1
|
Tokodi N, Łobodzińska A, Klimczak B, Antosiak A, Młynarska S, Šulčius S, Avrani S, Yoshida T, Dziga D. Proliferative and viability effects of two cyanophages on freshwater bloom-forming species Microcystis aeruginosa and Raphidiopsis raciborskii vary between strains. Sci Rep 2025; 15:3152. [PMID: 39856188 PMCID: PMC11761051 DOI: 10.1038/s41598-025-87626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii. Our findings reveal that cross-infectivity can substantially reduce the proliferative success of the cyanophage under conditions of high-density of sub-optimal hosts which suggests phage dispersal limitation as a result of shared infections, in turn impairing their top-down control over the host community. Furthermore, we found that cyanophage addition triggers host strain-specific responses in photosynthetic performance, population size and toxin production, even among non-permissive hosts. These non-lytic effects suggest indirect impacts on co-existing cyanobacteria, increasing the overall complexity and variance in many ecologically relevant cyanobacterial traits. The high variability in responses observed with a limited subset of cyanophage-cyanobacteria combinations not only highlights the intricate role of viral infections in microbial ecosystems but also underscores the significant challenges in predicting the composition, toxicity, and dynamics of cyanobacterial blooms.
Collapse
Affiliation(s)
- Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Barbara Klimczak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Sara Młynarska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, Vilnius, 08412, Lithuania
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
2
|
Lin W, Li D, Pan L, Li M, Tong Y. Cyanobacteria-cyanophage interactions between freshwater and marine ecosystems based on large-scale cyanophage genomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175201. [PMID: 39102952 DOI: 10.1016/j.scitotenv.2024.175201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
The disparities in harmful algal blooms dynamics are largely attributed to variations in cyanobacteria populations within aquatic ecosystems. However, cyanobacteria-cyanophage interactions and their role in shaping cyanobacterial populations has been previously underappreciated. To address this knowledge gap, we isolated and sequenced 42 cyanophages from diverse water sources in China, with the majority (n = 35) originating from freshwater sources. We designated these sequences as the "Novel Cyanophage Genome sequence Collection" (NCGC). NCGC displayed notable genetic variations, with 95 % (40/42) of the sequences representing previously unidentified taxonomic ranks. By integrating NCGC with public data of cyanophages and cyanobacteria, we found evidence for more frequent historical cyanobacteria-cyanophage interactions in freshwater ecosystems. This was evidenced by a higher prevalence of prophage integrase-related genes in freshwater cyanophages (37.97 %) than marine cyanophages (7.42 %). In addition, freshwater cyanophages could infect a broader range of cyanobacteria orders (n = 4) than marine ones (n = 0). Correspondingly, freshwater cyanobacteria harbored more defense systems per million base pairs in their genomes, indicating more frequent phage infections. Evolutionary and cyanophage epidemiological studies suggest that interactions between cyanobacteria and cyanophages in freshwater and marine ecosystems are interconnected, and that brackish water can act as a transitional zone for freshwater and marine cyanophages. In conclusion, our research significantly expands the genetic information database of cyanophage, offering a wider selection of cyanophages to control harmful cyanobacterial blooms. Additionally, we represent a pioneering large-scale and comprehensive analysis of cyanobacteria and cyanophage sequencing data, and it provides theoretical guidance for the application of cyanophages in different environments.
Collapse
Affiliation(s)
- Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lingting Pan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Kolan D, Cattan-Tsaushu E, Enav H, Freiman Z, Malinsky-Rushansky N, Ninio S, Avrani S. Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality. THE ISME JOURNAL 2024; 18:wrad008. [PMID: 38365231 PMCID: PMC10811720 DOI: 10.1093/ismejo/wrad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.
Collapse
Affiliation(s)
- Dikla Kolan
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Esther Cattan-Tsaushu
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Hagay Enav
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Zohar Freiman
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Nechama Malinsky-Rushansky
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Shira Ninio
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| |
Collapse
|
4
|
Aranda YN, Bhatt P, Ates N, Engel BA, Simsek H. Cyanophage-cyanobacterial interactions for sustainable aquatic environment. ENVIRONMENTAL RESEARCH 2023; 229:115728. [PMID: 36966999 DOI: 10.1016/j.envres.2023.115728] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/21/2023]
Abstract
Cyanobacteria are a type of bloom-forming phytoplankton that cause environmental problems in aquatic ecosystems worldwide. Cyanobacterial harmful algal blooms (cyanoHAB) often produce cyanotoxins that affect public health by contaminating surface waters and drinking water reservoirs. Conventional drinking water treatment plants are ineffective in treating cyanotoxins, even though some treatment methods are available. Therefore, innovative and advanced treatment methods are required to control cyanoHABs and their cyanotoxins. The goal of this review paper is to provide insight into the use of cyanophages as an effective form of biological control method for the removal of cyanoHABs in aquatic systems. Moreover, the review contains information on cyanobacterial blooms, cyanophage-cyanobacteria interactions, including infection mechanisms, as well as examples of different types of cyanobacteria and cyanophages. Moreover, the real-life application of cyanophages in marine and freshwater environments and the mode of action of cyanophages were compiled.
Collapse
Affiliation(s)
- Yolanys Nadir Aranda
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Nuray Ates
- Department of Environmental Engineering Department, Erciyes University, Kayseri, Turkiye
| | - Bernard A Engel
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
5
|
Shaalan H, Cattan-Tsaushu E, Li K, Avrani S. Sequencing the genomes of LPP-1, the first isolated cyanophage, and its relative LPP-2 reveal different integration mechanisms in closely related phages. HARMFUL ALGAE 2023; 124:102409. [PMID: 37164560 DOI: 10.1016/j.hal.2023.102409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 05/12/2023]
Abstract
In the early 1960s, the first cyanophage was isolated. The description of this phage, named LPP-1, led to the extensive investigation of various cyanophages and to the study of their interactions with their cyanobacterial hosts towards controlling blooms. Here, the genomes of LPP-1 and its putative relative, LPP-2 were sequenced. Sequencing these genomes revealed that LPP-1 and LPP-2 are members of a group of short-tailed cyanophages, which are distantly related to the T7-like cyanophages. Most of the phages in this group have the ability to lysogenize their hosts. Their ability to switch between lytic and lysogenic infection may explain the formation of cyanobacterial blooms despite the persistence of their phages. This lysogenic capacity of the LPP-1-like phages occurs despite the lack of an obvious integrase gene within their genomes. Interestingly, we show that LPP-2 integrates into the host genome through an integration site in high proximity to a recombination endonuclease that may have integrase activity. Further understanding of cyanobacterial-phage relationships may provide insight into their population dynamics and suggest novel approaches for control of destructive cyanobacterial blooms.
Collapse
Affiliation(s)
- Hanaa Shaalan
- Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eti Cattan-Tsaushu
- Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, Haifa, Israel
| | - Ke Li
- Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, Haifa, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Bhatt P, Engel BA, Reuhs M, Simsek H. Cyanophage technology in removal of cyanobacteria mediated harmful algal blooms: A novel and eco-friendly method. CHEMOSPHERE 2023; 315:137769. [PMID: 36623591 DOI: 10.1016/j.chemosphere.2023.137769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Cyanophages are highly abundant specific viruses that infect cyanobacterial cells. In recent years, the cyanophages and cyanobacteria interactions drew attention to environmental restoration due to their discovery in marine and freshwater systems. Cyanobacterial harmful algal blooms (cyanoHABs) are increasing throughout the world and contaminating aquatic ecosystems. The blooms cause severe environmental problems including unpleasant odors and cyanotoxin production. Cyanotoxins have been reported to be lethal agents for living beings and can harm animals, people, aquatic species, recreational activities, and drinking water reservoirs. Biological remediation of cyanoHABs in aquatic systems is a sustainable and eco-friendly approach to increasing surface water quality. Therefore, this study compiles the fragmented information with the solution of removal of cyanoHABs using cyanophage therapy techniques. To date, scant information exists in terms of bloom formation, cyanophage occurrence, and mode of action to remediate cyanoHABs. Overall, this study illustrates cyanobacterial toxin production and its impacts on the environment, the mechanisms involved in the cyanophage-cyanobacteria interaction, and the application of cyanophages for the removal of toxic cyanobacterial blooms.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bernard A Engel
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mikael Reuhs
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|