strains containing RMS systems were identified, and purified clones enriched for single hsdS alleles were isolated. In vivo, 11-day old Wistar rats were infected with an inoculum containing (a) one of 4 single RMS allele variants (A, B, C, D) treated with amoxicillin (AMX 50 mg/kg/dosis, q8h), (b) a mixture of all 4 variants with or without AMX treatment, or (c) different mixtures of 2 RMS allele variants. At selected time points after infection, clinical and inflammatory parameters, bacterial titers and brain damage were determined. Changes in the relative frequency of the occurring RMS alleles in the inoculum and in CSF or cerebellum of infected animals were analyzed by capillary electrophoresis. Results: We have identified a phase variable RMS locus within L. monocytogenes CC4 and generated stocks that stably expressed each of the possible hsdS genes within that loci. Generation of these allele variants (A, B, C, D) allowed us to determine the methylation pattern associated with each hsdS through SMRT sequencing. In vivo infections with these single allele variants revealed differences in disease severity in that C induced the worst clinical outcome and more pronounced hippocampal apoptosis; D showed the most pronounced weight loss and the highest bacterial titer in the cerebellum. A caused the least severe disease. Conclusion: We identified that L. monocytogenes expressing hsdS (A) causes less damage than when other hsdS genes are expressed. While expression of hsdSC and D worsened the outcome in L. monocytogenes meningitis. We also demonstrate a competitive advantage of variants C and B over variant A in this model. Phenotypical switching may therefore represent a mechanism of virulence regulation during the acute phase of CNS infections with L. monocytogenes.
Collapse
Affiliation(s)
- Florian R Zbinden
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Richard D Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Vacca
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Emily C A Goodall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|