1
|
Vestergaard SZ, Dottorini G, Peces M, Murguz A, Dueholm MKD, Nierychlo M, Nielsen PH. Microbial core communities in activated sludge plants are strongly affected by immigration and geography. ENVIRONMENTAL MICROBIOME 2024; 19:63. [PMID: 39210447 PMCID: PMC11361056 DOI: 10.1186/s40793-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence. RESULTS We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2). CONCLUSIONS The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.
Collapse
Affiliation(s)
- Sofie Zacho Vestergaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Admir Murguz
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
2
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Vipindas PV, Venkatachalam S, Jabir T, Yang EJ, Jung J, Jain A, Krishnan KP. Salinity-controlled distribution of prokaryotic communities in the Arctic sea-ice melt ponds. World J Microbiol Biotechnol 2023; 40:25. [PMID: 38057653 DOI: 10.1007/s11274-023-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The thawing of snow and sea ice produces distinctive melt ponds on the surface of the Arctic sea ice, which covers a significant portion of the surface sea ice during summer. Melt-pond salinity impacts heat transfer to the ice below and the melting rate. It is widely known that melt ponds play a significant role in heat fluxes, ice-albedo feedback, and sea-ice energy balance. However, not much attention has been given to the fact that melt ponds also serve as a unique microbial ecosystem where microbial production begins as soon as they are formed. Here, we investigated the role of melt pond salinity in controlling the diversity and distribution of prokaryotic communities using culture-dependent and -independent approaches. The 16 S rRNA gene amplicon based next generation sequencing analysis retrieved a total of 14 bacterial phyla, consisting of 146 genera, in addition to two archaeal phyla. Further, the culture-dependent approaches of the study allowed for the isolation and identification of twenty-four bacterial genera in pure culture. Flavobacterium, Candidatus_Aquiluna, SAR11 clade, Polaribacter, Glaciecola, and Nonlabens were the dominant genera observed in the amplicon analysis. Whereas Actimicrobium, Rhodoglobus, Flavobacterium, and Pseudomonas were dominated in the culturable fraction. Our results also demonstrated that salinity, chlorophyll a, and dissolved organic carbon were the significant environmental variables controlling the prokaryotic community distribution in melt ponds. A significant community shift was observed in melt ponds when the salinity changed with the progression of melting and deepening of ponds. Different communities were found to be dominant in melt ponds with different salinity ranges. It was also observed that melt pond prokaryotic communities significantly differed from the surface ocean microbial community. Our observations suggest that complex prokaryotic communities develop in melt ponds immediately after its formation using dissolved organic carbon generated through primary production in the oligotrophic water.
Collapse
Affiliation(s)
- Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India.
| | - Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Eun Jin Yang
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Anand Jain
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| |
Collapse
|
4
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|