1
|
Zhang K, Yue L, Cong J, Zhang J, Feng Z, Yang Q, Lu X. Increased production of pullulan in Aureobasidium pullulans YQ65 through reduction of intracellular glycogen content. Carbohydr Polym 2025; 352:123196. [PMID: 39843098 DOI: 10.1016/j.carbpol.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH. It is subsequently analyzed using the Conserved Domains and Expasy tools. It has been found that compared with its wild type, the △ApGph1 strain exhibits no significant differences in its growth pattern and morphology but a production volume of pullulan inversely proportional to its glycogen content. In addition, through fed-batch fermentation, an over-expressed ApGph1 strain can produce 42.7 g/L of pullulan within 144 h, which is related to the increased expression of key genes involved in pullulan synthesis. The results can provide a guide for the industrial production of pullulan.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Lei Yue
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jingxian Cong
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jianlong Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Zhibin Feng
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuechun Lu
- LuDong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Liu Q, Yang L, Xue H, Bi Y, Zhang Q, Zong Y, Li X. Effects of Ambient pH on the Growth and Development, Pathogenicity, and Diacetoxyscirpenol Accumulation of Muskmelon Fruit Caused by Fusarium sulphureum. J Fungi (Basel) 2024; 10:765. [PMID: 39590684 PMCID: PMC11595694 DOI: 10.3390/jof10110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Ambient pH, an important environmental factor, affects the growth, pathogenicity, and mycotoxin production of pathogenic fungus. Fusarium sulphureum is one of the predominant causal agents causing fusarium rot of muskmelon. In this study, we investigated the effects of ambient pH on fusarium rot development and diacetoxyscirpenol (DAS) accumulation in muskmelon infected with F. sulphureum, then analyzed the possible mechanisms in vitro and in vivo. The results suggested that ambient pH 6 was more conducive to the growth, pathogenicity, and mycotoxin production of F. sulphureum in vitro. Ambient pH 6 was also more favorable for secretion of cell wall-degrading enzymes for the pathogen to degrade the cell wall of the host plant and up-regulated the relative expression of genes involved in DAS biosynthesis, thus aggravating fruit disease and DAS accumulation. However, when the pH of the inoculated spore suspension was too acidic or too alkaline, the opposite results were observed.
Collapse
Affiliation(s)
- Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Liu Q, Zhang Q, Xue H, Bi Y, Yang X, Zong Y, Liu Z, Dov P. Effects of TrPLDs on the pathogenicity of Trichothecium roseum infected apple fruit. Food Microbiol 2024; 121:104496. [PMID: 38637067 DOI: 10.1016/j.fm.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024]
Abstract
Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.
Collapse
Affiliation(s)
- Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xi Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Prusky Dov
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
4
|
Yin X, Chen Z, Li T, Liu Q, Jiang X, Han X, Wang C, Wei Y, Yuan L. The Arrestin-like Protein palF Contributes to Growth, Sporulation, Spore Germination, Osmolarity, and Pathogenicity of Coniella vitis. J Fungi (Basel) 2024; 10:508. [PMID: 39057393 PMCID: PMC11277687 DOI: 10.3390/jof10070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.
Collapse
Affiliation(s)
- Xiangtian Yin
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Zihe Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Qibao Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xing Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Chundong Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| |
Collapse
|
5
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
6
|
Azizullah, Noman M, Gao Y, Wang H, Xiong X, Wang J, Li D, Song F. The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation. Microbiol Res 2024; 281:127632. [PMID: 38310728 DOI: 10.1016/j.micres.2024.127632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
SUMOylation is a key post-translational modification, where small ubiquitin-related modifier (SUMO) proteins regulate crucial biological processes, including pathogenesis, in phytopathogenic fungi. Here, we investigated the function and mechanism of the SUMOylation pathway in the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the fungal pathogen that causes watermelon Fusarium wilt. Disruption of key SUMOylation pathway genes, FonSMT3, FonAOS1, FonUBC9, and FonMMS21, significantly reduced pathogenicity, impaired penetration ability, and attenuated invasive growth capacity of Fon. Transcription and proteomic analyses identified a diverse set of SUMOylation-regulated differentially expressed genes and putative FonSMT3-targeted proteins, which are predicted to be involved in infection, DNA damage repair, programmed cell death, reproduction, growth, and development. Among 155 putative FonSMT3-targeted proteins, FonPalC, a Pal/Rim-pH signaling regulator, was confirmed to be SUMOylated. The FonPalC protein accumulation was significantly decreased in SUMOylation-deficient mutant ∆Fonsmt3. Deletion of FonPalC resulted in impaired mycelial growth, decreased pathogenicity, enhanced osmosensitivity, and increased intracellular vacuolation in Fon. Importantly, mutations in conserved SUMOylation sites of FonPalC failed to restore the defects in ∆Fonpalc mutant, indicating the critical function of the SUMOylation in FonPalC stability and Fon pathogenicity. Identifying key SUMOylation-regulated pathogenicity-related proteins provides novel insights into the molecular mechanisms underlying Fon pathogenesis regulated by SUMOylation.
Collapse
Affiliation(s)
- Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Zhang M, Wei X, Wang P, Chi Z, Liu GL, Chi ZM. Liamocin biosynthesis is induced by an autogenous host acid activation in Aureobasidium melanogenum. Biotechnol J 2024; 19:e2200440. [PMID: 37740661 DOI: 10.1002/biot.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
It has been known that maximal liamocin production must be carried out at low environmental pH (around 3.0). In this study, it was found that the low pH was mainly caused by the secreted citric acid which is one precursor of acetyl-CoA for liamocin biosynthesis. Determination of citric acid in the culture, deletion, complementation and overexpression of the CEXA gene encoding specific citrate exporter demonstrated that the low pH was indeed caused by the secreted citric acid. Deletion, complementation and overexpression of the ACL gene encoding ATP-citric acid lyase and effects of different initial pHs and added citric acid showed that the low pH in the presence of citric acid was suitable for lysis of intracellular citric acid, liamocin production and expression of the PACC gene encoding the pH signaling transcription factor PacC. This meant that the PACC gene was an acid-expression gene. Deletion, complementation and overexpression of the PACC gene indicated that expression of the key gene cluster GAL1-EST1-PKS1 for liamocin biosynthesis was driven by the pH signaling transcription factor PacC and there was weak nitrogen catabolite repression on liamocin biosynthesis at the low pH. That was why liamocin biosynthesis was induced at a low pH in the presence of citric acid. The mechanisms of the enhanced liamocin biosynthesis by the autogenous host acid activation, together with the pH signaling pathway, were proposed.
Collapse
Affiliation(s)
- Mei Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xin Wei
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Zhang K, Wang W, Yang Q. Transcriptome Analysis Reveals the Regulation of Aureobasidium pullulans under Different pH Stress. Int J Mol Sci 2023; 24:16103. [PMID: 38003294 PMCID: PMC10671783 DOI: 10.3390/ijms242216103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Aureobasidium pullulans (A. pullulans), a commonly found yeast-like fungus, exhibits adaptability to a wide range of pH environments. However, the specific mechanisms and regulatory pathways through which A. pullulans respond to external pH remain to be fully understood. In this study, we first sequenced the whole genome of A. pullulans using Nanopore technology and generated a circle map. Subsequently, we explored the biomass, pullulan production, melanin production, and polymalic acid production of A. pullulans when cultivated at different pH levels. We selected pH 4.0, pH 7.0, and pH 10.0 to represent acidic, neutral, and alkaline environments, respectively, and examined the morphological characteristics of A. pullulans using SEM and TEM. Our observations revealed that A. pullulans predominantly exhibited hyphal growth with thicker cell walls under acidic conditions. In neutral environments, it primarily displayed thick-walled spores and yeast-like cells, while in alkaline conditions, it mainly assumed an elongated yeast-like cell morphology. Additionally, transcriptome analysis unveiled that A. pullulans orchestrates its response to shifts in environmental pH by modulating its cellular morphology and the expression of genes involved in pullulan, melanin, and polymalic acid synthesis. This research enhances the understanding of how A. pullulans regulates itself in diverse pH settings and offers valuable guidance for developing and applying engineered strains.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Wan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Jiang C, Zhou L, Zhao Q, Wang M, Shen S, Zhao T, Cui K, He L. Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. Int J Mol Sci 2023; 24:15198. [PMID: 37894879 PMCID: PMC10607518 DOI: 10.3390/ijms242015198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Reference genes are important for the accuracy of gene expression profiles using reverse-transcription quantitative PCR (RT-qPCR). However, there are no available reference genes reported for Sclerotium rolfsii; it actually has a pretty diverse and wide host range. In this study, seven candidate reference genes (UBC, β-TUB, 28S, 18S, PGK, EF1α and GAPDH) were validated for their expression stability in S. rolfsii under conditions of different developmental stages, populations, fungicide treatments, photoperiods and pHs. Four algorithm programs (geNorm, Normfinder, Bestkeeper and ΔCt) were used to evaluate the gene expression stability, and RefFinder was used to integrate the ranking results of four programs. Two reference genes were recommended by RefFinder for RT-qPCR normalization in S. rolfsii. The suitable reference genes were GAPDH and UBC across developmental stages, PGK and UBC across populations, GAPDH and PGK across fungicide treatments, EF1α and PGK across photoperiods, β-TUB and EF1α across pHs and PGK and GAPDH across all samples. Four target genes (atrB, PacC, WC1 and CAT) were selected for the validation of the suitability of selected reference genes. However, using one or two reference genes in combination to normalize the expression of target genes showed no significant difference in S. rolfsii. In short, this study provided reliable reference genes for studying the expression and function of genes in S. rolfsii.
Collapse
Affiliation(s)
- Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sirui Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
10
|
Gu Y, Xu J, Sun F, Cheng J. Elevated intracellular pH of zygotes during mouse aging causes mitochondrial dysfunction associated with poor embryo development. Mol Cell Endocrinol 2023:111991. [PMID: 37336488 DOI: 10.1016/j.mce.2023.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
The mortality of preimplantation embryos is positively correlated with maternal age. However, the underlying mechanism for the poor quality of embryos remains unclear. Here, we found that aging caused elevated intracellular pH (pHi) in zygotes, which could trigger aberrant mitochondrial membrane potential, increased reactive oxygen species (ROS) levels, and poor embryo development. Moreover, single-cell transcriptome sequencing of mouse zygotes identified 120 genes that were significantly differentially expressed (DE) between young and older zygotes. These include genes such as Slc14a1, Fxyd5, CD74, and Bst, which are related to cell division, ion transporter, and cell differentiation. Further analysis indicated that these DE genes were enriched in apoptosis, the NF-kappa B signaling pathway, and the chemokine signaling pathway, which might be the key regulatory pathway affecting the quality of zygotes and subsequent embryo development. Taken together, our study helps elucidate the poor quality and development of older preimplantation embryos.
Collapse
Affiliation(s)
- Yimin Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Junjie Xu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, 7, Taiyuan, 030001, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Zhu M, Duan X, Cai P, Zhang W, Liu Y, Cui J, Li Z, Qiu Z. Biocontrol action of Trichothecium roseum against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.998830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trichothecium roseum is known to be a mycoparasite and inhibit phytopathogenic fungi. However, so far, only scarce information is available on the impacts of T. roseum on powdery mildews. Based on the morphological and molecular analysis, we identified T. roseum as a mycoparasite on colonies of the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt, recently clarified as B. graminis s. str.) and then showed that T. roseum was capable of efficiently impairing colony formation and conidial distribution of Bgt. After inoculation of T. roseum conidia on Bgt colonies, the biomasses of Bgt significantly decreased 1.46, 1.64, 7.55, and 10.49 times at 2, 4, 6, and 8 dpi, respectively. Thus, T. roseum, acting as a potential biological agent, impeded the developments of Bgt, making it a viable alternative for wheat powdery mildew control. Utilizing the Agrobacterium tumefaciens-mediated transformation (ATMT) system, a T. roseum strain that constitutively expressed green fluorescent protein was produced to improve the visualization of the T. roseum-Bgt interaction and showed direct hyphae interaction of T. roseum with Bgt structures during parasitic processes. These findings indicate that ATMT is a potent and efficient method for transforming T. roseum. Nevertheless, our results suggest that T. roseum is an antagonistic parasite of the wheat powdery mildew fungus, and hence, can be considered for phytopathogen management.
Collapse
|