1
|
Zhang M, Fu L, Ma D, Wang X, Liu A. Effects of Microtopography on Soil Microbial Community Structure and Abundance in Permafrost Peatlands. Microorganisms 2024; 12:867. [PMID: 38792697 PMCID: PMC11124213 DOI: 10.3390/microorganisms12050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Soil microorganisms play crucial roles in the stability of the global carbon pool, particularly in permafrost peatlands that are highly sensitive to climate change. Microtopography is a unique characteristic of peatland ecosystems, but how microtopography affects the microbial community structures and their functions in the soil is only partially known. We characterized the bacterial and fungal community compositions by amplicon sequencing and their abundances via quantitative PCR at different soil depths in three microtopographical positions (hummocks, flats, and hollows) in permafrost peatland of the Greater Xing'an Mountains in China. The results showed that the soil of hummocks displayed a higher microbial diversity compared to hollows. Microtopography exerted a strong influence on bacterial community structure, while both microtopography and soil depth greatly impacted the fungal community structure with variable effects on fungal functional guilds. Soil water content, dissolved organic carbon, total phosphorus, and total nitrogen levels of the soil mostly affected the bacterial and fungal communities. Microtopography generated variations in the soil water content, which was the main driver of the spatial distribution of microbial abundances. This information stressed that the hummock-flat-hollow microtopography of permafrost peatlands creates heterogeneity in soil physicochemical properties and hydrological conditions, thereby influencing soil microbial communities at a microhabitat scale. Our results imply that changes to the water table induced by climate warming inducing permafrost degradation will impact the composition of soil microbes in peatlands and their related biogeochemical functions, eventually providing feedback loops into the global climate system.
Collapse
Affiliation(s)
- Man Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (M.Z.); (L.F.); (X.W.); (A.L.)
- Heilongjiang Wuyiling Wetland Ecosystem National Observation and Research Station, Yichun 153000, China
| | - Lingyu Fu
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (M.Z.); (L.F.); (X.W.); (A.L.)
- Heilongjiang Wuyiling Wetland Ecosystem National Observation and Research Station, Yichun 153000, China
| | - Dalong Ma
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (M.Z.); (L.F.); (X.W.); (A.L.)
- Heilongjiang Wuyiling Wetland Ecosystem National Observation and Research Station, Yichun 153000, China
| | - Xu Wang
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (M.Z.); (L.F.); (X.W.); (A.L.)
- Heilongjiang Wuyiling Wetland Ecosystem National Observation and Research Station, Yichun 153000, China
| | - Anwen Liu
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China; (M.Z.); (L.F.); (X.W.); (A.L.)
- Heilongjiang Wuyiling Wetland Ecosystem National Observation and Research Station, Yichun 153000, China
| |
Collapse
|
2
|
Defrenne CE, Moore JAM, Tucker CL, Lamit LJ, Kane ES, Kolka RK, Chimner RA, Keller JK, Lilleskov EA. Peat loss collocates with a threshold in plant-mycorrhizal associations in drained peatlands encroached by trees. THE NEW PHYTOLOGIST 2023; 240:412-425. [PMID: 37148190 DOI: 10.1111/nph.18954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Drainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza at c. 120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genus Cortinarius dominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together with Mycena) was positively associated with peat humification and negatively with carbon-to-nitrogen ratio. Our study is consistent with a plant-soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long-term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon-rich soils globally.
Collapse
Affiliation(s)
| | - Jessica A M Moore
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Colin L Tucker
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| | - Louis J Lamit
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Evan S Kane
- Michigan Technological University, Houghton, MI, 49931, USA
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| | - Randall K Kolka
- U.S. Forest Service-Northern Research Station, Grand Rapids, MN, 55744, USA
| | | | - Jason K Keller
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Erik A Lilleskov
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| |
Collapse
|