1
|
Zhao Z, Ling Z, Nie X, Liu D, Chen H, Zhang S. Microbial Diversity and Community Structure of Chinese Fresh Beef during Cold Storage and Their Correlations with Off-Flavors. Foods 2024; 13:1482. [PMID: 38790782 PMCID: PMC11119422 DOI: 10.3390/foods13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the diversity and dynamics of microorganisms in Chinese fresh beef (CFB) without acid discharge treatment during cold storage, high-throughput sequencing was employed to analyze the CFB refrigerated for 0, 3, 7, and 10 days. The results showed that the community richness of the fungi and bacteria decreased significantly. However, the diversity decreased in the early stage and increased in the later stage. At the phylum level, Ascomycota (74.1-94.1%) and Firmicutes (77.3-96.8%) were the absolutely dominant fungal and bacterial phyla. The relative abundance of both fungal and bacterial phyla displayed a trend of increasing and then decreasing. At the genus level, Candida (29.3-52.5%) and Lactococcus (19.8-59.3%) were, respectively, the dominant fungal and bacterial genera. The relative abundance of Candida showed a trend of increasing and then decreasing, while Lactococcus possessed the opposite trend. KEGG metabolic pathways analysis suggested that carbohydrate metabolism, membrane transport, and amino acid metabolism were the major metabolic pathways of bacteria. Bugbase prediction indicated the major microbial phenotype of bacteria in CFB during cold storage was Gram-positive (17.2-31.6%). Correlation analysis suggested that Lactococcus, Citrobacter, Proteus, and Rhodotorula might be the main microorganisms promoting the production of off-flavor substances in CFB. This study provides a theoretical basis for the preservation of Chinese fresh beef.
Collapse
Affiliation(s)
- Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
| | - Ziqing Ling
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| | - Shengyuan Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.Z.); (Z.L.); (H.C.); (S.Z.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China;
| |
Collapse
|
2
|
Verstraeten S, Layec S, Auger S, Juste C, Henry C, Charif S, Jaszczyszyn Y, Sokol H, Beney L, Langella P, Thomas M, Huillet E. Faecalibacterium duncaniae A2-165 regulates the expression of butyrate synthesis, ferrous iron uptake, and stress-response genes based on acetate consumption. Sci Rep 2024; 14:987. [PMID: 38200051 PMCID: PMC10781979 DOI: 10.1038/s41598-023-51059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.
Collapse
Affiliation(s)
- Sophie Verstraeten
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Séverine Layec
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Catherine Juste
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sawiya Charif
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Harry Sokol
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Laurent Beney
- UMR PAM, INRAe, Université Bourgogne Franche-Conté, AgroSup Dijon, Dijon, France
| | - Philippe Langella
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Eugénie Huillet
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
3
|
Lee WH, Yoon CK, Park H, Park GH, Jeong JH, Cha GD, Lee BH, Lee J, Lee CW, Bootharaju MS, Sunwoo SH, Ryu J, Lee C, Cho YJ, Nam TW, Ahn KH, Hyeon T, Seok YJ, Kim DH. Highly Efficient Nitrogen-Fixing Microbial Hydrogel Device for Sustainable Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306092. [PMID: 37739451 DOI: 10.1002/adma.202306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1 m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1 m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.
Collapse
Affiliation(s)
- Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunseo Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hwan Jeong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Hoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeyune Ryu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Wook Nam
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
- MightyBugs, Inc., Busan, 46918, Republic of Korea
| | - Kyung Hyun Ahn
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Pei L, Liu W, Liu L, Wang X, Jiang L, Chen Z, Wang Q, Wang P, Xu H. Morel ( Morchella spp.) intake alters gut microbial community and short-chain fatty acid profiles in mice. Front Nutr 2023; 10:1237237. [PMID: 37810928 PMCID: PMC10556497 DOI: 10.3389/fnut.2023.1237237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Morels (Morchella spp.) are highly nutritious and consumed as both edible mushrooms and traditional Chinese medicine. This study aimed to investigate the effects of dietary supplementation with morel mushrooms on the gut bacterial microbiota and short-chain fatty acids (SCFAs) profiles in healthy mice. Healthy mice were randomly assigned to five groups: a control group (0% morel) and four intervention groups supplemented with different levels of morel mushrooms (5% for M5, 10% for M10, 15% for M15, and 20% for M20) over a period of 4 weeks. Fecal samples were collected at the end of the experiment to characterize the microbiota and assess the SCFAs levels. The morel intervention significantly altered the bacterial community composition, increasing Bacteroides, Lachnospiraceae NK4A136 group and Parabacteroides, while decreasing Staphylococcus and the Firmicutes to Bacteroidetes ratio (F/B ratio). Moreover, increased morel intake was associated with weight loss. All SCFAs content was upregulated in the morel-intervention groups. Potential SCFAs-producing taxa identified by regression analysis were distributed in the families Muribaculaceae, Lachnospiraceae, and in the genera Jeotgalicoccus, Gemella, Odoribacter, Tyzzerella 3 and Ruminococcaceae UCG-014. The functional categories involved with SCFAs-production or weight loss may contain enzymes such as beta-glucosidase (K05349), beta-galactosidase (K01190), and hexosaminidase (K12373) after morel intervention. The exploration of the impact of morel mushrooms on gut microbiota and metabolites contributes to the development of prebiotics for improving health and reducing obesity.
Collapse
Affiliation(s)
- Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Wei Liu
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, China
| | - Luping Liu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | - Luxi Jiang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| | | | - Qiquan Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Peng Wang
- Zhiran Biotechnology Co., Ltd, Tianjin, China
| | - Heng Xu
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, Xinjiang, China
| |
Collapse
|
5
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
7
|
Xu T, Guo Y, Zhang Y, Cao K, Zhou X, Qian M, Han X. Alleviative Effect of Probiotic Ferment on Lawsonia intracellularis Infection in Piglets. BIOLOGY 2023; 12:879. [PMID: 37372164 DOI: 10.3390/biology12060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
(1) Background: Lawsonia intracellularis (LI) is an obligate intracellular Gram-negative bacterium that causes porcine ileitis. Pigs infected with LI have severe ileal lesions and show symptoms of diarrhea, indigestion, and growth retardation. Previous studies found that probiotic ferment (FAM) improved the growth performance, gut barrier, and function in piglets. Therefore, we aimed to reveal the mechanism that FAM alleviates negative performance in LI-challenged piglets by characterizing the changes in intestinal integrity, function, and gut microbiota following FAM supplementation. (2) Methods: Twenty-four healthy piglets were randomly allotted to four treatments. Three groups were challenged with LI; both FAM addition and vaccination were performed to explore their positive effects on LI-infected piglets. (3) Results: Piglets infected with LI showed lower growth performance and typical pathological symptoms. Moreover, microscopic images showed that observed intestinal morphological damage could be repaired by FAM and vaccine. To explore the digestion of nutrients in piglets, both digestive enzyme activity and ileal transporter expression were performed to reveal the promoting effect of additives. Reduction of LI colonization intervention by FAM could also ameliorate abnormal differentiation and function of intestinal epithelial cells and alleviate severe inflammatory responses in piglets. Regarding the gut microbiota, both the structure and function of the ileal and colonic microbiota were altered following FAM supplementation. (4) Conclusions: In conclusion, probiotic ferment can reduce the colonization of LI in the ileum, improve intestinal damage, barrier function and microbiota structure, and enhance digestive enzyme activity and nutrient transport proteins expression, thereby improving piglet growth performance, which has the effect of preventing ileitis in pigs.
Collapse
Affiliation(s)
- Tingting Xu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Guo
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, College of Animal Science and Technology, Hangzhou 310022, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Cao
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Auger S, Mournetas V, Chiapello H, Loux V, Langella P, Chatel JM. Gene co-expression network analysis of the human gut commensal bacterium Faecalibacterium prausnitzii in R-Shiny. PLoS One 2022; 17:e0271847. [PMID: 36399439 PMCID: PMC9674144 DOI: 10.1371/journal.pone.0271847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach—weighted gene co-expression network analysis (WGCNA)–to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as arginine, histidine, cobalamin, or fatty acid metabolism as well as bacteriophage function, molecular chaperones, stress response, or SOS response. Some genes appeared to be associated with mechanisms of protection against oxidative stress and could be essential for F. prausnitzii’s adaptation and survival under anaerobic laboratory conditions. Hub and bottleneck genes were identified by analyses of intramodular connectivity and betweenness, respectively; this highlighted the high connectivity of genes located on mobile genetic elements, which could promote the genetic evolution of F. prausnitzii within its ecological niche. This study provides the first exploration of the complex regulatory networks in F. prausnitzii, and all of the “omics” data are available online for exploration through a graphical interface at https://shiny.migale.inrae.fr/app/faeprau.
Collapse
Affiliation(s)
- Sandrine Auger
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- * E-mail: (SA); (VM)
| | - Virginie Mournetas
- ADLIN Science, Pépinière « Genopole Entreprises », Evry, France
- * E-mail: (SA); (VM)
| | | | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
9
|
Lee HY, Yoon CK, Cho YJ, Lee JW, Lee KA, Lee WJ, Seok YJ. A mannose-sensing AraC-type transcriptional activator regulates cell-cell aggregation of Vibrio cholerae. NPJ Biofilms Microbiomes 2022; 8:65. [PMID: 35987769 PMCID: PMC9392796 DOI: 10.1038/s41522-022-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Wu J, Zhang X, Wang M, Zhou C, Jiao J, Tan Z. Enhancing Metabolic Efficiency through Optimizing Metabolizable Protein Profile in a Time Progressive Manner with Weaned Goats as a Model: Involvement of Gut Microbiota. Microbiol Spectr 2022; 10:e0254521. [PMID: 35416718 PMCID: PMC9045151 DOI: 10.1128/spectrum.02545-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Feeding a growing global population and lowering environmental pollution are the two biggest challenges facing ruminant livestock. Considering the significance of nitrogen metabolism in these challenges, a dietary intervention regarding metabolizable protein profiles with different rumen-undegradable protein (RUP) ratios (high RUP [HRUP] versus low RUP [LRUP]) was conducted in young ruminants with weaned goats as a model. Fecal samples were collected longitudinally for nine consecutive weeks to dissect the timing and duration of intervention, as well as its mechanism of action involving the gut microbiota. Results showed that at least 6 weeks of intervention were needed to distinguish the beneficial effects of HRUP, and HRUP intervention improved the metabolic efficiency of goats as evidenced by enhanced growth performance and nutrient-apparent digestibility at week 6 and week 8 after weaning. Integrated analysis of bacterial diversity, metabolites, and inferred function indicated that HRUP intervention promoted Eubacterium abundance, several pathways related to bacterial chemotaxis pathway, ABC transporters, and butanoate metabolism and thereafter elicited a shift from acetate production toward butyrate and branched-chain amino acid (BCAA) production. Meanwhile, three distinct phases of microbial progression were noted irrespective of dietary treatments, including the enrichment of fiber-degrading Ruminococcus, the enhancement of microbial cell motility, and the shift of fermentation type as weaned goats aged. The current report provides novel insights into early-life diet-microbiota axis triggered by metabolic protein intervention and puts high emphasis on the time window and duration of dietary intervention in modulating lifelong performance of ruminants. IMPORTANCE Precise dietary intervention in early-life gastrointestinal microbiota has significant implications in the long-life productivity and health of young ruminants, as well as in lowering their environmental footprint. Here, using weaned goats as a model, we report that animals adapted to high rumen-undegradable protein diet in a dynamic manner by enriching fecal community that could effectively move toward and scavenge nutrients such as glucose and amino acids and, thereafter, elicit butyrate and BCAA production. Meanwhile, the three dynamic assembly trajectories in fecal microbiota highlight the importance of taking microbiota dynamics into account. Our findings systematically reported when, which, and how the fecal microbiome responded to metabolizable protein profile intervention in young ruminants and laid a foundation for improving the productivity and health of livestock due to the host-microbiota interplay.
Collapse
Affiliation(s)
- Jian Wu
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Zhang
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
| | - Zhiliang Tan
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
11
|
Park JH, Song WS, Lee J, Jo SH, Lee JS, Jeon HJ, Kwon JE, Kim YR, Baek JH, Kim MG, Yang YH, Kim BG, Kim YG. An Integrative Multiomics Approach to Characterize Prebiotic Inulin Effects on Faecalibacterium prausnitzii. Front Bioeng Biotechnol 2022; 10:825399. [PMID: 35252133 PMCID: PMC8894670 DOI: 10.3389/fbioe.2022.825399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Faecalibacterium prausnitzii, a major commensal bacterium in the human gut, is well known for its anti-inflammatory effects, which improve host intestinal health. Although several studies have reported that inulin, a well-known prebiotic, increases the abundance of F. prausnitzii in the intestine, the mechanism underlying this effect remains unclear. In this study, we applied liquid chromatography tandem mass spectrometry (LC-MS/MS)-based multiomics approaches to identify biological and enzymatic mechanisms of F. prausnitzii involved in the selective digestion of inulin. First, to determine the preference for dietary carbohydrates, we compared the growth of F. prausnitzii in several carbon sources and observed selective growth in inulin. In addition, an LC-MS/MS-based intracellular proteomic and metabolic profiling was performed to determine the quantitative changes in specific proteins and metabolites of F. prausnitzii when grown on inulin. Interestingly, proteomic analysis revealed that the putative proteins involved in inulin-type fructan utilization by F. prausnitzii, particularly β-fructosidase and amylosucrase were upregulated in the presence of inulin. To investigate the function of these proteins, we overexpressed bfrA and ams, genes encoding β-fructosidase and amylosucrase, respectively, in Escherichia coli, and observed their ability to degrade fructan. In addition, the enzyme activity assay demonstrated that intracellular fructan hydrolases degrade the inulin-type fructans taken up by fructan ATP-binding cassette transporters. Furthermore, we showed that the fructose uptake activity of F. prausnitzii was enhanced by the fructose phosphotransferase system transporter when inulin was used as a carbon source. Intracellular metabolomic analysis indicated that F. prausnitzii could use fructose, the product of inulin-type fructan degradation, as an energy source for inulin utilization. Taken together, this study provided molecular insights regarding the metabolism of F. prauznitzii for inulin, which stimulates the growth and activity of the beneficial bacterium in the intestine.
Collapse
Affiliation(s)
- Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jeongchan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| |
Collapse
|
12
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|