1
|
Martini S, Sola L, Cattivelli A, Cristofolini M, Pizzamiglio V, Tagliazucchi D, Solieri L. Cultivable microbial diversity, peptide profiles, and bio-functional properties in Parmigiano Reggiano cheese. Front Microbiol 2024; 15:1342180. [PMID: 38567075 PMCID: PMC10985727 DOI: 10.3389/fmicb.2024.1342180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from β-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from β-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for β-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.
Collapse
Affiliation(s)
- Serena Martini
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Sola
- Microbial Biotechnologies and Fermentation Technologies, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Cattivelli
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Marianna Cristofolini
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Davide Tagliazucchi
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Lisa Solieri
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Bettera L, Levante A, Bancalari E, Bottari B, Gatti M. Lactic acid bacteria in cow raw milk for cheese production: Which and how many? Front Microbiol 2023; 13:1092224. [PMID: 36713157 PMCID: PMC9878191 DOI: 10.3389/fmicb.2022.1092224] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Lactic Acid Bacteria (LAB) exert a fundamental activity in cheese production, as starter LAB in curd acidification, or non-starter LAB (NSLAB) during ripening, in particular in flavor formation. NSLAB originate from the farm and dairy environment, becoming natural contaminants of raw milk where they are present in very low concentrations. Afterward, throughout the different cheesemaking processes, they withstand chemical and physical stresses becoming dominant in ripened cheeses. However, despite a great body of knowledge is available in the literature about NSLAB effect on cheese ripening, the investigations regarding their presence and abundance in raw milk are still poor. With the aim to answer the initial question: "which and how many LAB are present in cow raw milk used for cheese production?," this review has been divided in two main parts. The first one gives an overview of LAB presence in the complex microbiota of raw milk through the meta-analysis of recent taxonomic studies. In the second part, we present a collection of data about LAB quantification in raw milk by culture-dependent analysis, retrieved through a systematic review. Essentially, the revision of data obtained by plate counts on selective agar media showed an average higher concentration of coccoid LAB than lactobacilli, which was found to be consistent with meta-taxonomic analysis. The advantages of the impedometric technique applied to the quantification of LAB in raw milk were also briefly discussed with a focus on the statistical significance of the obtainable data. Furthermore, this approach was also found to be more accurate in highlighting that microorganisms other than LAB are the major component of raw milk. Nevertheless, the variability of the results observed in the studies based on the same counting methodology, highlights that different sampling methods, as well as the "history" of milk before analysis, are variables of great importance that need to be considered in raw milk analysis.
Collapse
|
3
|
Giraffa G. The Microbiota of Grana Padano Cheese. A Review. Foods 2021; 10:2632. [PMID: 34828913 PMCID: PMC8621370 DOI: 10.3390/foods10112632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Grana Padano (GP) is the most appreciated and marketed cheese with Protected Designation of Origin in the world. The use of raw milk, the addition of undefined cultures (defined as 'sieroinnesto naturale'), the peculiar manufacturing proces, and the long ripening make the cheese microbiota play a decisive role in defining the quality and the organoleptic properties of the product. The knowledge on the microbial diversity associated with GP has been the subject, in recent years, of several studies aimed at understanding its composition and characteristics in order, on the one hand, to improve its technological performances and, on the other hand, to indirectly enhance the nutritional quality of the product. This review aims to briefly illustrate the main available knowledge on the composition and properties of the GP microbiota, inferred from dozens of studies carried out by both classical microbiology techniques and metagenomic analysis. The paper will essentially, but not exclusively, be focused on the lactic acid bacteria (LAB) derived from starter (SLAB) and the non-starter bacteria, both lactic (NSLAB) and non-lactic, of milk origin.
Collapse
Affiliation(s)
- Giorgio Giraffa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| |
Collapse
|
4
|
Bottari B, Levante A, Bancalari E, Sforza S, Bottesini C, Prandi B, De Filippis F, Ercolini D, Nocetti M, Gatti M. The Interrelationship Between Microbiota and Peptides During Ripening as a Driver for Parmigiano Reggiano Cheese Quality. Front Microbiol 2020; 11:581658. [PMID: 33133050 PMCID: PMC7561718 DOI: 10.3389/fmicb.2020.581658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 02/02/2023] Open
Abstract
Cheese microbiota contribute significantly to the final characteristics of cheeses due to the growth and interaction between cheese microorganisms during processing and ripening. For raw milk cheeses, such as Parmigiano Reggiano (PR), the microbiota derive from the raw milk itself, the dairy environment, and the starter. The process of cheese making and time of ripening shape this complex ecosystem through the selection of different species and biotypes that will drive the quality of the final product by performing functions of their metabolism such as proteolysis. The diversity in the final peptide and amino acid composition of the cheese is thus mostly linked to the diversity of this microbiota. The purpose of this study was to get more insight into the factors affecting PR cheese diversity and, more specifically, to evaluate whether the composition of the bacterial community of cheeses along with the specific peptide composition are more affected by the ripening times or by the cheese making process. To this end, the microbiota and the peptide fractions of 69 cheese samples (from curd to cheese ripened 24 months) were analyzed during 6 complete PR production cycles, which were performed in six different dairies located in the PR production area. The relation among microbial dynamics, peptide evolution, and ripening times were investigated in this unique and tightly controlled production and sampling set up. The study of microbial and peptide moieties in products from different dairies – from curd to at least 12 months, the earliest time from which the cheese can be sold, and up to a maximum of 24 months of ripening – highlighted the presence of differences between samples coming from different dairies, probably due to small differences in the cheese making process. Besides these differences, however, ripening time had by far the greatest impact on microbial dynamics and, consequently, on peptide composition.
Collapse
Affiliation(s)
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Nocetti
- Consorzio del Formaggio Parmigiano-Reggiano, Reggio Emilia, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Bardelli T, Rossetti L, Zago M, Carminati D, Giraffa G, Tidona F. Extracellular and intracellular DNA for bacterial profiling of long-ripened cheeses. FEMS Microbiol Lett 2020; 367:5862581. [PMID: 32584987 DOI: 10.1093/femsle/fnaa095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
A novel approach was developed to extract the extracellular DNA (eDNA), i.e. the free DNA outside the microbial cell, compared to the intracellular DNA (iDNA). The two DNA fractions were investigated in seven long-ripened cheeses. Among different buffer solutions tested, EDTA 0.5 M at pH 8 enabled a mild homogenization of cheese samples and the highest eDNA recovery. The extraction protocol was tested on single strains of lactic acid bacteria characterizing many Italian long-ripened cheeses, such as Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus rhamnosus. The method resulted suitable for eDNA extraction because it minimized cell-lysis, avoiding the leakage of iDNA from the cells. The yields of eDNA, ranging from 0.01 to 0.36 µg g-1 cheese, were generally higher than the iDNA, indicating that autolytic phenomena prevailed over intact cells after 8-12 months of ripening. In four of the seven cheeses, the same LAB species were detected in the eDNA and iDNA fractions by length-heterogeneity PCR, while in the remaining three samples, a higher number of species was highlighted in the eDNA compared to the corresponding iDNA. The sequential extraction of eDNA and iDNA can be applied to obtain additional information on the composition of the bacterial community in long-aged cheeses.
Collapse
Affiliation(s)
- Tommaso Bardelli
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| | - Lia Rossetti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| | - Miriam Zago
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| | - Domenico Carminati
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| | - Giorgio Giraffa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| | - Flavio Tidona
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo 11, 26900 Lodi, Italy
| |
Collapse
|
6
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
7
|
Blaya J, Barzideh Z, LaPointe G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. J Dairy Sci 2017; 101:3611-3629. [PMID: 29274982 DOI: 10.3168/jds.2017-13345] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
The microbiota of ripening cheese is dominated by lactic acid bacteria, which are either added as starters and adjunct cultures or originate from the production and processing environments (nonstarter or NSLAB). After curd formation and pressing, starters reach high numbers, but their viability then decreases due to lactose depletion, salt addition, and low pH and temperature. Starter autolysis releases cellular contents, including nutrients and enzymes, into the cheese matrix. During ripening, NSLAB may attain cell densities up to 8 log cfu per g after 3 to 9 mo. Depending on the species and strain, their metabolic activity may contribute to defects or inconsistency in cheese quality and to the development of typical cheese flavor. The availability of gene and genome sequences has enabled targeted detection of specific cheese microbes and their gene expression over the ripening period. Integrated systems biology is needed to combine the multiple perspectives of post-genomics technologies to elucidate the metabolic interactions among microorganisms. Future research should delve into the variation in cell physiology within the microbial populations, because spatial distribution within the cheese matrix will lead to microenvironments that could affect localized interactions of starters and NSLAB. Microbial community modeling can contribute to improving the efficiency and reduce the cost of food processes such as cheese ripening.
Collapse
Affiliation(s)
- J Blaya
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1
| | - Z Barzideh
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1
| | - G LaPointe
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
8
|
Lactobacillus delbrueckii subsp. lactis as a starter culture significantly affects the dynamics of volatile compound profiles of hard cooked cheeses. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2899-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Bottari B, Quartieri A, Prandi B, Raimondi S, Leonardi A, Rossi M, Ulrici A, Gatti M, Sforza S, Nocetti M, Amaretti A. Characterization of the peptide fraction from digested Parmigiano Reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. Int J Food Microbiol 2017; 255:32-41. [PMID: 28575713 DOI: 10.1016/j.ijfoodmicro.2017.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/12/2017] [Accepted: 05/21/2017] [Indexed: 12/23/2022]
Abstract
Parmigiano Reggiano (PR) is a raw-milk, hard cooked, long-ripened cheese of high quality and nutritional value. Long ripening times allow for extensive proteolysis of milk proteins to yield a number of peptides, some of which have potential healthy bioactive properties. This study aimed to: i) determine the peptide profile of PR cheese subjected to simulated gastrointestinal transit; ii) evaluate in vitro whether the peptides could support growth of beneficial microbial groups of the gut microbiota. PR samples were subjected to in vitro digestion, simulating oral, gastric, and duodenal transit. Liquid chromatography coupled with tandem mass spectrometry revealed that digestion caused the disappearance of the serum proteins and most of the original peptides, while 71 new peptides were found, all ranging from 2 to 24 residues. The digests were given as sole nitrogen source to pure cultures of Bifidobacterium (27 strains) and Lactobacillus (30 strains), and to bioreactor batch cultures of human gut microbiota. Most of bifidobacteria and lactobacilli grew more abundantly on PR digests than on the control peptone, and exhibited strain- or species-specific peptide preferences, as evidenced by principal component analysis. Bifidobacteria generally consumed a greater amount of peptides than lactobacilli, in terms of both the mean peptide consumption and the number of peptides consumed. For bifidobacteria, peptide preferences were very diverse, but a core of 10 peptides with 4 or 5 residues were consumed by all the strains. Lactobacilli behaved more homogenously and consumed nearly only the same 6 peptides, mostly dipeptides. The peptide preferences of the different groups of bifidobacteria and lactobacilli could not be ascribed to features such as the length of the peptide or the abundance of residues with peculiar properties (hydrophobicity, polarity, charge) and likely depend on specific proteases and/or peptide transporters preferentially recognizing specific sequence motifs. The cultures of human colonic microbiota confirmed that PR digest promoted the growth of commensal bifidobacteria. This study demonstrated that peptides derived from simulated gastrointestinal digestion of PR supported the growth of most lactobacilli and bifidobacteria.
Collapse
Affiliation(s)
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Alessandro Ulrici
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Monica Gatti
- Department of Food Science, University of Parma, Italy; Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| | | | - Marco Nocetti
- Servizio Tecnico Consorzio del Formaggio Parmigiano Reggiano, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|
10
|
Microbiota of an Italian Grana-Like Cheese during Manufacture and Ripening, Unraveled by 16S rRNA-Based Approaches. Appl Environ Microbiol 2016; 82:3988-3995. [PMID: 27107125 DOI: 10.1128/aem.00999-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The microbial ecology of cheese involves a rich and complex interaction between starter lactic acid bacteria and nonstarter lactic acid bacteria (NSLAB), mainly originating from raw milk and/or from the environment, that can contribute to the final characteristics of cheese. The aim of the present research was the exploration of the active microbiota by RNA-based approaches during the manufacturing and ripening of a Grana-like cheese. Reverse transcriptase PCR (RT-PCR)-denaturing gradient gel electrophoresis (DGGE) and RNA-based high-throughput sequencing were applied to profile microbial populations, while the enumeration of active bacteria was carried out by using quantitative PCR (qPCR). Three different cheese productions (named D, E, and F) collected in the same month from the same dairy plant were analyzed. The application of the qPCR protocol revealed the presence of 7 log CFU/ml of bacterial load in raw milk, while, during ripening, active bacterial populations ranged from <4 to 8 log CFU/ml. The natural whey starters used in the three productions showed the same microbiota composition, characterized by the presence of Lactobacillus helveticus and Lactobacillus delbrueckii Nevertheless, beta-diversity analysis of the 16S rRNA sequencing data and RT-PCR-DGGE showed a clear clustering of the samples according to the three productions, probably driven by the different milks used. Milk samples were found to be characterized by the presence of several contaminants, such as Propionibacterium acnes, Acidovorax, Acinetobacter, Pseudomonas, and NSLAB. The core genera of the starter tended to limit the development of the spoilage bacteria only in two of the three batches. This study underlines the influence of different factors that can affect the final microbiota composition of the artisanal cheese. IMPORTANCE This study highlights the importance of the quality of the raw milk in the production of a hard cheese. Independent from the use of a starter culture, raw milk with low microbiological quality can negatively affect the populations of lactic acid bacteria and, as a consequence, impact the quality of the final product due to metabolic processes associated with spoilage bacteria.
Collapse
|
11
|
Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiol 2016; 57:16-22. [PMID: 27052697 DOI: 10.1016/j.fm.2015.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages.
Collapse
|