1
|
Song D, Dong K, Liu S, Fu S, Zhao F, Man C, Jiang Y, Zhao K, Qu B, Yang X. Research advances in detection of food adulteration and application of MALDI-TOF MS: A review. Food Chem 2024; 456:140070. [PMID: 38917694 DOI: 10.1016/j.foodchem.2024.140070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Food adulteration and illegal supplementations have always been one of the major problems in the world. The threat of food adulteration to the health of consumers cannot be ignored. Food of questionable origin causes economic losses to consumers, but the potential health risks cannot be ignored. However, the traditional detection methods are time-consuming and complex. This review mainly discusses the types of adulteration and technologies used to detect adulteration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is also emphasized in the detection of adulteration and authenticity of origin analysis of various types of food (milk, meat, edible oil, etc.), and the future application direction and feasibility of this technology are analyzed. On this basis, MALDI-TOF MS was compared with other detection methods, highlighting the advantages of this technology in the detection of food adulteration. The future development prospect and direction of this technology are also emphasized.
Collapse
Affiliation(s)
- Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Dong
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiqian Fu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Kuangyu Zhao
- Fang zheng comprehensive Product quality inspection and testing center, Harbin 150030, China
| | - Bo Qu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| |
Collapse
|
2
|
Takoutsing BD, Ooi SZY, Egu C, Gillespie CS, Dalle DU, Erhabor J, Ciuculete AC, Kesici Ö, Awad AK, Dokponou YCH, Khan M, Ikwuegbuenyi CA, Dada OE, Bandyopadhyay S, Bankole NDA. Management and outcome of intracranial fungal infections in children and adults in Africa: a scoping review. BMC Infect Dis 2024; 24:789. [PMID: 39107727 PMCID: PMC11301832 DOI: 10.1186/s12879-024-09694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Intracranial fungal infections' (IcFIs) varying clinical manifestations lead to difficulties in diagnosis and treatment. African populations are disproportionately affected by the high burden of the disease. There is a lack of clarity as to the diagnostic and treatment modalities employed across the continent. In this review, we aim to detail the management, and outcome of IcFIs across Africa. METHODS This scoping review was conducted using the Arksey and O'Malley framework. MEDLINE, EMBASE, Cochrane Library, African Index Medicus, and African Journals Online were searched for relevant articles from database inception to August 10th, 2021. The Preferred Reporting Items for Systematic Review and Meta-Analysis extension for Scoping Reviews guidelines were used to report the findings of the review. RESULTS Of the 5,779 records identified, 131 articles were included. The mean age was 35.6 years, and the majority (56.4%) were males. The majority (n = 8,433/8,693, 97.0%) of IcFIs presented as a meningitis, the most common communicable predisposing factor of IcFIs was HIV/AIDS (n = 7,815/8,693, 89.9%), and the most common non-communicable risk factor was diabetes mellitus (n = 32/8,693, 0.4%). Cryptococcus species was the most common (n = 8,428/8,693, 97.0%) causative organism. The most commonly used diagnostic modality was cerebrospinal (CSF) cultures (n = 4,390/6,830, 64.3%) for diffuse IcFIs, and MRI imaging (n = 12/30, 40%) for focal IcFIs. The most common treatment modality was medical management with antifungals only (n = 4,481/8,693, 51.6%). The most commonly used antifungal agent in paediatric, and adult patients was amphotericin B and fluconazole dual therapy (51.5% vs 44.9%). The overall mortality rate was high (n = 3,475/7,493, 46.3%), and similar for both adult and paediatric patients (47.8% vs 42.1%). CONCLUSION Most IcFIs occurred in immunosuppressed individuals, and despite the new diagnostic techniques, CSF culture was mostly used in Africa. Antifungals regimens used was similar between children and adults. The outcome of IcFIs in Africa was poor for both paediatric and adult patients.
Collapse
Affiliation(s)
| | | | - Chinedu Egu
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Conor S Gillespie
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - David Ulrich Dalle
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Joshua Erhabor
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | - Özgür Kesici
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Ahmed K Awad
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | - Mehdi Khan
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | | | - Soham Bandyopadhyay
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | |
Collapse
|
3
|
Patel HR, Traylor B, Ahamed MF, Darling G, Botchway A, Batton BJ, Majjiga VS. Impact of Physician Characteristics on Late-Onset Sepsis (LOS) Evaluation in the NICU. Healthcare (Basel) 2024; 12:845. [PMID: 38667607 PMCID: PMC11050479 DOI: 10.3390/healthcare12080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The threshold for a late-onset sepsis (LOS) evaluation varies considerably across NICUs. This unexplained variability is probably related in part to physician bias regarding when sepsis should be "ruled out". The aim of this study is to determine if physician characteristics (race, gender, immigration status, years of experience and academic rank) effect LOS evaluation in the NICU. This study includes a retrospective chart review of all Level III NICU infants who had a LOS evaluation over 54 months. Physician characteristics were compared between positive and negative blood culture groups and whether CBC and CRP were obtained at LOS evaluations. There were 341 LOS evaluations performed during the study period. Two patients were excluded due to a contaminant. Patients in this study had a birth weight of [median (Q1, Q3)]+ 992 (720, 1820) grams and birth gestation of [median (Q1, Q3)] 276/7 (252/7, 330/7) weeks. There are 10 neonatologists in the group, 5/10 being female and 6/10 being immigrant physicians. Experienced physicians were more likely to obtain a CBC at the time of LOS evaluation. Physician characteristics of race, gender and immigration status impacted whether to include a CRP as part of a LOS evaluation but otherwise did not influence LOS evaluation, including the likelihood of bacteremia.
Collapse
Affiliation(s)
- Harshkumar R. Patel
- Department of Pediatrics, SIU School of Medicine, Springfield, IL 62794, USA; (H.R.P.); (G.D.); (B.J.B.)
| | | | - Mohamed Farooq Ahamed
- Department of Pediatrics, SIU School of Medicine, Springfield, IL 62794, USA; (H.R.P.); (G.D.); (B.J.B.)
| | - Ginger Darling
- Department of Pediatrics, SIU School of Medicine, Springfield, IL 62794, USA; (H.R.P.); (G.D.); (B.J.B.)
| | - Albert Botchway
- Center for Clinical Research, SIU School of Medicine, Springfield, IL 62702, USA;
| | - Beau J. Batton
- Department of Pediatrics, SIU School of Medicine, Springfield, IL 62794, USA; (H.R.P.); (G.D.); (B.J.B.)
| | - Venkata Sasidhar Majjiga
- Department of Pediatrics, SIU School of Medicine, Springfield, IL 62794, USA; (H.R.P.); (G.D.); (B.J.B.)
| |
Collapse
|
4
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
5
|
Batool M, Galloway-Peña J. Clinical metagenomics-challenges and future prospects. Front Microbiol 2023; 14:1186424. [PMID: 37448579 PMCID: PMC10337830 DOI: 10.3389/fmicb.2023.1186424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Infections lacking precise diagnosis are often caused by a rare or uncharacterized pathogen, a combination of pathogens, or a known pathogen carrying undocumented or newly acquired genes. Despite medical advances in infectious disease diagnostics, many patients still experience mortality or long-term consequences due to undiagnosed or misdiagnosed infections. Thus, there is a need for an exhaustive and universal diagnostic strategy to reduce the fraction of undocumented infections. Compared to conventional diagnostics, metagenomic next-generation sequencing (mNGS) is a promising, culture-independent sequencing technology that is sensitive to detecting rare, novel, and unexpected pathogens with no preconception. Despite the fact that several studies and case reports have identified the effectiveness of mNGS in improving clinical diagnosis, there are obvious shortcomings in terms of sensitivity, specificity, costs, standardization of bioinformatic pipelines, and interpretation of findings that limit the integration of mNGS into clinical practice. Therefore, physicians must understand the potential benefits and drawbacks of mNGS when applying it to clinical practice. In this review, we will examine the current accomplishments, efficacy, and restrictions of mNGS in relation to conventional diagnostic methods. Furthermore, we will suggest potential approaches to enhance mNGS to its maximum capacity as a clinical diagnostic tool for identifying severe infections.
Collapse
Affiliation(s)
| | - Jessica Galloway-Peña
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Takoutsing BD, Ooi SZY, Egu CB, Gillespie CS, Bandyopadhyay S, Dada OE, Dokponou YCH, Dalle DU, Ciuculete AC, Awad AK, Khan M, Erhabor J, Ikwuegbuenyi CA, Kesici Ö, Bankole NDA. Management and outcomes of intracranial fungal infections in children and adults in Africa: a scoping review protocol. BMJ Open 2023; 13:e065943. [PMID: 36731932 PMCID: PMC9896247 DOI: 10.1136/bmjopen-2022-065943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION The protocol presents the methodology of a scoping review that aims to synthesise contemporary evidence on the management and outcomes of intracranial fungal infections in Africa. METHODS AND ANALYSIS The scoping review will be conducted in accordance with the Arksey and O'Malley's framework. The research question, inclusion and exclusion criteria and search strategy were developed based on the Population, Intervention, Comparator, Outcome framework. A search will be conducted in electronic bibliographic databases (Medline (OVID), Embase, African Journals Online, Cochrane Library and African Index Medicus). No restrictions on language or date of publication will be made. Quantitative and qualitative data extracted from included articles will be presented through descriptive statistics and a narrative description. ETHICS AND DISSEMINATION This study protocol does not require ethical approval. Findings will be reported in a peer-reviewed medical journal and presented at local, regional, national and international conferences.
Collapse
Affiliation(s)
| | | | - Chinedu Brian Egu
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Conor S Gillespie
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Soham Bandyopadhyay
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | | | - David Ulrich Dalle
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | - Ahmed K Awad
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Mehdi Khan
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | - Joshua Erhabor
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | | - Özgür Kesici
- Research Department, Association of Future African Neurosurgeons, Yaounde, Cameroon
| | | |
Collapse
|
7
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
8
|
Abstract
Sepsis remains a significant cause of neonatal mortality and morbidity, especially in low- and middle-income countries. Neonatal sepsis presents with nonspecific signs and symptoms that necessitate tests to confirm the diagnosis. Early and accurate diagnosis of infection will improve clinical outcomes and decrease the overuse of antibiotics. Current diagnostic methods rely on conventional culture methods, which is time-consuming, and may delay critical therapeutic decisions. Nonculture-based techniques including molecular methods and mass spectrometry may overcome some of the limitations seen with culture-based techniques. Biomarkers including hematological indices, cell adhesion molecules, interleukins, and acute-phase reactants have been used for the diagnosis of neonatal sepsis. In this review, we examine past and current microbiological techniques, hematological indices, and inflammatory biomarkers that may aid sepsis diagnosis. The search for an ideal biomarker that has adequate diagnostic accuracy early in sepsis is still ongoing. We discuss promising strategies for the future that are being developed and tested that may help us diagnose sepsis early and improve clinical outcomes. IMPACT: Reviews the clinical relevance of currently available diagnostic tests for sepsis. Summarizes the diagnostic accuracy of novel biomarkers for neonatal sepsis. Outlines future strategies including the use of omics technology, personalized medicine, and point of care tests.
Collapse
|
9
|
Calderaro A, Buttrini M, Montecchini S, Piccolo G, Martinelli M, Dell’Anna ML, Di Maio A, Arcangeletti MC, Maccari C, De Conto F, Chezzi C. Detection of SARS-CoV-2 and Other Infectious Agents in Lower Respiratory Tract Samples Belonging to Patients Admitted to Intensive Care Units of a Tertiary-Care Hospital, Located in an Epidemic Area, during the Italian Lockdown. Microorganisms 2021; 9:185. [PMID: 33467079 PMCID: PMC7830127 DOI: 10.3390/microorganisms9010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was the detection of infectious agents from lower respiratory tract (LRT) samples in order to describe their distribution in patients with severe acute respiratory failure and hospitalized in intensive care units (ICU) in an Italian tertiary-care hospital. LRT samples from 154 patients admitted to ICU from 27 February to 10 May 2020 were prospectively examined for respiratory viruses, including SARS-CoV-2, bacteria and/or fungi. SARS-CoV-2 was revealed in 90 patients (58.4%, 72 males, mean age 65 years). No significant difference was observed between SARS-CoV-2 positives and SARS-CoV-2 negatives with regard to sex, age and bacterial and/or fungal infections. Nonetheless, fungi were more frequently detected among SARS-CoV-2 positives (44/54, 81.4%, p = 0.0053). Candida albicans was the overall most frequently isolated agent, followed by Enterococcus faecalis among SARS-CoV-2 positives and Staphylococcus aureus among SARS-CoV-2 negatives. Overall mortality rate was 40.4%, accounting for 53 deaths: 37 among SARS-CoV-2 positives (mean age 69 years) and 16 among SARS-CoV-2 negatives (mean age 63 years). This study highlights the different patterns of infectious agents between the two patient categories: fungi were prevalently involved among SARS-CoV-2-positive patients and bacteria among the SARS-CoV-2-negative patients. The different therapies and the length of the ICU stay could have influenced these different patterns of infectious agents.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Sara Montecchini
- Unit of Clinical Virology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.L.D.)
| | - Giovanna Piccolo
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Monica Martinelli
- Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.M.); (A.D.M.)
| | - Maria Loretana Dell’Anna
- Unit of Clinical Virology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.L.D.)
| | - Alan Di Maio
- Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.M.); (A.D.M.)
| | - Maria Cristina Arcangeletti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (G.P.); (M.C.A.); (C.M.); (F.D.C.); (C.C.)
| |
Collapse
|
10
|
Źródłowski T, Sobońska J, Salamon D, McFarlane IM, Ziętkiewicz M, Gosiewski T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the "Gold Standard"? Microorganisms 2020; 8:microorganisms8030346. [PMID: 32121353 PMCID: PMC7143506 DOI: 10.3390/microorganisms8030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
Standard blood cultures require at least 24–120 h to be reported as preliminary positive. The objective of this study was to compare the reliability of Gram staining and fluorescent in-situ hybridization (FISH) for detecting bacteria in otherwise negative blood culture bottles. Ninety-six sets were taken from patients with a diagnosis of sepsis. Six incomplete blood culture sets and eight blood cultures sets demonstrating positive growth were excluded. We performed Gram stain and FISH on 82 sets taken from post-operative septic patients: 82 negative aerobic blood cultures, 82 anaerobic blood cultures, and 82 blood samples, as well as 57 blood samples taken from healthy volunteers. From the eighty-two blood sets analyzed from the septic patients, Gram stain visualized bacteria in 62.2% of blood samples, 35.4% of the negative aerobic bottles, and in 31.7% of the negative anaerobic bottles. Utilizing FISH, we detected bacteria in 75.6%, 56.1%, and 64.6% respectively. Among the blood samples from healthy volunteers, FISH detected bacteria in 64.9%, while Gram stain detected bacteria in only 38.6%. The time needed to obtain the study results using Gram stain was 1 h, for FISH 4 h, and for the culture method, considering the duration of growth, 5 days. Gram stain and FISH allow quick detection of bacteria in the blood taken directly from a patient. Finding phagocytosed bacteria, which were also detected among healthy individuals, confirms the hypothesis that blood microbiome exists.
Collapse
Affiliation(s)
- Tomasz Źródłowski
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Internal Medicine, St. John’s Episcopal Hospital, Far Rockaway, NY 11691, USA
| | - Joanna Sobońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Isabel M. McFarlane
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Mirosław Ziętkiewicz
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| |
Collapse
|
11
|
Calderaro A, Buttrini M, Martinelli M, Covan S, Montecchini S, Ruggeri A, Arcangeletti MC, De Conto F, Chezzi C. Rapid microbial identification and phenotypic antimicrobial susceptibility testing directly from positive blood cultures: a new platform compared to routine laboratory methods. Diagn Microbiol Infect Dis 2019; 96:114955. [PMID: 31839334 DOI: 10.1016/j.diagmicrobio.2019.114955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 11/24/2022]
Abstract
The Accelerate Pheno™ System (APS), a new platform that combines rapid identification (ID) of bacteria and yeasts and phenotypic antimicrobial susceptibility testing (AST) in a single assay, has been evaluated directly from positive blood cultures in comparison to routine laboratory methods. The APS ID results showed an overall sensitivity and specificity of 92.6% and 99.6%, respectively. With regard to AST results, 31 discrepancies (8 single errors and 23 combined errors) were observed, including 13 major errors (3.3%) and 18 minor errors (4.6%) mainly involving Pseudomonas aeruginosa. No very major error was observed. The APS ID results were obtained in 1.5 h and the AST results were available in 7 h, on average 34.1 h before routine laboratory methods. This reduction in AST time-to-result represents one of the main advantages of this technology, reducing the time to provide to the physician the microbiological report.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma -, Parma, Italy.
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | - Monica Martinelli
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | - Silvia Covan
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | - Sara Montecchini
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | - Alberto Ruggeri
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | | | - Flora De Conto
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma -, Parma, Italy
| |
Collapse
|
12
|
Zhang Y, Hu A, Andini N, Yang S. A 'culture' shift: Application of molecular techniques for diagnosing polymicrobial infections. Biotechnol Adv 2019; 37:476-490. [PMID: 30797092 PMCID: PMC6447436 DOI: 10.1016/j.biotechadv.2019.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
With the advancement of microbiological discovery, it is evident that many infections, particularly bloodstream infections, are polymicrobial in nature. Consequently, new challenges have emerged in identifying the numerous etiologic organisms in an accurate and timely manner using the current diagnostic standard. Various molecular diagnostic methods have been utilized as an effort to provide a fast and reliable identification in lieu or parallel to the conventional culture-based methods. These technologies are mostly based on nucleic acid, proteins, or physical properties of the pathogens with differing advantages and limitations. This review evaluates the different molecular methods and technologies currently available to diagnose polymicrobial infections, which will help determine the most appropriate option for future diagnosis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Anne Hu
- Emergency Medicine, Stanford University, Stanford, California 94305, USA
| | - Nadya Andini
- Emergency Medicine, Stanford University, Stanford, California 94305, USA
| | - Samuel Yang
- Emergency Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
13
|
Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS One 2019; 14:e0201332. [PMID: 30735489 PMCID: PMC6368374 DOI: 10.1371/journal.pone.0201332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
Bacteraemia is a risk factor for subsequent clinical deterioration and death. Current reliance on culture-based methods for detection of bacteraemia delays identification and assessment of this risk until after the optimal period for positively impacting treatment decisions has passed. Therefore, a method for rapid detection and identification of bacterial infection in the peripheral bloodstream in acutely ill patients is crucial for improved patient survival through earlier targeted antibiotic treatment. The turnaround time for current clinical laboratory methods ranges from 12 to 48 hours, emphasizing the need for a faster diagnostic test. Here we describe a novel assay for accelerated generic detection of bacteria in blood culture (BC) using peptide nucleic acid fluorescence in situ hybridization enhanced acoustic flow cytometry (PNA-FISH-AFC). For assay development, we used simulated blood cultures (BCs) spiked with one of three bacterial species at a low starting concentration of 10 CFU/mL: Escherichia coli, Klebsiella pneumoniae or Pseudomonas aeruginosa. Under current clinical settings, it takes a minimum of 12 hours incubation to reach positivity on the BacTEC system, corresponding to a bacterial concentration of 107−109 CFU/mL optimal for further analyses. In contrast, our PNA-FISH-AFC assay detected 103–104 CFU/mL bacteria in BC following a much shorter culture incubation of 5 to 10 hours. Using either PCR-based FilmArray assay or MALDI-TOF for bacterial detection, it took 7–10 and 12–24 hours of incubation, respectively, to reach the positive result. These findings indicate a potential time advantage of PNA-FISH-AFC assay for rapid bacterial detection in BC with significantly improved turnaround time over currently used laboratory techniques.
Collapse
|
14
|
Abstract
BACKGROUND Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. METHODS One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. RESULTS The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. CONCLUSION Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.
Collapse
Affiliation(s)
- Katarzyna Góralska
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Joanna Blaszkowska
- Department of Diagnostics and Treatment of Parasitic Diseases and Mycoses, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Magdalena Dzikowiec
- Department of Diagnostics and Treatment of Parasitic Diseases and Mycoses, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
15
|
Calderaro A, Martinelli M, Buttrini M, Montecchini S, Covan S, Rossi S, Ferraglia F, Montagna P, Pinardi F, Larini S, Arcangeletti MC, Medici MC, Chezzi C, De Conto F. Contribution of the FilmArray ® Gastrointestinal Panel in the laboratory diagnosis of gastroenteritis in a cohort of children: a two-year prospective study. Int J Med Microbiol 2018; 308:514-521. [PMID: 29748124 DOI: 10.1016/j.ijmm.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
This study represents a 2-year picture of the epidemiology of enteric pathogens in children suffering from gastroenteritis using the FilmArray® Gastrointestinal Panel (FA-GP), a multiplex molecular assay that allows to simultaneously detect a large panel of pathogens independently of the etiological suspicion and to evaluate its potential contribution to the diagnosis compared to the conventional methods. A total of 1716 stool samples, collected from children with clinical suspicion of bacterial and/or viral gastroenteritis attending the University Hospital of Parma, was submitted to the FA-GP and, when an adequate aliquot was available, to electron microscopy (n = 1163) for virus detection and to an enterovirus-targeting real-time PCR (n = 1703). Specimens with positive results for Salmonella, Yersinia enterocolitica, Vibrio, diarrheagenic Escherichia coli/Shigella, Campylobacter, Plesiomonas shigelloides and/or parasites by the FA-GP were also submitted to conventional diagnostic methods. The FA-GP gave positive results in 958 (55.8%) cases, 64.8% from inpatients: 647 (67.5%) contained a single agent and 311 (32.5%) multiple agents, for a total of 1374 pathogens. Enteropathogenic E. coli, rotavirus, norovirus, toxigenic Clostridioides difficile, and sapovirus were the most commonly detected pathogens. A total of 812 additional agents (344 of which as single pathogen) was detected by the FA-GP and not included in the clinical suspicion. The overall recovery rate of the conventional methods from stools that resulted positive by the FA-GP was 38.6% for bacteria, 50% and 84.2% for Giardia intestinalis and Cryptosporidium, respectively, and ranged from 3.7% to 64.6% for viruses, if excluding all electron microscopy-negative astroviruses. Enterovirus, an agent not targeted by the FA-GP, was revealed in 9.6% (164/1703) of the examined samples, and in 52 cases it was the only agent detected. The results of this study allowed to extend the range of detectable pathogens independently of the clinical suspicion, to detect co-infections in almost one third of children positive for at least one agent and to show that conventional methods would have missed more than half of the enteric agents detected by the FA-GP.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Monica Martinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sara Montecchini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Covan
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sabina Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Paolo Montagna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Pinardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sandra Larini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
17
|
Mitchell SL, Alby K. Performance of microbial identification by MALDI-TOF MS and susceptibility testing by VITEK 2 from positive blood cultures after minimal incubation on solid media. Eur J Clin Microbiol Infect Dis 2017; 36:2201-2206. [PMID: 28656386 DOI: 10.1007/s10096-017-3046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Bloodstream infections (BSIs) are a leading cause of patient morbidity and mortality. Rapid identification of organisms from BSIs is critical for initiating targeted antimicrobial therapy. Although many methods exist for rapid identification, they do not provide detailed or definitive susceptibility information. We assessed the utility of both the VITEK MS and Bruker Biotyper MALDI-TOF mass spectrometers to identify organisms from a positive blood culture bottle after only 4 h of growth on solid media compared to identification from overnight growth using the VITEK MS. Additionally, we determined whether this limited growth could yield accurate antimicrobial susceptibility testing (AST) results compared to overnight growth using the VITEK 2 AST system. Overall, identifications using the VITEK MS and Biotyper had agreements of 127/150 (84%) and 133/150 (88%), respectively. For rapid AST, the overall categorical agreement was 1010/1017 (99.3%), where Gram-negative bacteria had concordant results for 743/750 (99.1%) organism-drug combinations and Gram-positive bacteria had concordant results for 265/267 (99.3%). Gram-negative bacteria had 4, 2, and 1 minor, major, and very major discrepancies, respectively, while Gram-positive bacteria had no minor errors, one major, and one very major discrepancy. In conclusion, organisms grown for only 4 h on solid media were accurately identified by MALDI-TOF MS and have concordant phenotypic AST profiles. This method can also be implemented using common commercial instruments, providing a way to improve upon identification and gain detailed susceptibility information without significant additional laboratory costs.
Collapse
Affiliation(s)
- S L Mitchell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Alby
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Clinical Microbiology Laboratory, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4th Floor Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Das S, Shibib DR, Vernon MO. The new frontier of diagnostics: Molecular assays and their role in infection prevention and control. Am J Infect Control 2017; 45:158-169. [PMID: 28159066 PMCID: PMC7115290 DOI: 10.1016/j.ajic.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023]
Abstract
Recent advances in technology over the last decade have propelled the microbiology laboratory into a pivotal role in infection prevention and control. The rapid adaptation of molecular technologies to the field of clinical microbiology now greatly influences infectious disease management and significantly impacts infection control practices. This review discusses recent developments in molecular techniques in the diagnosis of infectious diseases. It describes the basic concepts of molecular assays, discusses their advantages and limitations, and characterizes currently available commercial assays with respect to cost, interpretive requirements, and clinical utility.
Collapse
|
19
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
20
|
Pitt WG, Alizadeh M, Husseini GA, McClellan DS, Buchanan CM, Bledsoe CG, Robison RA, Blanco R, Roeder BL, Melville M, Hunter AK. Rapid separation of bacteria from blood-review and outlook. Biotechnol Prog 2016; 32:823-39. [PMID: 27160415 DOI: 10.1002/btpr.2299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/03/2016] [Indexed: 12/11/2022]
Abstract
The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:823-839, 2016.
Collapse
Affiliation(s)
- William G Pitt
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Mahsa Alizadeh
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Ghaleb A Husseini
- Dept. of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | | | - Clara M Buchanan
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Colin G Bledsoe
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Richard A Robison
- Dept. of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Rae Blanco
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | | | - Madison Melville
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Alex K Hunter
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| |
Collapse
|
21
|
Bhaisare ML, Gedda G, Khan MS, Wu HF. Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Anal Chim Acta 2016; 920:63-71. [DOI: 10.1016/j.aca.2016.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
|
22
|
Matsumoto Y, Sakakihara S, Grushnikov A, Kikuchi K, Noji H, Yamaguchi A, Iino R, Yagi Y, Nishino K. A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One 2016; 11:e0148797. [PMID: 26872134 PMCID: PMC4752270 DOI: 10.1371/journal.pone.0148797] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
The recent global increase in the prevalence of antibiotic-resistant bacteria and lack of development of new therapeutic agents emphasize the importance of selecting appropriate antimicrobials for the treatment of infections. However, to date, the development of completely accelerated drug susceptibility testing methods has not been achieved despite the availability of a rapid identification method. We proposed an innovative rapid method for drug susceptibility testing for Pseudomonas aeruginosa that provides results within 3 h. The drug susceptibility testing microfluidic (DSTM) device was prepared using soft lithography. It consisted of five sets of four microfluidic channels sharing one inlet slot, and the four channels are gathered in a small area, permitting simultaneous microscopic observation. Antimicrobials were pre-introduced into each channel and dried before use. Bacterial suspensions in cation-adjusted Mueller-Hinton broth were introduced from the inlet slot and incubated for 3 h. Susceptibilities were microscopically evaluated on the basis of differences in cell numbers and shapes between drug-treated and control cells, using dedicated software. The results of 101 clinically isolated strains of P. aeruginosa obtained using the DSTM method strongly correlated with results obtained using the ordinary microbroth dilution method. Ciprofloxacin, meropenem, ceftazidime, and piperacillin caused elongation in susceptible cells, while meropenem also induced spheroplast and bulge formation. Morphological observation could alternatively be used to determine the susceptibility of P. aeruginosa to these drugs, although amikacin had little effect on cell shape. The rapid determination of bacterial drug susceptibility using the DSTM method could also be applicable to other pathogenic species, and it could easily be introduced into clinical laboratories without the need for expensive instrumentation.
Collapse
Affiliation(s)
- Yoshimi Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
- * E-mail:
| | - Shouichi Sakakihara
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrey Grushnikov
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuma Kikuchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Yasushi Yagi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Multiplex Technologies. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
|
25
|
Sanguinetti M, Posteraro B. Diagnostic of Fungal Infections Related to Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:63-82. [PMID: 27300347 DOI: 10.1007/5584_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fungal biofilm-related infections, most notably those caused by the Candida and Aspergillus genera, need to be diagnosed accurately and rapidly to avoid often unfavorable outcomes. Despite diagnosis of these infections is still based on the traditional histopathology and culture, the use of newer, rapid methods has enormously enhanced the diagnostic capability of a modern clinical mycology laboratory. Thus, while accurate species-level identification of fungal isolates can be achieved with turnaround times considerably shortened, nucleic acid-based or antigen-based detection methods can be considered useful adjuncts for the diagnosis of invasive forms of candidiasis and aspergillosis. Furthermore, simple, reproducible, and fast methods have been developed to quantify biofilm production by fungal isolates in vitro. In this end, isolates can be categorized as low, moderate, or high biofilm-forming, and this categorization may reflect their differential response to the conventional antifungal therapy. By means of drug susceptibility testing performed on fungal biofilm-growing isolates, it is now possible to evaluate not only the activity of conventional antifungal agents, but also of novel anti-biofilm agents. Despite this, future diagnostic methods need to target specific biofilm components/molecules, in order to provide a direct proof of the presence of this growth phenotype on the site of infection. In the meantime, our knowledge of the processes underlying the adaptive drug resistance within the biofilm has put into evidence biofilm-specific molecules that could be potentially helpful as therapeutic targets. Surely, the successful management of clinically relevant fungal biofilms will rely upon the advancement and/or refinement of these approaches.
Collapse
Affiliation(s)
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
26
|
Calderaro A, Martinelli M, Montecchini S, Motta F, Covan S, Larini S, Medici MC, Arcangeletti MC, Chezzi C, De Conto F. Higher recovery rate of microorganisms from cerebrospinal fluid samples by the BACTEC culture system in comparison with agar culture. Diagn Microbiol Infect Dis 2015; 84:281-6. [PMID: 26867963 DOI: 10.1016/j.diagmicrobio.2015.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022]
Abstract
The aim of this study was to assess the diagnostic value of the BACTEC FX blood culture (BC) system as compared to the agar culture (AC) of cerebrospinal fluid samples (CSF), evaluating the recovery rate and the time to detection of microorganisms in a 3.5-year period. From December 2011 to May 2015, 1326 CSF samples (694 patients) were submitted to both AC and BC. Among the 150 positive samples (96 patients), 165 microorganisms were detected: 81 by both the protocols, 77 by BC alone, and 7 by AC alone, demonstrating a higher detection rate of BC (95.8%) than AC (53.3%). Although BC presents some disadvantages, it is able to improve the yield of clinically significant microorganisms, and it could potentially reduce the reporting time as compared to AC. The results obtained highlighted the necessity of a combined approach for the successful detection of central nervous system microbial infections.
Collapse
Affiliation(s)
- Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy.
| | - Monica Martinelli
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Sara Montecchini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Federica Motta
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Silvia Covan
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Sandra Larini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Maria Cristina Arcangeletti
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Carlo Chezzi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| | - Flora De Conto
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
27
|
Dubourg G, Raoult D. Emerging methodologies for pathogen identification in positive blood culture testing. Expert Rev Mol Diagn 2015; 16:97-111. [PMID: 26559655 DOI: 10.1586/14737159.2016.1112274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bloodstream infections (BSIs) represent a major cause of death in developed countries and are associated with long-term loss of functions. Blood culture remains the gold standard for BSI diagnosis, as it is easy to perform and displays a good analytical sensitivity. However, its major drawback remains the long turnaround time, which can result in inappropriate therapy, fall of survival rate, emergence of antibiotic resistance and increase of medical costs. Over the last 10 years, molecular tools have been the alternative to blood cultures, allowing early identification of pathogens involved in sepsis, as well detection of critical antibiotic resistance genes. Besides, the advent of MALDI-TOF revolutionized practice in routine microbiology significantly reduced the time to result. Reviewed here are recent improvements in early BSI diagnosis and these authors' view for the future is presented, including innovative high-throughput technologies.
Collapse
Affiliation(s)
- Grégory Dubourg
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Didier Raoult
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
28
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
29
|
Matthaiou DK, Christodoulopoulou T, Dimopoulos G. How to treat fungal infections in ICU patients. BMC Infect Dis 2015; 15:205. [PMID: 25930035 PMCID: PMC4419464 DOI: 10.1186/s12879-015-0934-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
Fungal infections represent a major burden in the critical care setting with increasing morbidity and mortality. Candidiasis is the leading cause of such infections, with C. albicans being the most common causative agent, followed by Aspergillosis and Mucormycosis. The diagnosis of such infections is cumbersome requiring increased clinical vigilance and extensive laboratory testing, including radiology, cultures, biopsies and other indirect methods. However, it is not uncommon for definitive evidence to be unavailable. Risk and host factors indicating the probability of infections may greatly help in the diagnostic approach. Timely and adequate intervention is important for their successful treatment. The available therapeutic armamentarium, although not very extensive, is effective with low resistance rates for the newer antifungal agents. However, timely and prudent use is necessary to maximize favorable outcomes.
Collapse
Affiliation(s)
- Dimitrios K Matthaiou
- Department of Critical Care, University Hospital ATTIKON, Medical School, University of Athens, 1 Rimini str, Haidari-Athens, 12462, Greece.
| | - Theodora Christodoulopoulou
- Department of Critical Care, University Hospital ATTIKON, Medical School, University of Athens, 1 Rimini str, Haidari-Athens, 12462, Greece.
| | - George Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, Medical School, University of Athens, 1 Rimini str, Haidari-Athens, 12462, Greece.
| |
Collapse
|
30
|
Multicenter evaluation of Candida QuickFISH BC for identification of Candida species directly from blood culture bottles. J Clin Microbiol 2015; 53:1672-6. [PMID: 25762766 DOI: 10.1128/jcm.00549-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022] Open
Abstract
Candida species are common causes of bloodstream infections (BSI), with high mortality. Four species cause >90% of Candida BSI: C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. Differentiation of Candida spp. is important because of differences in virulence and antimicrobial susceptibility. Candida QuickFISH BC, a multicolor, qualitative nucleic acid hybridization assay for the identification of C. albicans (green fluorescence), C. glabrata (red fluorescence), and C. parapsilosis (yellow fluorescence), was tested on Bactec and BacT/Alert blood culture bottles which signaled positive on automated blood culture devices and were positive for yeast by Gram stain at seven study sites. The results were compared to conventional identification. A total of 419 yeast-positive blood culture bottles were studied, consisting of 258 clinical samples (89 C. glabrata, 79 C. albicans, 23 C. parapsilosis, 18 C. tropicalis, and 49 other species) and 161 contrived samples inoculated with clinical isolates (40 C. glabrata, 46 C. albicans, 36 C. parapsilosis, 19 C. tropicalis, and 20 other species). A total of 415 samples contained a single fungal species, with C. glabrata (n = 129; 30.8%) being the most common isolate, followed by C. albicans (n = 125; 29.8%), C. parapsilosis (n = 59; 14.1%), C. tropicalis (n = 37; 8.8%), and C. krusei (n = 17; 4.1%). The overall agreement (with range for the three major Candida species) between the two methods was 99.3% (98.3 to 100%), with a sensitivity of 99.7% (98.3 to 100%) and a specificity of 98.0% (99.4 to 100%). This study showed that Candida QuickFISH BC is a rapid and accurate method for identifying C. albicans, C. glabrata, and C. parapsilosis, the three most common Candida species causing BSI, directly from blood culture bottles.
Collapse
|
31
|
Kelly MS, Benjamin DK, Smith PB. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin Perinatol 2015; 42:105-17, viii-ix. [PMID: 25677999 PMCID: PMC4328135 DOI: 10.1016/j.clp.2014.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Invasive candidiasis is a leading infectious cause of morbidity and mortality in premature infants. Improved recognition of modifiable risk factors and antifungal prophylaxis has contributed to the recent decline in the incidence of this infection among infants. Invasive candidiasis typically occurs in the first 6 weeks of life and presents with nonspecific signs of sepsis. Definitive diagnosis relies on the growth of Candida in blood culture or cultures from other normally sterile sites, but this may identify fewer than half of cases. Improved diagnostics are needed to guide the initiation of antifungal therapy in premature infants.
Collapse
Affiliation(s)
- Matthew S. Kelly
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Daniel K. Benjamin
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - P. Brian Smith
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
32
|
Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol 2014; 14:313. [PMID: 25551203 PMCID: PMC4302608 DOI: 10.1186/s12866-014-0313-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/26/2014] [Indexed: 01/08/2023] Open
Abstract
Background Microbiological diagnosis of sepsis relies primarily on blood culture data. This study compares four diagnostic methods, i.e. those developed by us: nested, multiplex, qPCR (qPCR) and FISH with commercial methods: SeptiFast (Roche) (SF) and BacT/ALERT® 3D blood culture system (bioMérieux). Blood samples were derived from adult patients with clinical symptoms of sepsis, according to SIRS criteria, hospitalized in the Intensive Care Unit. Results Using qPCR, FISH, SF, and culture, microbial presence was found in 71.8%, 29.6%, 25.3%, and 36.6% of samples, respectively. It was demonstrated that qPCR was significantly more likely to detect microorganisms than the remaining methods; qPCR confirmed the results obtained with the SF kit in all cases wherein bacteria were detected with simultaneous confirmation of Gram-typing. All data collected through the FISH method were corroborated by qPCR. Conclusions The qPCR and FISH methods described in this study may constitute alternatives to blood culture and to the few existing commercial molecular assays since they enable the detection of the majority of microbial species, and the qPCR method allows their identification in a higher number of samples than the SF test. FISH made it possible to show the presence of microbes in a blood sample even before its culture.
Collapse
|
33
|
Invasive fungal infections in the ICU: how to approach, how to treat. Molecules 2014; 19:1085-119. [PMID: 24445340 PMCID: PMC6271196 DOI: 10.3390/molecules19011085] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 12/29/2022] Open
Abstract
Invasive fungal infections are a growing problem in critically ill patients and are associated with increased morbidity and mortality. Most of them are due to Candida species, especially Candida albicans. Invasive candidiasis includes candidaemia, disseminated candidiasis with deep organ involvement and chronic disseminated candidiasis. During the last decades rare pathogenic fungi, such as Aspergillus species, Zygomycetes, Fusarium species and Scedosporium have also emerged. Timely diagnosis and proper treatment are of paramount importance for a favorable outcome. Besides blood cultures, several laboratory tests have been developed in the hope of facilitating an earlier detection of infection. The antifungal armamentarium has also been expanded allowing a treatment choice tailored to individual patients' needs. The physician can choose among the old class of polyenes, the older and newer azoles and the echinocandins. Factors related to patient's clinical situation and present co-morbidities, local epidemiology data and purpose of treatment (prophylactic, pre-emptive, empiric or definitive) should be taken into account for the appropriate choice of antifungal agent.
Collapse
|