1
|
Cheng Z, Liu Q, Huang X. Partial Correspondence between Host Plant-Related Differentiation and Symbiotic Bacterial Community in a Polyphagous Insect. Animals (Basel) 2024; 14:283. [PMID: 38254452 PMCID: PMC10812459 DOI: 10.3390/ani14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Host plants play a vital role in insect population differentiation, while symbiotic associations between bacteria and insects are ubiquitous in nature. However, existing studies have given limited attention to the connection between host-related differentiation and symbiotic bacterial communities in phytophagous insects. In this study, we collected 58 samples of Aphis odinae from different host plants in southern China and constructed phylogenetic trees to investigate their differentiation in relation to host plants. We also selected aphid samples from the five most preferred host plants and analyzed their symbiotic bacterial composition using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The phylogeny and symbiotic bacterial community structure of A. odinae populations on different host plants showed that samples from Triadica sebifera (Euphorbiaceae) had a consistent presence of Wolbachia as the predominant secondary symbiont and suggested the possibility of undergoing differentiation. Conversely, although differentiation was observed in samples from Rhus chinensis (Anacardiaceae), no consistent presence of predominant secondary symbionts was found. Additionally, the samples from Heptapleurum heptaphyllum (Araliaceae) consistently carried Serratia, but no host differentiation was evident. In summary, this study reveals a partial correspondence between symbiotic bacterial communities and host-related differentiation in A. odinae. The findings contribute to our understanding of the microevolutionary influencing the macroevolutionary relationships between bacterial symbionts and phytophagous insects. The identification of specific symbionts associated with host-related differentiation provides valuable insights into the intricate dynamics of insect-bacteria interactions.
Collapse
Affiliation(s)
| | | | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.C.); (Q.L.)
| |
Collapse
|
2
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
3
|
Li T, Yang G, Li Q, Jiang Y, Kang D, Fan Z, Gong Z, Lu R, Zhou G, Wu Y, Lu C. Population dynamics of migrant wheat aphids in China's main wheat production region and their interactions with bacterial symbionts. FRONTIERS IN PLANT SCIENCE 2023; 14:1103236. [PMID: 36844098 PMCID: PMC9947703 DOI: 10.3389/fpls.2023.1103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Sitobion miscanthi, Rhopalosiphum padi, and Schizaphis graminum are the three main pests in Chinese wheat-producing regions. In 2020, they are classified into the Chinese Class I list of agricultural diseases and pests, due to their severe harm to wheat plantings. S. miscanthi, R. padi, and S. graminum are migrant pests, and understanding their migration patterns and simulating their migration trajectories would improve forecasting and controlling them. Furthermore, the bacterial community of the migrant wheat aphid is also less known. In this study, we employed a suction trap to uncover the migration patterns of the three wheat aphid species in Yuanyang county, Henan province, during 2018 to 2020. And then the migration trajectories of S. miscanthi and R. padi were simulated using the NOAA HYSPLIT model. The interactions between wheat aphids and bacteria were further revealed by specific PCR and 16S rRNA amplicon sequencing. The results showed that the population dynamics of migrant wheat aphids was varied. Most of the trapped samples were identified to be R. padi, and S. graminum was the least collected sample. Typically, R. padi had two migration peaks in the 3 years, whereas S. miscanthi and S. graminum only exhibited one migration peak in 2018 and 2019. Moreover, the aphid migration trajectories varied over the years. Generally, the aphids originated from the south and migrated to the north. Herein, the infections of three main aphid facultative bacterial symbionts, Serratia symbiotica, Hamiltonella defensa, and Regiella insercticola, were detected in S. miscanthi and R. padi with specific PCR. Rickettsiella, Arsenophonus, Rickettsia, and Wolbachia were further identified with 16S rRNA amplicon sequencing. Biomarker searching indicated that Arsenophonus was significantly enriched in R. padi. Furthermore, diversity analyses showed that the bacterial community of R. padi had a higher richness and evenness than that of S. miscanthi. In conclusion, this study expands our knowledge about the migration patterns of aphids in the main wheat plant region of China and reveals the interactions between bacterial symbionts and migrant aphids.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gongqiang Yang
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yueli Jiang
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongmei Kang
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiye Fan
- Institute of Plant Protection, Luohe Institute of Agricultural Sciences, Luohe, China
| | - Zhongjun Gong
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruijie Lu
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guotao Zhou
- Henan Yunfei Technology Development Co., Ltd, Zhengzhou, China
| | - Yuqing Wu
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection/Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Martoni F, Bulman SR, Piper AM, Pitman A, Taylor GS, Armstrong KF. Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand. PLoS One 2023; 18:e0285587. [PMID: 37186593 PMCID: PMC10184942 DOI: 10.1371/journal.pone.0285587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The bacterial microbiome of psyllids has been studied for decades, with a strong focus on the primary and secondary endosymbionts capable of providing essential amino acids for the insects' diet and therefore playing a key role in the insects' ability to radiate on novel plant hosts. Here, we combine metabarcoding analysis of the bacterial communities hosted by psyllids with a multi-gene phylogenetic analysis of the insect hosts to determine what factors influence the bacterial diversity of the psyllids' microbiomes, especially in the context of the dispersal and evolutionary radiation of these insects in Aotearoa New Zealand. Using multi-gene phylogenetics with COI, 18S and EF-1α sequences from 102 psyllid species, we confirmed for the first time monophyly for all the six genera of native/endemic Aotearoa New Zealand psyllids, with indications that they derive from at least six dispersal events to the country. This also revealed that, after its ancestral arrival, the genus Powellia has radiated onto a larger and more diverse range of plants than either Psylla or Ctenarytaina, which is uncommon amongst monophyletic psyllids globally. DNA metabarcoding of the bacterial 16S gene here represents the largest dataset analysed to date from psyllids, including 246 individuals from 73 species. This provides novel evidence that bacterial diversity across psyllid species is strongly associated with psyllid phylogenetic structure, and to a lesser degree to their host plant association and geographic distribution. Furthermore, while the strongest co-phylogenetic signals were derived from the primary and secondary symbionts, a signal of phylosymbiosis was still retained among the remaining taxa of the bacterial microbiome, suggesting potential vertical transmission of bacterial lineages previously unknown to have symbiotic roles.
Collapse
Affiliation(s)
- Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC, Australia
| | - Simon R Bulman
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | | | - Andrew Pitman
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Foundation of Arable Research, Hornby, Christchurch, New Zealand
| | - Gary S Taylor
- The University of Adelaide, Adelaide, South Australia
| | - Karen F Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Agricultural and Life Sciences Faculty, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
5
|
Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts. Sci Rep 2022; 12:21127. [PMID: 36477425 PMCID: PMC9729595 DOI: 10.1038/s41598-022-25554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Host plant range is arguably one of the most important factors shaping microbial communities associated with insect herbivores. However, it is unclear whether host plant specialization limits microbial community diversity or to what extent herbivores sharing a common host plant evolve similar microbiomes. To investigate whether variation in host plant range influences the assembly of core herbivore symbiont populations we compared bacterial diversity across three milkweed aphid species (Aphis nerii, Aphis asclepiadis, Myzocallis asclepiadis) feeding on a common host plant (Asclepias syriaca) using 16S rRNA metabarcoding. Overall, although there was significant overlap in taxa detected across all three aphid species (i.e. similar composition), some structural differences were identified within communities. Each aphid species harbored bacterial communities that varied in terms of richness and relative abundance of key symbionts. However, bacterial community diversity did not vary with degree of aphid host plant specialization. Interestingly, the narrow specialist A. asclepiadis harbored significantly higher relative abundances of the facultative symbiont Arsenophonus compared to the other two aphid species. Although many low abundance microbes were shared across all milkweed aphids, key differences in symbiotic partnerships were observed that could influence host physiology or additional ecological variation in traits that are microbially-mediated. Overall, this study suggests overlap in host plant range can select for taxonomically similar microbiomes across herbivore species, but variation in core aphid symbionts within these communities may still occur.
Collapse
|
6
|
Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, Wu Y, Lu C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol 2022; 13:1020461. [PMID: 36504780 PMCID: PMC9727308 DOI: 10.3389/fmicb.2022.1020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control /College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suxia Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanchen Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China,Chuantao Lu
| |
Collapse
|
7
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Liu Q, Zhang H, Huang X. Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02114-5. [PMID: 36138209 DOI: 10.1007/s00248-022-02114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The relationships between symbionts and insects are complex, and symbionts usually have diverse ecological and evolutionary effects on their hosts. The phloem sap-sucking aphids are good models to study the interactions between insects and symbiotic microorganisms. Although aphids usually exhibit remarkable life cycle complexity, most previous studies on symbiotic diversity sampled only apterous viviparous adult females or very few morphs. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the symbiotic bacterial communities of eleven morphs or developmental stages of the social aphid Pseudoregma bambucicola. We found there were significant differences in bacterial composition in response to different morphs and developmental stages, and for the first time, we revealed male aphids hosted very different symbiotic composition featured with low abundance of dominant symbionts but high diversity of total symbionts. The relative abundance of Pectobacterium showed relatively stable across different types of samples, while that of Wolbachia fluctuated greatly, indicating the former may have a consistent function in this species and the latter may provide specific function for certain morphs or developmental stages. Our study presents new evidence of complexity of symbiotic associations and indicates strong linkage between symbiotic bacterial community and host age and morph.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Qin M, Jiang L, Kholmatov BR, Qiao G, Chen J. Phylosymbiotic Structures of the Microbiota in Mollitrichosiphum tenuicorpus (Hemiptera: Aphididae: Greenideinae). MICROBIAL ECOLOGY 2022; 84:227-239. [PMID: 34387702 PMCID: PMC9250915 DOI: 10.1007/s00248-021-01830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Aphids harbor an array of symbionts that provide hosts with ecological benefits. Microbial community assembly generally varies with respect to aphid species, geography, and host plants. However, the influence of host genetics and ecological factors on shaping intraspecific microbial community structures has not been fully understood. In the present study, using Illumina sequencing of the V3 - V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions associated with Mollitrichosiphum tenuicorpus from different regions and plants in China. The primary symbiont Buchnera aphidicola and the secondary symbiont Arsenophonus dominated the microbial flora in M. tenuicorpus. Ordination analyses and statistical tests suggested that geography and aphid genetics primarily contributed to the variation in the microbiota of M. tenuicorpus. We further confirmed the combined effect of aphid genetics and geography on shaping the structures of symbiont and secondary symbiont communities. Moreover, the significant correlation between aphid genetic divergence and symbiont community dissimilarity provides evidence for intraspecific phylosymbiosis in natural systems. Our study helped to elucidate the eco-evolutionary relationship between symbiont communities and aphids within one given species.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bakhtiyor R Kholmatov
- Institute of Zoology, Academy of Sciences Republic of Uzbekistan, Bagishamol Str., 232b, Tashkent, 100053, Uzbekistan
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Shigenobu S, Yorimoto S. Aphid hologenomics: current status and future challenges. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100882. [PMID: 35150917 DOI: 10.1016/j.cois.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Aphids are important model organisms in ecological, developmental, and evolutionary studies of, for example, symbiosis, insect-plant interactions, pest management, and developmental polyphenism. Here, we review the recent progress made in the genomics of aphids and their symbionts: hologenomics. The reference genome of Acyrthosiphon pisum has been greatly improved, and chromosome-level assembly is now available. The genomes of over 20 aphid species have been sequenced, and comparative genomic analyses have revealed pervasive gene duplication and dynamic chromosomal rearrangements. Over 120 symbiont genomes (both obligate and facultative) have been sequenced, and modern deep-sequencing technologies have identified novel symbionts. The advances in hologenomics have helped to elucidate the dynamic evolution of facultative and co-obligate symbionts with the ancient obligate symbiont Buchnera.
Collapse
Affiliation(s)
- Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
11
|
Species Identity Dominates over Environment in Driving Bacterial Community Assembly in Wild Invasive Leaf Miners. Microbiol Spectr 2022; 10:e0026622. [PMID: 35343791 PMCID: PMC9045101 DOI: 10.1128/spectrum.00266-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The microbiota of invasive animal species may be pivotal to their adaptation and spread, yet the processes driving the assembly and potential sources of host-microbiota remain poorly understood. Here, we characterized microbiota of four Liriomyza leaf miner fly species totaling 310 individuals across 43 geographical populations in China and assessed whether the microbiota of the wild leaf miner was acquired from the soil microbiota or the host plant microbiota, using high-throughput 16S rRNA sequencing. Bacterial communities differed significantly among four leaf miner species but did not mirror host phylogeny. Microbiota diversity in the native L. chinensis was significantly higher than in three invasive leaf miners (i.e., L. trifolii, L. huidobrensis, and L. sativae), yet the microbial community of the invasive species exhibited a more connected and complex network structure. Structural equation models revealed that host species identity was more important than environmental factors (e.g., geography, climate, or plants) in shaping microbiota composition. Using neutral and null model analyses, we found that deterministic processes like variable selection played a primary role in driving microbial community assembly, with some influence by stochastic processes like drift. The relative degree of these processes governing microbiota was likely correlated with host species but independent of either geographical or climatic factors. Finally, source tracking analysis showed that leaf miners might acquire microbes from their host plant rather than the soil. Our results provide a robust assessment of the ecological processes governing bacterial community assembly and potential sources of microbes in invasive leaf miners. IMPORTANCE The invasion of foreign species, including leaf miners, is a major threat to world biota. Host-associated microbiota may facilitate host adaption and expansion in a variety of ways. Thus, understanding the processes that drive leaf miner microbiota assembly is imperative for better management of invasive species. However, how microbial communities assemble during the leaf miner invasions and how predictable the processes remain unexplored. This work quantitatively deciphers the relative importance of deterministic process and stochastic process in governing the assembly of four leaf miner microbiotas and identifies potential sources of leaf miner-colonizing microbes from the soil-plant-leaf miner continuum. Our study provides new insights into the mechanisms underlying the drive of leaf miner microbiota assembly.
Collapse
|
12
|
Qin M, Chen J, Jiang L, Qiao G. Insights Into the Species-Specific Microbiota of Greenideinae (Hemiptera: Aphididae) With Evidence of Phylosymbiosis. Front Microbiol 2022; 13:828170. [PMID: 35273583 PMCID: PMC8901875 DOI: 10.3389/fmicb.2022.828170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aphids and their symbionts represent an outstanding model for studies of insect–symbiont interactions. The aphid microbiota can be shaped by aphid species, geography and host plants. However, the relative importance of phylogenetic and ecological factors in shaping microbial community structures is not well understood. Using Illumina sequencing of the V3–V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions of 215 aphid colonies representing 53 species of the aphid subfamily Greenideinae from different regions and plants in China, Nepal, and Vietnam. The primary endosymbiont Buchnera aphidicola and secondary symbiont Serratia symbiotica dominated the microbiota of Greenideinae. We simultaneously explored the relative contribution of host identity (i.e., aphid genus and aphid species), geography and host plant to the structures of bacterial, symbiont and secondary symbiont communities. Ordination analyses and statistical tests highlighted the strongest impact of aphid species on the microbial flora in Greenideinae. Furthermore, we found a phylosymbiosis pattern in natural Greenideinae populations, in which the aphid phylogeny was positively correlated with microbial community dissimilarities. These findings will advance our knowledge of host-associated microbiota assembly across both host phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|