1
|
Huang J, Zhu Z, Chen R, Pan D, Li QX, Wu X. Identification of a Novel Ibuprofen Biotransformation Pathway in Streptomyces sp. D218 and Detoxification as Indicated by the Green Algae Scenedesmus obliquus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22199-22207. [PMID: 39315890 DOI: 10.1021/acs.jafc.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ibuprofen, a widely used nonsteroidal anti-inflammatory drug, contaminates agricultural products and potentially threatens human health due to its frequent detection and poor biodegradability. Microbial metabolism dominates the elimination of residual ibuprofen in the environment. In mineral salt medium at pH 6 with 5 mM glucose, Streptomyces sp. D218 transformed ibuprofen concentrations ranging from 0.05 to 0.40 mM in 24 h. The optimal temperature, pH, and initial OD600 nm for ibuprofen transformation by strain D218 were 25-37 °C, 5.0-6.0, and 1.0-1.5, respectively. Strain D218 could simultaneously transform ibuprofen into the intermediates 2-hydroxyibuprofen and ibuprofen amide (IBUA). The two intermediates were further metabolized to 2-hydroxyibuprofen amide (2HIBUA), thus relieving the growth inhibition of ibuprofen in Scenedesmus obliquus. This is the first complete pathway reported for the detoxification of ibuprofen transformation by a Gram-positive strain. These findings further our understanding of the microbial catabolism of the IBU.
Collapse
Affiliation(s)
- Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Zilin Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Ruomu Chen
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| |
Collapse
|
2
|
García-Romero I, de Dios R, Reyes-Ramírez F. An improved genome editing system for Sphingomonadaceae. Access Microbiol 2024; 6:000755.v3. [PMID: 38868378 PMCID: PMC11165598 DOI: 10.1099/acmi.0.000755.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The sphingomonads encompass a diverse group of bacteria within the family Sphingomonadaceae, with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome. Here, we present a markerless genome editing method for Sphingopyxis granuli TFA, which can be further optimised for other sphingomonads. This procedure is based on a double recombination triggered by a DNA double-strand break in the chromosome. The strength of this protocol lies in forcing the second recombination rather than favouring it by pressing a counterselection marker, thus avoiding laborious restreaking or passaging screenings. Additionally, we introduce a modification with respect to the original protocol to increase the efficiency of the screening after the first recombination event. We show this procedure step by step and compare our modified method with respect to the original one by deleting ecfG2, the master regulator of the general stress response in S. granuli TFA. This adds to the genetic tool repertoire that can be applied to sphingomonads and stands as an efficient option for fast genome editing of this bacterial group.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| | - Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences,, Brunel University London, Uxbridge, UK
| | - Francisca Reyes-Ramírez
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
3
|
Peng L, Yun H, Ji J, Zhang W, Xu T, Li S, Wang Z, Xie L, Li X. Biotransformation activities of fungal strain apiotrichum sp. IB-1 to ibuprofen and naproxen. Arch Microbiol 2024; 206:232. [PMID: 38658486 DOI: 10.1007/s00203-024-03963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.
Collapse
Affiliation(s)
- Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Wenjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Ting Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Aguilar-Romero I, Madrid F, Villaverde J, Morillo E. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132970. [PMID: 37976863 DOI: 10.1016/j.jhazmat.2023.132970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
5
|
Yi S, Zhu Z, Li F, Zhu L, Wu C, Ge F, Ji X, Tian J. Metagenomic and proteomic insights into the self-adaptive cell surface hydrophobicity of Sphingomonas sp. strain PAH02 reducing the migration of cadmium-phenanthrene co-pollutant in rice. Environ Microbiol 2024; 26:e16577. [PMID: 38183371 DOI: 10.1111/1462-2920.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Zhongnan Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| |
Collapse
|
6
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
7
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
8
|
Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M. A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131133. [PMID: 36889073 DOI: 10.1016/j.jhazmat.2023.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
10
|
Wittich RM, Haïdour A, Aguilar-Romero I, de la Torre-Zúñiga J, van Dillewijn P. Biodegradation of Microtoxic Phenylpropanoids (Phenylpropanoic Acid and Ibuprofen) by Bacteria and the Relevance for Their Removal from Wastewater Treatment Plants. Genes (Basel) 2023; 14:442. [PMID: 36833369 PMCID: PMC9956071 DOI: 10.3390/genes14020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The NSAID ibuprofen (2-(4-isobutylphenyl)propanoic acid) and the structurally related 3-phenylpropanoic acid (3PPA), are widely used pharmaceutical and personal care products (PPCPs) which enter municipal waste streams but whose relatively low rates of elimination by wastewater treatment plants (WWTPs) are leading to the contamination of aquatic resources. Here, we report the isolation of three bacterial strains from a municipal WWTP, which as a consortium are capable of mineralizing ibuprofen. These were identified as the Pseudomonas citronellolis species, termed RW422, RW423 and RW424, in which the first two of these isolates were shown to contain the catabolic ipf operon responsible for the first steps of ibuprofen mineralization. These ipf genes which are associated with plasmids could, experimentally, only be transferred between other Sphingomonadaceae species, such as from the ibuprofen degrading Sphingopyxis granuli RW412 to the dioxins degrading Rhizorhabdus wittichii RW1, generating RW421, whilst a transfer from the P. citronellolis isolates to R. wittichii RW1 was not observed. RW412 and its derivative, RW421, as well as the two-species consortium RW422/RW424, can also mineralize 3PPA. We show that IpfF can convert 3PPA to 3PPA-CoA; however, the growth of RW412 with 3PPA produces a major intermediate that was identified by NMR to be cinnamic acid. This and the identification of other minor products from 3PPA allows us to propose the major pathway used by RW412 to mineralize 3PPA. Altogether, the findings in this study highlight the importance of ipf genes, horizontal gene transfer, and alternative catabolic pathways in the bacterial populations of WWTPs to eliminate ibuprofen and 3PPA.
Collapse
Affiliation(s)
- Regina-Michaela Wittich
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Ali Haïdour
- Unidad de Resonancia Magnética Nuclear, Centro de Instrumentación Científica, Universidad de Granada, Paseo Juan Osorio S/N, 18071 Granada, Spain
| | - Inés Aguilar-Romero
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jesús de la Torre-Zúñiga
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
11
|
Masanabo N, Orimolade B, Idris AO, Nkambule TTI, Mamba BB, Feleni U. Advances in polymer-based detection of environmental ibuprofen in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14062-14090. [PMID: 36567393 DOI: 10.1007/s11356-022-24858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Globally, ibuprofen is the third most consumed drug and its presence in the environment is a concern because little is known about its adverse effects on humans and aquatic life. Environmentalists have made monitoring and the detection of ibuprofen in biological and environmental matrices a priority. For the detection and monitoring of ibuprofen, sensors and biosensors have provided rapid analysis time, sensitivity, high-throughput screening, and real-time analysis. Researchers are increasingly seeking eco-friendly technology, and this has led to an interest in developing biodegradable, bioavailable, and non-toxic sensors, or biosensors. The integration of polymers into sensor systems has proven to significantly improve sensitivity, selectivity, and stability and minimize sample preparation using bioavailable and biodegradable polymers. This review provides a general overview of perspectives and trends of polymer-based sensors and biosensors for the detection of ibuprofen compared to non-polymer-based sensors.
Collapse
Affiliation(s)
- Ntombenhle Masanabo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Benjamin Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Azeez O Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa.
| |
Collapse
|
12
|
Núñez-Montero K, Rojas-Villalta D, Barrientos L. Antarctic Sphingomonas sp. So64.6b showed evolutive divergence within its genus, including new biosynthetic gene clusters. Front Microbiol 2022; 13:1007225. [DOI: 10.3389/fmicb.2022.1007225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
IntroductionThe antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites.MethodsThe complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain.Results and discussionThe Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, −a probable new species of this genetically divergent genus–, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
Collapse
|
13
|
Wang Z, Liang B, Hou Y, Li S, Xie L, Peng L, Zhang P, Wang A, Yun H, Li X. Weak electrostimulation enhanced the microbial transformation of ibuprofen and naproxen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155522. [PMID: 35489501 DOI: 10.1016/j.scitotenv.2022.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Ibuprofen (IBU) and naproxen (NPX) are commonly used non-steroidal anti-inflammatory drugs (NSAIDs) with high-risk quotients and are frequently detected in various aquatic environments. A weak electrostimulated biofilm not only had improved removal efficiencies to IBU and NPX, but also transformed different enantiomers with comparable efficiency and without configuration inversion. IBU was transformed mainly by oxidation (hydroxyl-IBU, carboxy-IBU), while NPX was mainly detoxified. The microbial analysis of IBU and NPX biofilm showed that the shared core consortia (> 1%) contained typical electro-active bacteria (Geobacter, Desulfovibrio), fermenters (Petrimonas, Acetobacterium) and potential degraders (Pandoraea, Nocardiaceae), which exhibited synergistic interactions by exchanging the additional electrons, H+, coenzyme NAD(H) or NAD(P) (H) and energy. The fungal community has a significant correlation to those core bacteria and they may also play transformation roles with their diverse enzymes. Plenty of nonspecific oxidoreductase, decarboxylase, hydrolase, cytochrome P450, and other enzymes relating to xenobiotic degradation were high-abundance encoded by the core consortia and could potentially participate in IBU and NPX biotransformation. This study offers new insights into the functional microbes and enzymes working on complex NSAIDs biotransformation and provided a feasible strategy for the enhanced removal of NSAIDs (especially IBU and NPX).
Collapse
Affiliation(s)
- Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
14
|
Świacka K, Maculewicz J, Smolarz K, Caban M. Long-term stability of diclofenac and 4-hydroxydiclofenac in the seawater and sediment microenvironments: Evaluation of biotic and abiotic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119243. [PMID: 35381302 DOI: 10.1016/j.envpol.2022.119243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Studies in recent years have shown that significant amounts of diclofenac (DCF) and its metabolites are present in marine coastal waters. Their continuous flow into the environment may be associated with numerous negative effects on both fauna and flora. Although more and more is known about the effects of pharmaceuticals on marine ecosystems, there are still many issues that have not received enough attention, but are essential for risk assessment, such as long term stability. Furthermore, interaction of pharmaceuticals with sediments, which are inhabited by rich microbial, meiofaunal and macrobenthic communities need investigation. Therefore, we undertook an analysis of the stability of DCF and its metabolite, 4-hydroxy diclofenac, in seawater and sediment collected from the brackish environment of Puck Bay. Our 29-day experiment was designed to gain a better understanding of the fate of these compounds under experimental conditions same as near the seafloor. Diclofenac concentration decreased by 31.5% and 20.4% in the tanks with sediment and autoclaved sediment, respectively during 29-day long experiment. In contrast, the concentration of 4-OH diclofenac decreased by 76.5% and 90.2% in sediment and autoclaved sediment, respectively. The concentration decrease of both compounds in the sediment tanks resulted from their sorption in the sediment and biodegradation. Obtained results show that marine sediments favour DCF and 4-OH DCF removal from the water column.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
15
|
Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst Appl Microbiol 2022; 45:126339. [PMID: 35714383 DOI: 10.1016/j.syapm.2022.126339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.
Collapse
|
16
|
Genetic Characterization of the Ibuprofen-Degradative Pathway of Rhizorhabdus wittichii MPO218. Appl Environ Microbiol 2022; 88:e0038822. [PMID: 35604231 PMCID: PMC9195938 DOI: 10.1128/aem.00388-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ibuprofen is one of the most common drugs found as a contaminant in soils, sediments, and waters. Although several microorganisms able to metabolize ibuprofen have been described, the metabolic pathways and factors limiting biodegradation in nature remain poorly characterized. Among the bacteria able to grow on ibuprofen, three different strains belonging to Sphingomonadaceae and isolated from different geographical locations carry the same set of genes required for the upper part of the ibuprofen metabolic pathway. Here, we have studied the metabolic pathway of Rhizorhabdus wittichii MPO218, identifying new genes required for the lower part of the ibuprofen metabolic pathway. We have identified two new DNA regions in MPO218 involved in the metabolism of ibuprofen. One is located on the MPO218 chromosome and appears to be required for the metabolism of propionyl-CoA through the methylmalonyl-CoA pathway. Although involved in ibuprofen metabolism, this region is not strictly necessary for growing using ibuprofen. The second region belongs to the pIBU218 plasmid and comprises two gene clusters containing aromatic compound biodegradation genes, part of which are necessary for ibuprofen degradation. We have identified two genes required for the first two steps of the lower part of the ibuprofen metabolic pathway (ipfL and ipfM), and, based on our results, we propose the putative complete pathway for ibuprofen metabolism in strain MPO218. IMPORTANCE Ibuprofen, one of the most common pharmaceutical contaminants in natural environments, is toxic for some aquatic and terrestrial organisms. The main source of environmental ibuprofen is wastewater, so improving wastewater treatment is of relevant importance. Although several microorganisms capable of biodegrading ibuprofen have been described, the metabolic pathways and their genetic bases remain poorly understood. Three bacterial strains of the family Sphingomonadaceae capable of using ibuprofen as carbon and energy source have been described. Although the genes involved in the upper part of the degradation pathway (ipfABDEF cluster) have been identified, those required for the lower part of the pathway remained unknown. Here, we have confirmed the requirement of the ipf cluster for the generation of isobutyl catechol and have identified the genes involved in the subsequent transformation of the metabolic products. Identification of genes involved in ibuprofen degradation is essential to developing improved strains for the removal of this contaminant.
Collapse
|
17
|
Chopra S, Kumar D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of Ibuprofen. Int Microbiol 2022; 25:615-628. [PMID: 35553276 DOI: 10.1007/s10123-022-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Ibuprofen (IBU) is the third most commonly used analgesic drug in the world. It enters the water system as a result of human excretion-based wastewater discharges. Hence, it attracts the attention of environmentalists for its ecological fate and degradation behavior. In this study, the two IBU degrading bacterial strains, Citrobacter freundii strain PYI-2 (MT039504) and Citrobacter portucalensis strain YPI-2 (MN744335), were isolated from industrial wastewater samples using an enrichment culture method, identified, and characterized. Physiological and batch culture degradation studies have indicated that these strains involved in IBU degradation and the intermediates produced during the process were analyzed. These strains degrade IBU in the batch culture. The optimum pH was reported for degradation of the PYI2 strain (6.9) and YPI2 strain (5.8), and the optimum temperatures were 42°C and 32°C, respectively. Biomass kinetic analysis of these strains was performed based on physical parameters (temperature, pH, and rpm) and confirmed by the experimental study. As indicated in the GC-MS chromatogram peaks, viz., hydroxyibuprofen, 2-(4-hydroxyphenylpropionic acid), 1,4-hydroquinone, and 2-hydroxy-1,4-quinol various intermediates compounds of degradation pathway were observed. Finally, through the GC-MS data, the metabolic pathway for degradation was predicted. In the study, it was confirmed that Citrobacter freundii strain PYI-2 and Citrobacter portucalensis strain YPI-2 exhibit metabolic potential for the biodegradation of IBU and can be further deployed in bioremediation.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
18
|
Li F, Guo Y, Wang Z, Mu Y. Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:507-517. [PMID: 34351809 DOI: 10.1080/15226514.2021.1955240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soil salinization is one main environmental factor restricting plant growth and agricultural productivity. However, phytoremediation is one of the important means to improve saline-alkali soil by planting halophytes or salt-tolerant plants. In order to study whether there are differences among soil microorganisms in different phytoremediation, the effects of four plants, including alfalfa (MX), oil sunflower (YK), maize (YM) and ryegrass (HMC) on soil physicochemical properties, enzyme activity and microbial community diversity and composition were investigated in this study and the relationships between microbial community structure and soil physicochemical properties, enzyme activity were analyzed. The results showed that all plants treatments significantly decreased pH, TS (total saltinity) and BD (bulk density), while increased OM (organic matter), TN (total nitrogen), AN (available nitrogen), TP (total phosphorus), AP (available phosphorus), TK (total potassium) and TPOR (total porosity), and the number of nitrite bacteria reduced by planting at the same time. Except for YM, other treatments significantly increased the number of nitrifying and denitrifying bacteria compared with CK, while only YK increased that of fungi. Additionally, all plants increased the activity of nitrite reductase and decreased that of urease. More interestingly, plants treatments shifted microbial community compositions, and only YM significantly decreased the bacterial diversity and increased the fungal diversity. Redundancy analysis suggested that TK, pH, BD, TS, AN, OM and nitrite reductase, lignin peroxidase were the key environmental factors that shaped the bacterial community structure, while that of fungi was mainly driven by OM, nitrite reductase, urease and lignin peroxidase. The results indicated that MX and YM are the best choice for remediation of saline-alkali soil. These data can provide certain theoretical basis for the further restoration of saline-alkali land.HIGHLIGHTSThe effects of different phytoremediation on microbial diversity and community structure were different.Phytoremediation can significantly decreased pH, TS and BD, while increased OM, TN, AN, TP, AP, TK and TPOR in saline-alkali soil.All plants increased the activity of nitrite reductase and decreased the activity of urease.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Yongzhong Guo
- Institute of Desertification Control, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Zhangjun Wang
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Yangxiu Mu
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| |
Collapse
|