1
|
Feng T, Meng Z, Li H, Chen G, Liu C, Tang K, Chen J. Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177851. [PMID: 39631339 DOI: 10.1016/j.scitotenv.2024.177851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Huifen Li
- Zhonglan lianhai Design and Research Institute Co. LTD, 222000, Jiangsu, China
| | - Guohui Chen
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
2
|
Wang Y, Feng Z, Ghani MI, Wang Q, Zeng L, Yang X, Zhang X, Chen C, Li S, Cao P, Chen X, Cernava T. Co-exposure to microplastics and soil pollutants significantly exacerbates toxicity to crops: Insights from a global meta and machine-learning analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176490. [PMID: 39326744 DOI: 10.1016/j.scitotenv.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Environmental contamination of microplastics (MPs) is ubiquitous worldwide, and co-contamination of arable soils with MPs and other pollutants is of increasing concern, and may lead to unexpected consequences on crop production. However, the overall implications of this combined effect, whether beneficial or detrimental, remain a subject of current debate. Here, we conducted a global meta and machine-learning analysis to evaluate the effects of co-exposure to MPs and other pollutants on crops, utilizing 3346 biological endpoints derived from 68 different studies. Overall, compared with control groups that only exposure to conventional soil contaminants, co-exposure significantly exacerbated toxicity to crops, particularly with MPs intensifying adverse effects on crop morphology, oxidative damage, and photosynthetic efficiency. Interestingly, our analysis demonstrated a significant reduction in the accumulation of pollutants in the crop due to the presence of MPs. In addition, the results revealed that potential adverse effects were primarily associated with crop species, MPs mass concentration, and exposure duration. Our study reaffirms the substantial consequences of MPs as emerging pollutants on crops within the context of integrated pollution, providing novel insights into improving sustainability in agro-ecosystems.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zerui Feng
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Muhammad Imran Ghani
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Qiran Wang
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang 550025, China
| | - Lina Zeng
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xuqin Yang
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xin Zhang
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengxi Cao
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyulong Chen
- College of Resources and Environmental Engineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
3
|
Fitz Axen AJ, Kim MS, Klopfenstein NB, Ashiglar S, Hanna JW, Bennett P, Stewart JE. Fire-associated microbial shifts in soils of western conifer forests with Armillaria root disease. Appl Environ Microbiol 2024; 90:e0131224. [PMID: 39495026 DOI: 10.1128/aem.01312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Fires in coniferous forests throughout the northern United States alter ecosystem processes and ecological communities, including the diversity and composition of microbial communities living in the soil. In addition to its influence on ecosystem processes and functions, the soil microbiome can interact with soilborne pathogens to facilitate or suppress plant disease development. Altering the microbiome composition to promote taxa that inhibit pathogenic activity has been suggested as a management strategy for forest diseases, including Armillaria root disease caused by Armillaria solidipes, which causes growth loss and mortality of conifers. These forest ecosystems are experiencing increased wildfire burn severity that could influence A. solidipes activity and interactions of the soil microbiome with Armillaria root disease. In this research, we examine changes to the soil microbiome following three levels of burn severity in a coniferous forest in northern Idaho, United States, where Armillaria root disease is prevalent. We further determine how these changes correspond to the soil microbiomes associated with the pathogen A. solidipes, and a putatively beneficial species, A. altimontana. At 15-months post-fire, we found significant differences in richness and diversity between bacterial communities associated with unburned and burned areas, yet no significant changes to these metrics were found in fungal communities following fire. However, both bacterial and fungal communities showed compositional changes associated with burn severity, including microbial taxa with altered relative abundance. Further, significant differences in the relative abundance of certain microbial taxa in communities associated with the three burn severity levels overlapped with taxa associated with various Armillaria spp. Following severe burn, we observed a decreased relative abundance of beneficial ectomycorrhizal fungi associated with the microbial communities of A. altimontana, which may contribute to the antagonistic activity of this soil microbial community. Additionally, A. solidipes and associated microbial taxa were found to dominate following high-severity burns, suggesting that severe fires provide suitable environmental conditions for these species. Overall, our results suggest that shifts in the soil microbiome and an associated increase in the activity of A. solidipes following high-severity burns in similar conifer forests may result in priority areas for monitoring and proactive management of Armillaria root disease. IMPORTANCE With its influence on ecosystem processes and functions, the soil microbiome can interact with soilborne pathogens to facilitate or suppress plant disease development. These forest ecosystems are experiencing increased wildfire frequency and burn severity that could influence the fungal root pathogen, Armillaria solidipes, and interactions with the soil microbiome. We examined changes to the soil microbiome following three levels of burn severity, and examined how these changes correspond with A. solidipes, and a putatively beneficial species, A. altimontana. Following severe burn, there was a decreased relative abundance of ectomycorrhizal fungi associated A. altimontana. A. solidipes and associated microbial taxa dominated following high-severity burns, suggesting that severe fires provide suitable environmental conditions for these species. Our results suggest that shifts in the soil microbiome and an associated increase in the activity of A. solidipes following high-severity burns in conifer forests may result in priority areas for monitoring and proactive management of Armillaria root disease.
Collapse
Affiliation(s)
- Ada J Fitz Axen
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Mee-Sook Kim
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Ned B Klopfenstein
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Sara Ashiglar
- U.S. Department of Agriculture, Forest Service, Nez Perce-Clearwater National Forests, Potlach, Idaho, USA
| | - John W Hanna
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Patrick Bennett
- U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Feng T, Liu Y, Huang M, Chen G, Tian Q, Duan C, Chen J. Reshaping the root endophytic microbiota in plants to combat mercury-induced stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174019. [PMID: 38885713 DOI: 10.1016/j.scitotenv.2024.174019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yiyi Liu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Mingyu Huang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Guohui Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Qindong Tian
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
5
|
Huang Y, Zhou Z, Cai Y, Li X, Huang Y, Hou J, Liu W. Response of petroleum-contaminated soil to chemical oxidation combined with biostimulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116694. [PMID: 38971101 DOI: 10.1016/j.ecoenv.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
In this study, a microcosm experiment was conducted to investigate the effects of Na2S2O8 preoxidation combined with biostimulation on petroleum-contaminated soil remediation. The response of microbial community during this process was explored using BIOLOG ECO microplate carbon utilization method and 16 s rDNA high-throughput sequencing. The results showed that use of 10 mg/g Na2S2O8 removed 19.8 % of the petroleum hydrocarbons, reduced soil biotoxicity and did not affect soil microbial activity compared to other concentrations. Therefore, sodium persulfate of ca. 10 mg/g was used to oxidize petroleum in soil before the biostimulation experiment with organic and inorganic fertilizers. Our finding showed that the content of total petroleum hydrocarbons (TPHs) in soil was reduced by 43.3 % in inorganic fertilizer treatment after 60 days. The results of BIOLOG ECO microplate carbon utilization analysis and 16 S rDNA high-throughput sequencing further confirmed that biostimulation quickly restored the microbial activities in oxidant treated soil. The main marker bacteria in chemical oxidation combined with biostimulation remediation were Arthrobacter and Paenarthrobacter, and their relative abundances were both significantly negatively correlated with the content of petroleum hydrocarbons in soil.
Collapse
Affiliation(s)
- Yongjie Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China.
| | - Zhenzhen Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
| | - Yuting Cai
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
| | - Xinmeng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
| | - Yufeng Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
6
|
Riva V, Vergani L, Rashed AA, El Saadi A, Sabatino R, Di Cesare A, Crotti E, Mapelli F, Borin S. Plant species influences the composition of root system microbiome and its antibiotic resistance profile in a constructed wetland receiving primary treated wastewater. Front Microbiol 2024; 15:1436122. [PMID: 39113842 PMCID: PMC11303162 DOI: 10.3389/fmicb.2024.1436122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects. Methods Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of Phragmites australis and Typha domingensis co-occurring in the same cell of a CW receiving primary treated wastewaters. Results and discussion Two endophytic bacteria collections (n = 156) were established aiming to find novel strains for microbial-assisted phytodepuration, however basing on their taxonomy the possible use of these strains was limited by their low degrading potential and/or for risks related to the One-Health concept. A sharp differentiation arose between the P. australis and T. domingensis collections, mainly represented by lactic acid bacteria (98%) and Enterobacteriaceae (69%), respectively. Hence, 16S rRNA amplicon sequencing was used to disentangle the microbiome composition in the root system fractions collected at increasing distance from the root surface. Both the fraction type and the plant species were recognized as drivers of the bacterial community structure. Moreover, differential abundance analysis revealed that, in all fractions, several bacteria families were significantly and differentially enriched in P. australis or in T. domingensis. CWs have been also reported as interesting options for the removal of emerging contaminants (e.g, antibiotic resistance genes, ARGs). In this study, ARGs were mostly present in the rhizosphere of both plant species, compared to the other analyzed fractions. Notably, qPCR data showed that ARGs (i.e., ermB, bla TEM, tetA) and intl1 gene (integrase gene of the class 1 integrons) were significantly higher in Phragmites than Typha rhizospheres, suggesting that macrophyte species growing in CWs can display a different ability to remove ARGs from wastewater. Overall, the results suggest the importance to consider the plant-microbiome interactions, besides engineering aspects, to select the most suitable species when designing phytodepuration systems.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ahmed Ali Rashed
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Aiman El Saadi
- National Water Management and Irrigation Systems Research Institute, National Water Research Center, Shoubra meuip El-Kheima, Egypt
| | - Raffaella Sabatino
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy – Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Elena Crotti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
7
|
Rolli E, Ghitti E, Mapelli F, Borin S. Polychlorinated biphenyls modify Arabidopsis root exudation pattern to accommodate degrading bacteria, showing strain and functional trait specificity. FRONTIERS IN PLANT SCIENCE 2024; 15:1429096. [PMID: 39036359 PMCID: PMC11258928 DOI: 10.3389/fpls.2024.1429096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Introduction The importance of plant rhizodeposition to sustain microbial growth and induce xenobiotic degradation in polluted environments is increasingly recognized. Methods Here the "cry-for-help" hypothesis, consisting in root chemistry remodeling upon stress, was investigated in the presence of polychlorinated biphenyls (PCBs), highly recalcitrant and phytotoxic compounds, highlighting its role in reshaping the nutritional and signaling features of the root niche to accommodate PCB-degrading microorganisms. Results Arabidopsis exposure to 70 µM PCB-18 triggered plant-detrimental effects, stress-related traits, and PCB-responsive gene expression, reproducing PCB phytotoxicity. The root exudates of plantlets exposed for 2 days to the pollutant were collected and characterized through untargeted metabolomics analysis by liquid chromatography-mass spectrometry. Principal component analysis disclosed a different root exudation fingerprint in PCB-18-exposed plants, potentially contributing to the "cry-for-help" event. To investigate this aspect, the five compounds identified in the exudate metabolomic analysis (i.e., scopoletin, N-hydroxyethyl-β-alanine, hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine) were assayed for their influence on the physiology and functionality of the PCB-degrading strains Pseudomonas alcaliphila JAB1, Paraburkholderia xenovorans LB400, and Acinetobacter calcoaceticus P320. Scopoletin, whose relative abundance decreased in PCB-18-stressed plant exudates, hampered the growth and proliferation of strains JAB1 and P320, presumably due to its antimicrobial activity, and reduced the beneficial effect of Acinetobacter P320, which showed a higher degree of growth promotion in the scopoletin-depleted mutant f6'h1 compared to Arabidopsis WT plants exposed to PCB. Nevertheless, scopoletin induced the expression of the bph catabolic operon in strains JAB1 and LB400. The primary metabolites hypoxanthine, L-arginyl-L-valine, and L-seryl-L-phenylalanine, which increased in relative abundance upon PCB-18 stress, were preferentially used as nutrients and growth-stimulating factors by the three degrading strains and showed a variable ability to affect rhizocompetence traits like motility and biofilm formation. Discussion These findings expand the knowledge on PCB-triggered "cry-for-help" and its role in steering the PCB-degrading microbiome to boost the holobiont fitness in polluted environments.
Collapse
Affiliation(s)
| | | | | | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Monaco P, Baldoni A, Naclerio G, Scippa GS, Bucci A. Impact of Plant-Microbe Interactions with a Focus on Poorly Investigated Urban Ecosystems-A Review. Microorganisms 2024; 12:1276. [PMID: 39065045 PMCID: PMC11279295 DOI: 10.3390/microorganisms12071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The urbanization process, which began with the Industrial Revolution, has undergone a considerable increase over the past few decades. Urbanization strongly affects ecological processes, often deleteriously, because it is associated with a decrease in green spaces (areas of land covered by vegetation), loss of natural habitats, increased rates of species extinction, a greater prevalence of invasive and exotic species, and anthropogenic pollutant accumulation. In urban environments, green spaces play a key role by providing many ecological benefits and contributing to human psychophysical well-being. It is known that interactions between plants and microorganisms that occur in the rhizosphere are of paramount importance for plant health, soil fertility, and the correct functioning of plant ecosystems. The growing diffusion of DNA sequencing technologies and "omics" analyses has provided increasing information about the composition, structure, and function of the rhizomicrobiota. However, despite the considerable amount of data on rhizosphere communities and their interactions with plants in natural/rural contexts, current knowledge on microbial communities associated with plant roots in urban soils is still very scarce. The present review discusses both plant-microbe dynamics and factors that drive the composition of the rhizomicrobiota in poorly investigated urban settings and the potential use of beneficial microbes as an innovative biological tool to face the challenges that anthropized environments and climate change impose. Unravelling urban biodiversity will contribute to green space management, preservation, and development and, ultimately, to public health and safety.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| | | | | | | | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| |
Collapse
|
9
|
Wang M, Lin M, Liu Q, Li C, Pang X. Fungal, but not bacterial, diversity and network complexity promote network stability during roadside slope restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171007. [PMID: 38401731 DOI: 10.1016/j.scitotenv.2024.171007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
To restore degraded roadside ecosystems, conventional methods such as revegetation and soil amendment are frequently employed. However, our understanding of the long-term effects of these restoration approaches on soil microbial diversity and network complexity across different vegetation types remains poor, which contributes to poor restoration outcomes. In this study, we explored the effects of roadside slope restoration on microbial communities across different vegetation types at varying stages of restoration. We found that restoration time had a more pronounced impact on microbial diversity than specific vegetation type. As restoration progressed, microbial network complexity and fungal diversity increased, but bacterial diversity declined, suggesting that keystone taxa may contribute to network complexity. Interestingly, bacterial network complexity increased concomitant with decreasing network modularity and robustness, which may compromise system stability. Distinct vegetation types were associated with restoration-sensitive microbial communities at different restoration stages. Leguminouse and nitrogen-fixing plants, such as Albiziak alkora, Ginkgo biloba, Rhus chinensis, Rhapis excels, and Rubia cordifolia exhibited such associations after five years of restoration. These keystone taxa included Proteobacteria, Actinobacteria, Chloroflexi, Gemmatimonadota, and Myxococcota. We also found that bacterial alpha diversity was significantly correlated with restoration time, soil pH, moisture, available phosphate, nitrate nitrogen, and plant height, while fungal diversity was primarily shaped by restoration time. Together, our findings suggest that soil properties, environmental factors, vegetation type, and dominant species can be manipulated to guide the trajectory of ecological recovery by regulating the abundance of certain microbial taxa.
Collapse
Affiliation(s)
- Min Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China; School of Ecology and Environment, Hainan University, China
| | - Mao Lin
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China
| | - Cheng Li
- School of Ecology and Environment, Hainan University, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China.
| |
Collapse
|
10
|
He W, Cui Y, Li Y, Yang H, Liu Z, Zhang M, Li Y. Accumulation characteristics of liquid crystal monomers in plants: A multidimensional analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133848. [PMID: 38401218 DOI: 10.1016/j.jhazmat.2024.133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Liquid crystal monomers (LCMs), identified as emerging contaminations, have been detected in soils and plants, but their accumulation characteristics in plants haven't been studied. Therefore, this study systematically investigated the accumulation characteristics of LCMs in plants from four dimensions (i.e., plant fruit species, soil types, plant growth stages, and LCMs categories) for the first time. The LCMs concentrations (9.96 × 10-4 to 114.608 ng/g) in 22 plant fruits were predicted by the partition-limited model. Grains with the highest lipid content showed the highest LCMs accumulation propensity. Plants grown in paddy soil showed a strong LCMs accumulation capacity. Results showed that the LCMs accumulation capacity in plants from soils decreased when the soil organic matter content increased. A preferential accumulation of LCMs in plant root systems during growth was found by the molecular dynamics simulations. Compared to polychlorinated biphenyls (as the reference contaminants of LCMs), LCMs exhibit higher accumulation in plant roots and lower translocation to shoots. For the fourth dimension, lipophilicity was found to be the main reason of LCMs accumulation by intergraded stepwise linear regression with sensitivity analysis. This is the inaugural research concentrating on LCMs accumulation in plants, providing insights and theoretical guidance for future LCMs management strategies multidimensionally.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zeyang Liu
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
11
|
Amenta ML, Vaccaro F, Varriale S, Sangaré JR, Defez R, Mengoni A, Bianco C. Cereals can trap endophytic bacteria with potential beneficial traits when grown ex-situ in harsh soils. FEMS Microbiol Ecol 2024; 100:fiae041. [PMID: 38544316 PMCID: PMC11009874 DOI: 10.1093/femsec/fiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities associated with plants growing in harsh conditions, including salinity and water deficiency, have developed adaptive features which permit them to grow and survive under extreme environmental conditions. In the present study, an ex-situ plant trapping method has been applied to collect the culturable microbial diversity associated with the soil from harsh and remote areas. Oryza sativa cv. Baldo and Triticum durum Primadur plants were used as recruiters, while the soil surrounding the roots of Oryza glaberrima plants from remote regions of Mali (West Africa) was used as substrate for their growth. The endophytic communities recruited by the two plant species belonged to Proteobacteria and Firmicutes, and the dominant genera were Bacillus, Kosakonia, and Enterobacter. These endophytes were characterized by analyzing some of the most common plant growth promoting traits. Halotolerant, inorganic phosphate-solubilizing and N-fixing strains were found, and some of them simultaneously showing these three traits. We verified that 'Baldo' recruited mostly halotolerant and P-solubilizers endophytes, while the endophytes selected by 'Primadur' were mainly N-fixers. The applied ex-situ plant trapping method allowed to isolate endophytes with potential beneficial traits that could be applied for the improvement of rice and wheat growth under adverse environmental conditions.
Collapse
Affiliation(s)
- Maria Laura Amenta
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Stefano Varriale
- National Research Council,
Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Jean Rodrigue Sangaré
- Institut d'Economie Rurale (IER), Centre Régional de Recherche Agronomique (CRRA) de Sikasso, B.P: 16, Mali
| | - Roberto Defez
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carmen Bianco
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
12
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
13
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
14
|
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. FRONTIERS IN PLANT SCIENCE 2024; 15:1325048. [PMID: 38371405 PMCID: PMC10869545 DOI: 10.3389/fpls.2024.1325048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Introduction Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.
Collapse
Affiliation(s)
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | |
Collapse
|
15
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
16
|
Hu S, He R, He X, Zeng J, Zhao D. Niche-Specific Restructuring of Bacterial Communities Associated with Submerged Macrophyte under Ammonium Stress. Appl Environ Microbiol 2023; 89:e0071723. [PMID: 37404156 PMCID: PMC10370296 DOI: 10.1128/aem.00717-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Submerged macrophytes and their epiphytic microbes form a "holobiont" that plays crucial roles in regulating the biogeochemical cycles of aquatic ecosystems but is sensitive to environmental disturbances such as ammonium loadings. Increasingly more studies suggest that plants may actively seek help from surrounding microbial communities whereby conferring benefits in responding to particular abiotic stresses. However, empirical evidence is scarce regarding how aquatic plants reconstruct their microbiomes as a "cry-for-help" against acute ammonium stress. Here, we investigated the temporal dynamics of the phyllosphere and rhizosphere bacterial communities of Vallisneria natans following ammonium stress and recovery periods. The bacterial community diversity of different plant niches exhibited opposite patterns with ammonium stress, that is, decreasing in the phyllosphere while increasing in the rhizosphere. Furthermore, both phyllosphere and rhizosphere bacterial communities underwent large compositional changes at the end of ammonium stress, significantly enriching of several nitrifiers and denitrifiers. Meanwhile, bacterial legacies wrought by ammonium stress were detected for weeks; some plant growth-promoting and stress-relieving bacteria remained enriched even after stress disappeared. Structural equation model analysis showed that the reshaped bacterial communities in plant niches collectively had a positive effect on maintaining plant biomass. Additionally, we applied an age-prediction model to predict the bacterial community's successional trajectory, and the results revealed a persistent change in bacterial community development under ammonium treatment. Our findings highlight the importance of plant-microbe interactions in mitigating plant stress and fostering a better understanding of the assembly of plant-beneficial microbes under ammonium stress in aquatic ecosystems. IMPORTANCE Increasing anthropogenic input of ammonium is accelerating the decline of submerged macrophytes in aquatic ecosystems. Finding efficient ways to release submerged macrophytes from ammonium stress is crucial to maintain their ecological benefits. Microbial symbioses can alleviate abiotic stress in plants, but harnessing these beneficial interactions requires a detailed understanding of plant microbiome responses to ammonium stress, especially over a continuous time course. Here, we tracked the temporal changes in bacterial communities associated with the phyllosphere and rhizosphere of Vallisneria natans during ammonium stress and recovery periods. Our results showed that severe ammonium stress triggers a plant-driven timely reshaping of the associated bacterial community in a niche-specific strategy. The reassembled bacterial communities could potentially benefit the plant by positively contributing to nitrogen transformation and plant growth promotion. These findings provide empirical evidence regarding the adaptive strategy of aquatic plants whereby they recruit beneficial microbes against ammonium stress.
Collapse
Affiliation(s)
- Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaowei He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| |
Collapse
|
17
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
18
|
Li T, Wang M, Cui R, Li B, Wu T, Liu Y, Geng G, Xu Y, Wang Y. Waterlogging stress alters the structure of sugar beet rhizosphere microbial community structure and recruiting potentially beneficial bacterial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115172. [PMID: 37354564 DOI: 10.1016/j.ecoenv.2023.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Waterlogging has been shown to have a significant inhibitory effect on plant growth. However, the response mechanisms of the soil environment of sugar beet seedlings under waterlogging conditions still need to be fully understood. This study aimed to investigate the effects of waterlogging treatments on the content of effective nutrients and the microbial communities in the rhizosphere and non-rhizosphere using high-throughput sequencing. We set up waterlogging and non-waterlogging treatments, sampled sugar beet seedlings after 10 days of waterlogging, determined the effective soil nutrients in the rhizosphere and non-rhizosphere of the plants, and analyzed the differences in microbial diversity at ten days of waterlogging. The results showed that waterlogging significantly affected available potassium (AK) content. The Ak content of waterlogged soil was significantly higher than that of non-waterlogged soil. Waterlogging caused no significant difference in available nitrogen (AN) content and pH. Moreover, the plant growth-promoting bacteria Pseudomonas was significantly enriched in sugar beet waterlogged rhizospheres compared with the non-waterlogged ones. Similarly, the harmful fungi Gibellulopsis and Alternaria were enriched in sugar beet non-waterlogged rhizosphere. The network analysis revealed that waterlogging built a less complex root-microbial network than non-waterlogging. These findings implied that sugar beets subjected to waterlogging stress were enriched with beneficial microorganisms in the rhizosphere, potentially alleviating the stress.
Collapse
Affiliation(s)
- Tai Li
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Meihui Wang
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Rufei Cui
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Bingchen Li
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Tong Wu
- College of Earth and Environmental Sciences, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yonglong Liu
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Gui Geng
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China.
| | - Yao Xu
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Yuguang Wang
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China.
| |
Collapse
|
19
|
Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1076876. [PMID: 36778693 PMCID: PMC9911669 DOI: 10.3389/fpls.2023.1076876] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
The contamination of soils with heavy metals and its associated hazardous effects are a thrust area of today's research. Rapid industrialization, emissions from automobiles, agricultural inputs, improper disposal of waste, etc., are the major causes of soil contamination with heavy metals. These contaminants not only contaminate soil but also groundwater, reducing agricultural land and hence food quality. These contaminants enter the food chain and have a severe effect on human health. It is important to remove these contaminants from the soil. Various economic and ecological strategies are required to restore the soils contaminated with heavy metals. Phytoremediation is an emerging technology that is non-invasive, cost-effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the plants are significantly involved in the phytoremediation of heavy metals; the MBPs include metallothioneins; phytochelatins; metalloenzymes; metal-activated enzymes; and many metal storage proteins, carrier proteins, and channel proteins. Plants are genetically modified to enhance their phytoremediation capacity. In Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus megaterium improves the metal accumulation capacity. The phytoremediation efficiency of plants is also enhanced when assisted with microorganisms, biochar, and/or chemicals. Removing heavy metals from agricultural land without challenging food security is almost impossible. As a result, crop selections with the ability to sequester heavy metals and provide food security are in high demand. This paper summarizes the role of plant proteins and plant-microbe interaction in remediating soils contaminated with heavy metals. Biotechnological approaches or genetic engineering can also be used to tackle the problem of heavy metal contamination.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - N. P. Singh
- Centre for Biotechnology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| | - Anita Rani Santal
- Department of Microbiology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| |
Collapse
|
20
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
21
|
DNA stable isotope probing on soil treated by plant biostimulation and flooding revealed the bacterial communities involved in PCB degradation. Sci Rep 2022; 12:19232. [PMID: 36357494 PMCID: PMC9649793 DOI: 10.1038/s41598-022-23728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Polychlorinated biphenyl (PCB)-contaminated soils represent a major treat for ecosystems health. Plant biostimulation of autochthonous microbial PCB degraders is a way to restore polluted sites where traditional remediation techniques are not sustainable, though its success requires the understanding of site-specific plant-microbe interactions. In an historical PCB contaminated soil, we applied DNA stable isotope probing (SIP) using 13C-labeled 4-chlorobiphenyl (4-CB) and 16S rRNA MiSeq amplicon sequencing to determine how the structure of total and PCB-degrading bacterial populations were affected by different treatments: biostimulation with Phalaris arundinacea subjected (PhalRed) or not (Phal) to a redox cycle and the non-planted controls (Bulk and BulkRed). Phal soils hosted the most diverse community and plant biostimulation induced an enrichment of Actinobacteria. Mineralization of 4-CB in SIP microcosms varied between 10% in Bulk and 39% in PhalRed soil. The most abundant taxa deriving carbon from PCB were Betaproteobacteria and Actinobacteria. Comamonadaceae was the family most represented in Phal soils, Rhodocyclaceae and Nocardiaceae in non-planted soils. Planted soils subjected to redox cycle enriched PCB degraders affiliated to Pseudonocardiaceae, Micromonosporaceae and Nocardioidaceae. Overall, we demonstrated different responses of soil bacterial taxa to specific rhizoremediation treatments and we provided new insights into the populations active in PCB biodegradation.
Collapse
|
22
|
Darriaut R, Antonielli L, Martins G, Ballestra P, Vivin P, Marguerit E, Mitter B, Masneuf-Pomarède I, Compant S, Ollat N, Lauvergeat V. Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines. Front Microbiol 2022; 13:1031064. [PMID: 36439844 PMCID: PMC9685171 DOI: 10.3389/fmicb.2022.1031064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 08/31/2023] Open
Abstract
Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guilherme Martins
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Patricia Ballestra
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Philippe Vivin
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Elisa Marguerit
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Nathalie Ollat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
23
|
Jo Y, Jung DR, Park TH, Lee D, Park MK, Lim K, Shin JH. Changes in Microbial Community Structure in Response to Gummosis in Peach Tree Bark. PLANTS (BASEL, SWITZERLAND) 2022; 11:2834. [PMID: 36365287 PMCID: PMC9657254 DOI: 10.3390/plants11212834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Peach gummosis disease has been identified as a serious challenge in Korean agriculture and has developed to become a major cause of agricultural productivity losses. However, treatments for gummosis have not been systemically established and studies of the microbiome closely related to this plant disease are lacking. Therefore, we analyzed the bacterial and fungal communities in the bark and rhizosphere soil of healthy peach trees and those with gummosis. Through high-throughput sequencing, we obtained unprecedented insights into the bacterial and fungal dynamics of each group, including their diversity and taxonomic classification, as well as network analyses. We found that the presence of gummosis drives a significantly higher alpha diversity in the bark bacterial community. Peach gummosis bark mycobiomes included greater numbers of opportunistic pathogens such as Ascochyta, Botryosphaeria, Saccharomyces, Nectriaceae_NA, Trametes, and Valsaceae_NA. However, the microbiome also included bacteria beneficial to plant growth and the production of polysaccharides-namely, 1174-901-12, Catenibacterium, Cutibacterium, Friedmanniella, Methylobacterium-Methylorubrum, Pseudomonas, Rhodobacter, and Sphingomonas. Furthermore, we confirmed that gummosis induced a more complex structure in the bark microbiome network. We conclude that the findings of this study provide a valuable aid in profiling the overall peach tree microbial ecosystem, which can be utilized to develop precise biomarkers for the early diagnosis of gummosis.
Collapse
Affiliation(s)
- YoungJae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Tae-Hyung Park
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Dokyung Lee
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Min-Kyu Park
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Korea
| |
Collapse
|
24
|
Endophytes: Improving Plant Performance. Microorganisms 2022; 10:microorganisms10091777. [PMID: 36144379 PMCID: PMC9501292 DOI: 10.3390/microorganisms10091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Endophytes represent microorganisms that reside within plant tissues, without typically causing adverse effects to the plants, for a substantial part of their life cycle, and are primarily known for their beneficial role to their host plant [...].
Collapse
|
25
|
Becker P, Döhmann A, Wöhlbrand L, Thies D, Hinrichs C, Buschen R, Wünsch D, Neumann-Schaal M, Schomburg D, Winklhofer M, Reinhardt R, Rabus R. Complex and flexible catabolism in Aromatoleum aromaticum pCyN1. Environ Microbiol 2022; 24:3195-3211. [PMID: 35590445 DOI: 10.1111/1462-2920.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. A. aromaticum pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 was studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol, respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different β-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g., the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Patrick Becker
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Annemieke Döhmann
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ramona Buschen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolism, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany.,Department of Analytics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Dietmar Schomburg
- Research Group Bacterial Metabolism, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Sensory Biology of Animals, Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
26
|
Matilla MA, Roca A. Multi-host lifestyle in plant-beneficial bacteria: an evolutionary advantage for survival and dispersal? Environ Microbiol 2022; 24:3307-3309. [PMID: 35411622 PMCID: PMC9541277 DOI: 10.1111/1462-2920.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Amalia Roca
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, Granada, 18071, Spain
| |
Collapse
|
27
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Gilbert S, Poulev A, Chrisler W, Acosta K, Orr G, Lebeis S, Lam E. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060721. [PMID: 35336603 PMCID: PMC8950272 DOI: 10.3390/plants11060721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 05/30/2023]
Abstract
The role of auxin in plant-microbe interaction has primarily been studied using indole-3-acetic acid (IAA)-producing pathogenic or plant-growth-promoting bacteria. However, the IAA biosynthesis pathway in bacteria involves indole-related compounds (IRCs) and intermediates with less known functions. Here, we seek to understand changes in plant response to multiple plant-associated bacteria taxa and strains that differ in their ability to produce IRCs. We had previously studied 47 bacterial strains isolated from several duckweed species and determined that 79% of these strains produced IRCs in culture, such as IAA, indole lactic acid (ILA), and indole. Using Arabidopsis thaliana as our model plant with excellent genetic tools, we performed binary association assays on a subset of these strains to evaluate morphological responses in the plant host and the mode of bacterial colonization. Of the 21 tested strains, only four high-quantity IAA-producing Microbacterium strains caused an auxin root phenotype. Compared to the commonly used colorimetric Salkowski assay, auxin concentration determined by LC-MS was a superior indicator of a bacteria's ability to cause an auxin root phenotype. Studies with the auxin response mutant axr1-3 provided further genetic support for the role of auxin signaling in mediating the root morphology response to IAA-producing bacteria strains. Interestingly, our microscopy results also revealed new evidence for the role of the conserved AXR1 gene in endophytic colonization of IAA-producing Azospirillum baldaniorum Sp245 via the guard cells.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - William Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Sarah Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| |
Collapse
|
29
|
Rolli E, de Zélicourt A, Alzubaidy H, Karampelias M, Parween S, Rayapuram N, Han B, Froehlich K, Abulfaraj AA, Alhoraibi H, Mariappan K, Andrés-Barrao C, Colcombet J, Hirt H. The Lys-motif receptor LYK4 mediates Enterobacter sp. SA187 triggered salt tolerance in Arabidopsis thaliana. Environ Microbiol 2021; 24:223-239. [PMID: 34951090 PMCID: PMC9304150 DOI: 10.1111/1462-2920.15839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Root endophytes establish beneficial interactions with plants, improving holobiont resilience and fitness, but how plant immunity accommodates beneficial microbes is poorly understood. The multi-stress tolerance-inducing endophyte Enterobacter sp. SA187 triggers a canonical immune response in Arabidopsis only at high bacterial dosage (>108 CFUs ml-1 ), suggesting that SA187 is able to evade or suppress the plant defence system at lower titres. Although SA187 flagellin epitopes are recognized by the FLS2 receptor, SA187-triggered salt tolerance functions independently of the FLS2 system. In contrast, overexpression of the chitin receptor components LYK4 and LYK5 compromised the beneficial effect of SA187 on Arabidopsis, while it was enhanced in lyk4 mutant plants. Transcriptome analysis revealed that the role of LYK4 is intertwined with a function in remodelling defence responses with growth and root developmental processes. LYK4 interferes with modification of plant ethylene homeostasis by Enterobacter SA187 to boost salt stress resistance. Collectively, these results contribute to unlock the crosstalk between components of the plant immune system and beneficial microbes and point to a new role for the Lys-motif receptor LYK4 in beneficial plant-microbe interaction.
Collapse
Affiliation(s)
- Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Axel de Zélicourt
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Hanin Alzubaidy
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Karampelias
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Baoda Han
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Katja Froehlich
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aala A Abulfaraj
- Department of Biological Sciences, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cristina Andrés-Barrao
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Heribert Hirt
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Irshad M, Ahmad A, Lodhi MA, Lee IJ. Phytohormones Producing Acinetobacter bouvetii P1 Mitigates Chromate Stress in Sunflower by Provoking Host Antioxidant Response. Antioxidants (Basel) 2021; 10:1868. [PMID: 34942971 PMCID: PMC8698644 DOI: 10.3390/antiox10121868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023] Open
Abstract
Different physical and chemical techniques are used for the decontamination of Cr+6 contaminated sites. The techniques are expensive, laborious, and time-consuming. However, remediation of Cr+6 by microbes is viable, efficient, and cost-effective. In this context, plant growth-promoting rhizobacteria Acinetobacter bouvetii P1 isolated from the industrial zone was tested for its role in relieving Cr+6 induced oxidative stress in sunflower. At the elevated Cr+6 levels and in the absence of P1, the growth of the sunflower plants was inhibited. In contrast, the selected strain P1 restored the sunflower growth under Cr+6 through plant growth-promoting interactions. Specifically, P1 biotransformed the Cr+6 into a stable and less toxic Cr+3 form, thus avoiding the possibility of phytotoxicity. On the one hand, the P1 strengthened the host antioxidant system by triggering higher production of enzymatic antioxidants, including catalases, ascorbate peroxidase, superoxide dismutase, and peroxidase. Similarly, P1 also promoted higher production of nonenzymatic antioxidants, such as flavonoids, phenolics, proline, and glutathione. Apart from the bioremediation, P1 solubilized phosphate and produced indole acetic acid, gibberellic acid, and salicylic acid. The production of phytohormones not only helped the host plant growth but also mitigated the harsh condition posed by the elevated levels of Cr+6. The findings mentioned above suggest that P1 may serve as an excellent phyto-stimulant and bio-remediator in a heavy metal-contaminated environment.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | - Muhammad Irshad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.Q.); (M.H.); (M.S.); (M.I.)
| | - Ayaz Ahmad
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (A.A.); (M.A.L.)
| | - Muhammad Arif Lodhi
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (A.A.); (M.A.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|