1
|
Xu H, Li Y, Cao X, He Q, Jin B, Dai L, Zhang X, Zhang X, Bian Q, Yang Q, Zhang L. Discovery of Novel Inhibitors Targeting Fungal Chitin Deacetylase via Virtual Screening for Plant Disease Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8886-8896. [PMID: 40173383 DOI: 10.1021/acs.jafc.5c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Fungal chitin deacetylase (CDA) plays a crucial role in pathogen-plant interactions, which is regarded as an innovative and promising target for fungicides. In this study, a pharmacophore-based virtual screening strategy was employed to identify compounds VS-24 and VS-25 as potent inhibitors against Puccinia striiformis f. sp. tritici CDA (PstCDA). Further bioassays demonstrated that VS-24 exhibited a protective effect of 61.2% against rice blast at 100 μg/mL, while VS-25 showed a superior protective effect of 45.5% against corn rust at 5 μg/mL, both superior to the reported CDA inhibitor benzohydroxamic acid (BHA). Molecular dynamics simulations revealed that multiple key interactions involving the Zn2+ ion and residues His207 and Tyr152 of PstCDA are critical for the binding of VS-24 or VS-25, with electrostatic interactions contributing most significantly to the binding free energy. Finally, toxicity predictions confirmed the potential biosafety of VS-24 and VS-25. Overall, this study identified two promising lead compounds targeting fungal CDA to control plant diseases.
Collapse
Affiliation(s)
- Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yingchen Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyan Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qi He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Binyan Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingjie Dai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinyuan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Cheng Y, Ma S, Dong J, Zhang W, Ma Y, Zhang A, Peng H, Han F, Kong W. Inhibitory activity and mechanisms of chitosan against Fusarium avenaceum, a pathogen causing Angelica root rot disease. Int J Biol Macromol 2025; 300:140249. [PMID: 39864686 DOI: 10.1016/j.ijbiomac.2025.140249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated. Additionally, the potential mechanisms of these effects were explored at the microstructural and transcriptomic levels. Notably, low-molecular-weight chitosan (20 kDa) exhibited superior antifungal activity when compared to high-molecular-weight chitosan (500 kDa and 1000 kDa). The half-maximal inhibitory concentration (IC50) of 20, 500, and 1000 kDa chitosan were 0.2103, 0.2183, and 0.2707 g/L, respectively. Morphological and physiological experiments demonstrated that chitosan can inhibit the growth of F. avenaceum by decreasing spore germination, destroying mycelial morphology and microstructure, and promoting the release of intracellular electrolytes. RNA sequencing revealed considerable changes in the transcriptomic profile of F. avenaceum after chitosan treatment, with 2030 genes being differentially expressed. Subsequent KEGG pathway analysis demonstrated that genes associated with translation, human diseases, and transcription were upregulated in F. avenaceum after chitosan treatment. In contrast, genes associated with carbohydrate and amino acid metabolism, cellular processes, exogenous substance degradation and metabolism, and the metabolism of cofactors and vitamins were downregulated. Collectively, these results indicated that chitosan may influence the growth of F. avenaceum by disrupting protein biosynthesis and key metabolic pathways. These findings highlight the substantial potential of chitosan as an alternative agent for the management of fungal diseases in plants used in Chinese herbal medicine.
Collapse
Affiliation(s)
- Yaya Cheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Saimai Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jianmei Dong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wenwen Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Yanjun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Aimei Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Hai Peng
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
| | - Fujun Han
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Weibao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; Gansu Engineering Research Center of High Value-added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China.
| |
Collapse
|
3
|
Ma Y, Lv J, Jiang L, Fan Z, Hao L, Li Z, Ma C, Wang R, Luo H. In vitro ovicidal studies on egg-parasitic fungus Pochonia chlamydosporia and safety tests on mice. Front Vet Sci 2025; 11:1505824. [PMID: 39850584 PMCID: PMC11756595 DOI: 10.3389/fvets.2024.1505824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The control of parasites infections in livestock is an ongoing concern, with parasites developing resistance to commonly used antiparasitic drugs. The current study investigated in vitro the destructive effect of the fungus Pochonia chlamydosporia on the eggs and oocysts of several equine parasites, as well as assessing the safety of the fungus in mice. Methods S. equinus, P. equorum, Anoplocephala spp eggs and Eimeria spp. oocysts were treated with P. chlamydosporia. The prepared preparation was also administered to mice, and the physiological indexes and lesions of major tissues and organs, as well as pathological sections of tissue, were then observed. Results P. chlamydosporia exhibited varying degrees of efficacy in the control of S. equinus, P. equorum, Anoplocephala spp eggs and Eimeria spp. oocysts. The acute toxicity test demonstrated that there was no death or toxicity symptom observed in the mice, with no significant difference in clinical observations, such as respiration, mental state, appetite, or feces, between the control and treated mice after the feeding of the biological preparation of P. chlamydosporia. Discussion These findings suggested that administration of P. chlamydosporia would be safe to use in livestock and provided a rationale for its potential clinical application, pending further analyses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jinbao Lv
- Zhongnong Dong Jun Animal Diagnosis Technology (Beijing) Co., Ltd., Beijing, China
| | - Lili Jiang
- College of Pharmacy Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy Heze University, Heze, China
| | - Luyao Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhengyi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Chengyu Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hongliang Luo
- Rui Pu Agricultural Technology Co., Ltd., Hohhot, China
| |
Collapse
|
4
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
5
|
Mestre-Tomás J, Esgueva-Vilà D, Fuster-Alonso A, Lopez-Moya F, Lopez-Llorca LV. Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia. Molecules 2023; 28:molecules28104053. [PMID: 37241794 DOI: 10.3390/molecules28104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal volatile organic compounds (VOCs) are responsible for fungal odor and play a key role in biological processes and ecological interactions. VOCs represent a promising area of research to find natural metabolites for human exploitation. Pochonia chlamydosporia is a chitosan-resistant nematophagous fungus used in agriculture to control plant pathogens and widely studied in combination with chitosan. The effect of chitosan on the production of VOCs from P. chlamydosporia was analyzed using gas chromatography-mass spectrometry (GC-MS). Several growth stages in rice culture medium and different times of exposure to chitosan in modified Czapek-Dox broth cultures were analyzed. GC-MS analysis resulted in the tentative identification of 25 VOCs in the rice experiment and 19 VOCs in the Czapek-Dox broth cultures. The presence of chitosan in at least one of the experimental conditions resulted in the de novo production of 3-methylbutanoic acid and methyl 2,4-dimethylhexanoate, and oct-1-en-3-ol and tetradec-1-ene in the rice and Czapek-Dox experiments, respectively. Other VOCs changed their abundance because of the effect of chitosan and fungal age. Our findings suggest that chitosan can be used as a modulator of the production of VOCs in P. chlamydosporia and that there is also an effect of fungal age and exposure time.
Collapse
Affiliation(s)
- Jorge Mestre-Tomás
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, 46980 Paterna, Spain
| | - David Esgueva-Vilà
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Alba Fuster-Alonso
- Institut de Ciències del Mar (ICM-CSIC), Renewable Marine Resources Department, 08003 Barcelona, Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
6
|
Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greco D, Ippolito A, Lahbib N, Logrieco AF, López-Llorca LV, Lopez-Moya F, Luvisi A, Mincuzzi A, Molina-Acevedo JP, Pazzani C, Scortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 2023; 11:440. [PMID: 36838405 PMCID: PMC9967823 DOI: 10.3390/microorganisms11020440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | | | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Mariantonietta Colagiero
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giuseppe Cozzi
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Antonio Francesco Logrieco
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | | | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annamaria Mincuzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Juan Pablo Molina-Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana-AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Colombia
| | - Carlo Pazzani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Maria Scrascia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Valenzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
7
|
Lopez-Nuñez R, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV. Chitosan and nematophagous fungi for sustainable management of nematode pests. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:980341. [PMID: 37746197 PMCID: PMC10512356 DOI: 10.3389/ffunb.2022.980341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
Collapse
Affiliation(s)
- Raquel Lopez-Nuñez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
8
|
Sambles C, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV, Studholme DJ. Chitosan induces differential transcript usage of chitosanase 3 encoding gene (csn3) in the biocontrol fungus Pochonia chlamydosporia 123. BMC Genomics 2022; 23:101. [PMID: 35123406 PMCID: PMC8817618 DOI: 10.1186/s12864-021-08232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pochonia chlamydosporia is an endophytic fungus used for nematode biocontrol that employs its cellular and molecular machinery to degrade the nematode egg-shell. Chitosanases, among other enzymes, are involved in this process. In this study, we improve the genome sequence assembly of P. chlamydosporia 123, by utilizing long Pacific Biosciences (PacBio) sequence reads. Combining this improved genome assembly with previous RNA-seq data revealed alternative isoforms of a chitosanase in the presence of chitosan. This study could open new insights into understanding fungal resistance to chitosan and root-knot nematode (RKN) egg infection processes. Results The P. chlamydosporia 123 genome sequence assembly has been updated using long-read PacBio sequencing and now includes 12,810 predicted protein-coding genes. Compared with the previous assembly based on short reads, there are 701 newly annotated genes, and 69 previous genes are now split. Eight of the new genes were differentially expressed in fungus interactions with Meloidogyne javanica eggs or chitosan. A survey of the RNA-seq data revealed alternative splicing in the csn3 gene that encodes a chitosanase, with four putative splicing variants: csn3_v1, csn3_v2, csn3_v3 and csn3_v4. When P. chlamydosporia is treated with 0.1 mg·mL− 1 chitosan for 4 days, csn3 is expressed 10-fold compared with untreated controls. Furthermore, the relative abundances of each of the four transcripts are different in chitosan treatment compared with controls. In controls, the abundances of each transcript are nil, 32, 55, and 12% for isoforms csn3_v1, csn3_v2, csn3_v3 and csn3_v4 respectively. Conversely, in chitosan-treated P. chlamydosporia, the abundances are respectively 80, 15%, 2—3%, 2—3%. Since isoform csn3_v1 is expressed with chitosan only, the putatively encoded enzyme is probably induced and likely important for chitosan degradation. Conclusions Alternative splicing events have been discovered and described in the chitosanase 3 encoding gene from P. chlamydosporia 123. Gene csn3 takes part in RKN parasitism process and chitosan enhances its expression. The isoform csn3_v1 would be related to the degradation of this polymer in bulk form, while other isoforms may be related to the degradation of chitosan in the nematode egg-shell. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08232-7.
Collapse
|
9
|
Zhan J, Qin Y, Gao K, Fan Z, Wang L, Xing R, Liu S, Li P. Efficacy of a Chitin-Based Water-Soluble Derivative in Inducing Purpureocillium lilacinum against Nematode Disease ( Meloidogyne incognita). Int J Mol Sci 2021; 22:6870. [PMID: 34206764 PMCID: PMC8268436 DOI: 10.3390/ijms22136870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Plant-parasitic nematodes cause severe economic losses annually which has been a persistent problem worldwide. As current nematicides are highly toxic, prone to drug resistance, and have poor stability, there is an urgent need to develop safe, efficient, and green strategies. Natural active polysaccharides such as chitin and chitosan with good biocompatibility and biodegradability and inducing plant disease resistance have attracted much attention, but their application is limited due to their poor solubility. Here, we prepared 6-oxychitin with good water solubility by introducing carboxylic acid groups based on retaining the original skeleton of chitin and evaluated its potential for nematode control. The results showed that 6-oxychitin is a better promoter of the nematicidal potential of Purpureocillium lilacinum than other water-soluble chitin derivatives. After treatment, the movement of J2s and egg hatching were obviously inhibited. Further plant experiments found that it can destroy the accumulation and invasion of nematodes, and has a growth-promoting effect. Therefore, 6-oxychitin has great application potential in the nematode control area.
Collapse
Affiliation(s)
- Jiang Zhan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (K.G.); (Z.F.); (L.W.); (R.X.); (S.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
10
|
Putative LysM Effectors Contribute to Fungal Lifestyle. Int J Mol Sci 2021; 22:ijms22063147. [PMID: 33808705 PMCID: PMC8003418 DOI: 10.3390/ijms22063147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal LysM effector proteins can dampen plant host–defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1—the smallest one—is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.
Collapse
|
11
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|