1
|
Niafar M, Pourafkari L, Aminmozaffari S, Nader ND. Association of Vitamin D Deficiency and Thyroid Function in Postmenopausal Women. Adv Pharm Bull 2017; 6:639-644. [PMID: 28101471 DOI: 10.15171/apb.2016.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Pupose: Although there are reports of vitamin D (VitD) insufficiency in immune-mediated hypothyroidism, an association between VitD and thyroid-stimulating hormone (TSH) levels has yet to be shown. We aim to examine VitD and TSH levels among postmenopausal women, as both conditions are more prevalent in elderly women. Methods: The clinic records of postmenopausal women during their routine maintenance visits were reviewed. All patients were examined for the symptoms related to thyroid function and osteoporosis. Participants were divided into three subgroups according to their TSH levels (below <0.5 mIU/L, 0.51-4.0 mIU/L and >4.0 mIU/L). Patient characteristics and VitD levels were compared between these subgroups. Multivariate linear regression model was constructed using serum VitD and serum TSH as the dependent variables to identify factors independently associated with these laboratory values. Results: Two-hundred and nighty nine postmenopausal women were included. Average age was 62.2±7.5 years old. VitD was insufficient (10-30 ng/mL) in 12.0% and deficient (<10 ng/mL) in 60.9% of the participants. In 11.3%, TSH was low and in 7.6% of women, TSH was high, while the remaining 80.1%, had normal TSH levels. Subjects with low TSH had significantly higher VitD concentrations (34.2±29.1 ng/mL) compared to the other two groups (P-value: 0.039). In multivariate regression analysis, TSH was not a contributing factor, as age was the only significant predictor of VitD levels. Meanwhile, no predictor (including age and VitD) was identified for TSH levels in linear regression analysis. Conclusion: Age was the only independent predictor of serum VitD in this study population. Though suppressed TSH was associated with higher VitD levels, the association was not linear between TSH and VitD in postmenopausal women.
Collapse
Affiliation(s)
- Mitra Niafar
- Endocrin Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Pourafkari
- Department of Anesthesiology, University at Buffalo, Buffalo, NY 14214
| | | | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
2
|
|
3
|
Elias PM, Williams ML, Choi EH, Feingold KR. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:353-61. [PMID: 24291327 DOI: 10.1016/j.bbalip.2013.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
X-linked ichthyosis is a relatively common syndromic form of ichthyosis most often due to deletions in the gene encoding the microsomal enzyme, steroid sulfatase, located on the short area of the X chromosome. Syndromic features are mild or unapparent unless contiguous genes are affected. In normal epidermis, cholesterol sulfate is generated by cholesterol sulfotransferase (SULT2B1b), but desulfated in the outer epidermis, together forming a 'cholesterol sulfate cycle' that potently regulates epidermal differentiation, barrier function and desquamation. In XLI, cholesterol sulfate levels my exceed 10% of total lipid mass (≈1% of total weight). Multiple cellular and biochemical processes contribute to the pathogenesis of the barrier abnormality and scaling phenotype in XLI. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA USA.
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA USA
| | - Eung-Ho Choi
- Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Kenneth R Feingold
- Medical Service, Department of Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Abstract
Although thyroid hormone is one of the most potent stimulators of growth and metabolic rate, the potential to use thyroid hormone to treat cutaneous pathology has never been subject to rigorous investigation. A number of investigators have demonstrated intriguing therapeutic potential for topical thyroid hormone. Topical T3 has accelerated wound healing and hair growth in rodents. Topical T4 has been used to treat xerosis in humans. It is clear that the use of thyroid hormone to treat cutaneous pathology may be of large consequence and merits further study. This is a review of the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. The paper is intended to provide a context for recent findings of direct thyroid hormone action on cutaneous cells in vitro and in vivo which may portend the use of thyroid hormone to promote wound healing.
Collapse
Affiliation(s)
- Joshua D. Safer
- Section of Endocrinology, Boston University School of Medicine, Room M-1016, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review the current understanding regarding thyroid hormone action on skin. To provide a historical context for the recent findings. RECENT FINDINGS Although direct thyroid hormone actions have been demonstrated on multiple aspects of cutaneous biology, rigorous study remains scant. Still, there is a slowly evolving literature supporting the concept that thyroid hormone can directly stimulate epidermis, dermis, and hair. That action may be accessed to treat cutaneous disease. SUMMARY Here, we review the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. We provide context for more recent findings of direct thyroid hormone stimulation of cutaneous cell proliferation in vitro and in vivo which may portend the use of thyroid hormone to treat cutaneous pathologies.
Collapse
Affiliation(s)
- Joshua D Safer
- Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
6
|
Safer JD. Thyroid hormone action on skin. DERMATO-ENDOCRINOLOGY 2011; 3:211-5. [PMID: 22110782 DOI: 10.4161/derm.3.3.17027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/16/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022]
Abstract
The skin characteristics associated with thyroid hormone are classic. The name "myxedema" refers to the associated skin condition caused by increased glycosaminoglycan deposition in the skin. Generalized myxedema is still the classic cutaneous sign of hypothyroidism. It is caused by deposition of dermal acid mucopolysaccharides, notably hyaluronic acid. Despite its appearance, the skin does not pit with pressure.
Collapse
Affiliation(s)
- Joshua D Safer
- Associate Professor of Medicine and Molecular Medicine; Section of Endocrinology, Diabetes and Nutrition; Boston University School of Medicine; Boston, MA USA
| |
Collapse
|
7
|
IL-1α accelerates stratum corneum formation and improves permeability barrier homeostasis during murine fetal development. J Dermatol Sci 2009; 54:88-98. [DOI: 10.1016/j.jdermsci.2009.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 11/18/2022]
|
8
|
Dentice M, Monfrecola G. Dual dichotomies--when thyroid dysfunction and thyroid hormones get into the skin. Thyroid 2008; 18:823-4. [PMID: 18690795 DOI: 10.1089/thy.2008.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Elias PM, Williams ML, Holleran WM, Jiang YJ, Schmuth M. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism. J Lipid Res 2008; 49:697-714. [PMID: 18245815 DOI: 10.1194/jlr.r800002-jlr200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality "drives" pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO(4)) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO(4) as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to beta-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, University of California, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
10
|
Jiang YJ, Lu B, Kim P, Elias PM, Feingold KR. Regulation of ABCA1 expression in human keratinocytes and murine epidermis. J Lipid Res 2006; 47:2248-58. [PMID: 16825673 DOI: 10.1194/jlr.m600163-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
11
|
Hughes PJ, Brown G. 1Alpha,25-dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires VDRnuc-mediated activation of the RAS/RAF/ERK-MAP kinase signalling pathway. J Cell Biochem 2006; 98:590-617. [PMID: 16440327 DOI: 10.1002/jcb.20787] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1Alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of steroid sulphatase (STS) in myeloid cells [Hughes et al., 2001, 2005]. This was attenuated by inhibitors of phospholipase D (PLD) (n-butanol, 2,3-diphosphoglyceric acid, C(2)-ceramide) and phosphatidate phosphohydrolase (PAP) (propranolol and chlorpromazine), but was unaffected by inhibitors of phospholipase C. The 1alpha,25(OH)(2)D(3)-induced STS activity was also attenuated by inhibitors of protein kinase Calpha and protein kinase Cdelta (Go 6976, HBDDE and rottlerin), but not by an inhibitor of protein kinase Cbeta (LY379196). Additionally, 1alpha,25(OH)(2)D(3)-induced STS activity was attenuated by inhibitors of RAS (manumycin A), RAF (GW5074), MEK (PD098059 and U1026) and JNK (SP600125), but not p38 (PD169316). 1alpha,25(OH)(2)D(3) produced a rapid and long lasting stimulation of the ERK-MAP kinase signalling cascade in HL60 myeloid leukaemic cells. This 'non-genomic' effect of 1alpha,25(OH)(2)D(3) blocked by pharmacological antagonists of nuclear vitamin D receptors (VDR(nuc)) and does not appear to require hetero-dimerisation with the retinoid-X receptor (RXR). Inhibitors of the Src tyrosine kinase (PP1), RAS (manumycin A), RAS-RAF interactions (sulindac sulphide and RAS inhibitory peptide), RAF (GW5074 or chloroquine), and protein kinase Calpha (HBDDE) abrogated the 1alpha,25(OH)(2)D(3)-stimulated increase in ERK-MAP kinase activity. Taken together, these results show that 1alpha,25(OH)(2)D(3)/VDR(nuc) activation of the RAS/RAF/ERK-MAP kinase signalling pathway plays an important role in augmenting STS activity in human myeloid leukaemic cell lines.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | |
Collapse
|
12
|
Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 2005; 46:2448-57. [PMID: 16150824 DOI: 10.1194/jlr.m500258-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipids are a major class of lipids in epidermis, where they serve as a source of free fatty acids that are important for the maintenance of epidermal permeability barrier function. The phospholipid biosynthetic enzyme, 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT), catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, the major precursor of all glycerolipids. We identified an expression pattern of AGPAT isoforms that is unique to epidermis, with relatively high constitutive expression of mouse AGPAT (mAGPAT) 3, 4, and 5 but low constitutive expression of mAGPAT 1 and 2. Localization studies indicate that all five isoforms of AGPAT were expressed in all nucleated layers of epidermis. Furthermore, rat AGPAT 2 and 5 mRNAs increased in parallel with both an increase in enzyme activity and permeability barrier formation late in rat epidermal development. Moreover, after two methods of acute permeability barrier disruption, mAGPAT 1, 2, and 3 mRNA levels increased rapidly and were sustained for at least 24 h. In parallel with the increase in mRNA levels, an increase in AGPAT activity also occurred. Because upregulation of mAGPAT mRNAs after tape-stripping could be partially reversed by artificial barrier restoration by occlusion, these studies suggest that an increase in the expression of AGPATs is linked to barrier requirements.
Collapse
Affiliation(s)
- Biao Lu
- Dermatology and Medicine Services, Veterans Administration Medical Center and University of California School of Medicine, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jiang YJ, Kim P, Elias PM, Feingold KR. LXR and PPAR activators stimulate cholesterol sulfotransferase type 2 isoform 1b in human keratinocytes. J Lipid Res 2005; 46:2657-66. [PMID: 16150827 DOI: 10.1194/jlr.m500235-jlr200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) are potent regulators of keratinocyte proliferation, differentiation, and epidermal permeability barrier homeostasis. Cholesterol sulfotransferase type 2B isoform 1b (SULT2B1b) is a key enzyme in the synthesis of cholesterol sulfate (CS), a critical regulator of keratinocyte differentiation and desquamation, as well as a mediator of barrier homeostasis. In this study, we assessed the effect of activators of LXR, PPARalpha, PPARbeta/delta, and PPARgamma on SULT2B1b gene expression and enzyme activity in cultured human keratinocytes (CHKs). Our results demonstrate that PPAR and LXR activators increase SULT2B1b mRNA levels, with the most dramatic effect (a 26-fold increase) induced by the PPARgamma activator ciglitazone. Ciglitazone upregulates SULT2B1b mRNA in a dose- and time-dependent manner. Moreover, the stimulation of SULT2B1b gene expression by LXR and PPAR activators occurs in both undifferentiated and differentiated CHKs. The upregulation of SULT2B1b mRNA by ciglitazone appears to occur at a transcriptional level, because the degradation of SULT2B1b is not accelerated by ciglitazone. In addition, cycloheximide almost completely blocks the ciglitazone-induced increase in SULT2B1b mRNA, suggesting that the transcription of SULTB1b mRNA is dependent on new protein synthesis. Finally, LXR and PPAR activators also increased the activity of cholesterol sulfotransferase. Thus, LXR and PPAR activators regulate the expression of SULT2B1b, the key enzyme in the synthesis of CS, which is a potent regulator of epidermal differentiation and corneocyte desquamation.
Collapse
Affiliation(s)
- Yan J Jiang
- Department of Medicine, University of California San Francisco, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
14
|
Fluhr JW, Behne MJ, Brown BE, Moskowitz DG, Selden C, Mao-Qiang M, Mauro TM, Elias PM, Feingold KR. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol 2004; 122:320-9. [PMID: 15009712 DOI: 10.1046/j.0022-202x.2003.00204.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At birth, human stratum corneum (SC) displays a near-neutral surface pH, which declines over several days to weeks to months to an acidic pH, comparable to that of adults. Recent studies suggest that an acidic pH is required for normal permeability barrier homeostasis and SC integrity/cohesion. We assessed here the basis for postnatal acidification in the neonatal rat, where SC pH, as measured with a flat surface electrode, declines progressively from near-neutral levels (pH 6.63) on postnatal days 0 to 1 to adult levels (pH 5.9) or even below over the subsequent 7 to 8 d. The postnatal decline in SC pH was paralleled by a progressive activation of a pH-dependent hydrolytic enzyme, beta-glucocerebrosidase. Because SC acidification could not be linked to commonly implicated exogenous factors, such as bacterial colonization, or the deposition of sebaceous gland products. We next assessed whether changes in one or more of three endogenous mechanisms demonstrate postnatal activity changes that contribute to the progressive development of an acidic SC pH. Although the histidine-to-urocanic acid pathway has been implicated in acidification of the adult SC, surface pH is completely normal in histidase-deficient (his/his, Peruvian) mice, ruling out a requirement for this mechanism. In contrast, when sodium/hydrogen antiporter-1 (NHE1), which predominantly acidifies membrane domains at the stratum granulosum-SC interface, is inhibited, postnatal acidification of the SC is partially blocked. Likewise, SC secretory phospholipase A2 (sPLA2) activity, measured with a fluorometric assay, is low at birth, but increases progressively (by 66%) over the first 5 d after birth, and inhibition of sPLA2 between days 0 to 1 and days 5 to 6 delays postnatal SC acidification. Together, these results describe a neonatal model, in which the development of an acidic surface pH can be ascribed, in part, to progressive SC acidification by two endogenous mechanisms, namely, sPLA2 and NHE1, which are known to be important for acidification of adult rodent SC. Conversely, the impaired acidification of neonatal SC, which has important functional and clinical consequences, can be explained by the relatively low activities of one or both of these mechanisms at birth.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Dermatology and Medical Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, 94121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.
Collapse
Affiliation(s)
- Charles A Strott
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | |
Collapse
|
16
|
Schmuth M, Schoonjans K, Yu QC, Fluhr JW, Crumrine D, Hachem JP, Lau P, Auwerx J, Elias PM, Feingold KR. Role of peroxisome proliferator-activated receptor alpha in epidermal development in utero. J Invest Dermatol 2002; 119:1298-303. [PMID: 12485431 DOI: 10.1046/j.1523-1747.2002.19605.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protective function of the skin is mediated by the stratum corneum, the outermost layer of the skin, which is the end-product of epidermal differentiation. Previously, we showed that fetal rat skin explants complete the late-stage milestones of epidermal development when grown in a serum- and growth-factor-free medium, suggesting that endogenous metabolites could regulate the late program that leads to barrier formation. Because a variety of endogenous free fatty acids are known activators, peroxisome proliferator-activated receptor alpha (PPAR-alpha) is a potential candidate for this key regulatory role. Indeed, whereas PPAR-alpha expression is first noted at gestational day 13.5 and peaks between days 14.5 and 15.5, fatty acid synthesis is very active in fetal rodent epidermis peaking at gestational day 17. Furthermore, we have reported that both epidermal differentiation and stratum corneum formation in utero are stimulated by pharmacologic activation of PPAR-alpha. This study was designed to test whether PPAR-alpha plays a physiologic role in epidermal differentiation and stratum corneum formation in utero. In PPAR-alpha-/- mice we observed delayed stratum corneum formation between day 18.5 of gestation and birth. Concurrently, there was diminished beta-glucocerebrosidase activity at the stratum granulosum-stratum corneum junction and a modest decrease in both involucrin and loricrin protein expression, markers of keratinocyte differentiation. Both the number of stratum corneum cell layers was reduced and the processing of the lamellar bilayers was delayed in animals lacking PPAR-alpha, indicating a transient functional defect. In contrast, the lamellar body secretory system as well as rates of epidermal proliferation and cell death appeared normal in PPAR-alpha-/- mice. These results indicate that PPAR-alpha plays a physiologic role during fetal stratum corneum development. The transient and incomplete nature of the developmental delay, however, is consistent with regulation of the late stages of epidermal development by multiple factors.
Collapse
Affiliation(s)
- Matthias Schmuth
- Departments of Medicine Dermatology, University of California San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bates JM, Spate VL, Morris JS, St Germain DL, Galton VA. Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development. Endocrinology 2000; 141:2490-500. [PMID: 10875250 DOI: 10.1210/endo.141.7.7571] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The iodothyronine deiodinases, D1, D2, and D3, all contain selenium (Se) in the form of selenocysteine at their active sites, and they play crucial roles in determining the circulating and intracellular levels of the active thyroid hormone (TH), T3. However, not only are serum T3 levels normal in Se-deficient rats but phenotypic and reproductive abnormalities are minimal, and it has been suggested that regulatory mechanisms exist to conserve Se in critical tissues. The present study was designed to determine, in rats: 1) whether the effects of Se-deficiency are greater in the fetus and neonate than in the adult; 2) whether there are tissues other than brain and thyroid in which deiodinase activities are maintained; 3) whether the maintenance of deiodinase activity in a specific tissue is associated with a concomitant preservation of Se level in that tissue; and 4) whether TH economy and general health is maintained over several generations. The tissues studied included liver, cerebrum, thyroid, pituitary, skin, brown adipose tissue, uterus, ovary, testis, placenta, and the implantation site (uterus plus contents) at E9. The results have revealed that, with the exception of liver, skin, and nonpregnant uterus, all of the tissues studied maintained substantial deiodinase activity (>50%) during prolonged Se-deficiency. Second, although the ability of a tissue to maintain deiodinase activity in the face of dietary Se deprivation was associated in some tissues with a concomitant local preservation of Se concentration, this was not the case for all tissues. Only when Se levels were decreased by more than 80% was deiodinase activity markedly decreased. Third, the effects of Se-deficiency were no greater in the fetus than in the adult; and fourth, at the level of Se-deficiency employed in this study, TH economy and general health were successfully maintained over six generations of Se-deficient rats. How Se levels are maintained in specific tissues, whether Se is sequestered in specific cells of a tissue or organ during dietary Se deprivation, and the precise mechanisms by which plasma T3 levels are maintained in Se-deficient animals remain unanswered. Further insights may be gained by using diets that are even lower in Se than those that were used herein and/or by conducting studies using radioactive forms of Se and thyroid hormones.
Collapse
Affiliation(s)
- J M Bates
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001, USA
| | | | | | | | | |
Collapse
|
18
|
Smondyrev AM, Berkowitz ML. Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulfate. Biophys J 2000; 78:1672-80. [PMID: 10733950 PMCID: PMC1300764 DOI: 10.1016/s0006-3495(00)76719-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.
Collapse
Affiliation(s)
- A M Smondyrev
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
19
|
Hanley K, Kömüves LG, Bass NM, He SS, Jiang Y, Crumrine D, Appel R, Friedman M, Bettencourt J, Min K, Elias PM, Williams ML, Feingold KR. Fetal epidermal differentiation and barrier development In vivo is accelerated by nuclear hormone receptor activators. J Invest Dermatol 1999; 113:788-95. [PMID: 10571735 DOI: 10.1046/j.1523-1747.1999.00743.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nuclear receptors which interact with the retinoid X receptor are involved in the regulation of epidermal differentiation and development. We have recently shown that activators of the peroxisome proliferator-activated receptor and of the farnesoid X-activated receptor accelerate epidermal barrier maturation in fetal rat skin in vitro. In this study we asked whether cutaneous development in utero was affected by peroxisome proliferator-activated receptor or farnesoid X-activated receptor activators, or by an activator of another retinoid X receptor partner, liver X receptor. Activators of the peroxisome proliferator-activated receptor (clofibrate or linoleic acid), farnesoid X-activated receptor (farnesol or juvenile hormone III), or liver X receptor (22R-hydroxycholesterol), were injected into the amniotic fluid of fetal rats on gestational day 17. Fetal epidermal barrier function and morphology was assessed on day 19. Whereas vehicle-treated fetal rats displayed no measurable barrier (transepidermal water loss > 10 mg per cm2 per h), a measurable barrier was induced by the intra-amniotic administration of all activators tested (transepidermal water loss range 4.0-8.5 mg per cm2 per h). By light microscopy, control pups lacked a well-defined stratum corneum, whereas a distinct stratum corneum and a thickened stratum granulosum were present in treated pups. By electron microscopy, the extracellular spaces of the stratum corneum in control pups revealed a paucity of mature lamellar unit structures, whereas these structures filled the stratum corneum interstices in treated pups. Additionally, protein and mRNA levels of loricrin and filaggrin, two structural proteins of stratum corneum, were increased in treated epidermis, as were the activities of two lipid catabolic enzymes critical to stratum corneum function, beta-glucocerebrosidase and steroid sulfatase. Finally, peroxisome proliferator-activated receptor-alpha and -delta and liver X receptor-alpha and -beta mRNAs were detected in fetal epidermis by reverse transcriptase-polymerase chain reaction and northern analyses. The presence of these receptors and the ability of their activators to stimulate epidermal barrier and stratum corneum development suggest a physiologic role for peroxisome proliferator-activated receptor and liver X receptor and their endogenous ligands in the regulation of cutaneous development.
Collapse
Affiliation(s)
- K Hanley
- Department of Dermatology, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Galton VA, Martinez E, Hernandez A, St Germain EA, Bates JM, St Germain DL. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J Clin Invest 1999; 103:979-87. [PMID: 10194470 PMCID: PMC408265 DOI: 10.1172/jci6073] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although thyroid hormones are critically important for the coordination of morphogenic processes in the fetus and neonate, premature exposure of the embryo to levels of the hormones present in the adult is detrimental and can result in growth retardation, malformations, and even death. We report here that the pregnant rat uterus expresses extremely high levels of the type 3 iodothyronine deiodinase (D3), which inactivates thyroxine and 3,3', 5-triiodothyronine by 5-deiodination. Both D3 mRNA and activity were present at the implantation site as early as gestational day 9 (E9), when expression was localized using in situ hybridization to uterine mesometrial and antimesometrial decidual tissue. At later stages of gestation, uterine D3 activity remained very high, and the levels exceeded those observed in the placenta and in fetal tissues. After days E12 and E13, as decidual tissues regressed, D3 expression became localized to the epithelial cells lining the recanalized uterine lumen that surrounds the fetal cavity. These findings strongly suggest that the pregnant uterus, in addition to the placenta, plays a critical role in determining the level of exposure of the fetus to maternal thyroid hormones.
Collapse
Affiliation(s)
- V A Galton
- Departments of Physiology and Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kömüves LG, Hanley K, Jiang Y, Katagiri C, Elias PM, Williams ML, Feingold KR. Induction of selected lipid metabolic enzymes and differentiation-linked structural proteins by air exposure in fetal rat skin explants. J Invest Dermatol 1999; 112:303-9. [PMID: 10084306 DOI: 10.1046/j.1523-1747.1999.00511.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epidermal permeability barrier of premature infants matures rapidly following birth. Previous studies suggest that air exposure could contribute to this acceleration, because: (i) development of a structurally and functionally mature barrier accelerates when fetal rat skin explants are incubated at an air-medium interface, and (ii) occlusion with a water-impermeable membrane prevents this acceleration. To investigate further the effects of air exposure on epidermal barrier ontogenesis, we compared the activities of several key enzymes of lipid metabolism and gene expression of protein markers of epidermal differentiation in fetal rat skin explants grown immersed versus air exposed. The rate-limiting enzymes of cholesterol (HMG CoA reductase) and ceramide (serine palmitoyl transferase) synthesis were not affected. In contrast, the normal developmental increases in activities of glucosylceramide synthase and cholesterol sulfotransferase, responsible for the synthesis of glucosylceramides and cholesterol sulfate, respectively, were accelerated further by air exposure. Additionally, two enzymes required for the final stages of barrier maturation and essential for normal stratum corneum function, beta-glucocerebrosidase, which converts glucosylceramide to ceramide, and steroid sulfatase, which desulfates cholesterol sulfate, also increased with air exposure. Furthermore, filaggrin and loricrin mRNA levels, and filaggrin, loricrin, and involucrin protein levels all increased with air exposure. Finally, occlusion with a water-impermeable membrane prevented both the air-exposure-induced increase in lipid enzyme activity, and the expression of loricrin, filaggrin, and involucrin. Thus, air exposure stimulates selected lipid metabolic enzymes and the gene expression of key structural proteins in fetal epidermis, providing a biochemical basis for air-induced acceleration of permeability barrier maturation in premature infants.
Collapse
Affiliation(s)
- L G Kömüves
- Department of Dermatology, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zettersten E, Man MQ, Sato J, Denda M, Farrell A, Ghadially R, Williams ML, Feingold KR, Elias PM. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J Invest Dermatol 1998; 111:784-90. [PMID: 9804339 DOI: 10.1046/j.1523-1747.1998.00386.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholesterol sulfate is a multifunctional sterol metabolite, produced in large amounts in squamous keratinizing epithelia. Because patients with recessive x-linked ichthyosis display not only a 10-fold increase in cholesterol sulfate, but also a 50% reduction in cholesterol, we assessed here whether cholesterol sulfate accumulation and/or cholesterol deficiency produce abnormal barrier function in recessive x-linked ichthyosis. Patients with recessive x-linked ichthyosis display both an abnormal barrier under basal conditions, and a delay in barrier recovery after acute perturbation, which correlate with minor abnormalities in membrane structure and extensive lamellar-phase separation. Moreover, both the functional and the structural abnormalities were corrected by topical cholesterol. Yet, topical cholesterol sulfate produced both a barrier abnormality in intact skin and extracellular abnormalities in isolated stratum corneum, effects largely reversed by coapplications of cholesterol. Together, these results suggest that cholesterol sulfate accumulation rather than cholesterol deficiency is responsible for the barrier abnormality. Despite the apparent importance of cholesterol sulfate-to-cholesterol processing for normal barrier homeostasis, neither steroid sulfatase activity nor mRNA levels are upregulated following acute perturbations. These results demonstrate both a potential role for cholesterol sulfate-to-cholesterol processing in normal permeability barrier homeostasis, and that basal levels of steroid sulfatase are sufficient to accommodate acute insults to the permeability barrier.
Collapse
Affiliation(s)
- E Zettersten
- Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hanley K, Feingold KR, Kömüves LG, Elias PM, Muglia LJ, Majzoub JA, Williams ML. Glucocorticoid deficiency delays stratum corneum maturation in the fetal mouse. J Invest Dermatol 1998; 111:440-4. [PMID: 9740238 DOI: 10.1046/j.1523-1747.1998.00303.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stratum corneum (SC) matures during late gestation in man and other mammals. Using the fetal rat as an experimental model, we have previously shown that glucocorticoids given in pharmacologic doses accelerate fetal SC maturation and barrier formation. To determine whether glucocorticoids are required for normal SC maturation, we examined the epidermal morphology of glucocorticoid-deficient (C-) murine pups, derived from matings of mice homozygous for null mutations of the corticotropin-releasing hormone alleles. In control pups on day 17.5 of gestation (term is 19.5 d), a multilayered SC was present and neutral lipid deposition in a membrane pattern was observed using Nile red fluorescence histochemistry. Ultrastructurally, mature lamellar unit structures predominate in the SC intercellular domains. In contrast, in C-pups only a single layer of SC was evident on day 17.5, and secreted lamellar material was not organized into mature lamellar structures. Furthermore, the expression of structural proteins necessary for cornified envelope formation, involucrin, loricrin, and filaggrin, and the activity of the lipid synthetic enzymes beta-glucocerebrosidase and steroid sulfatase, markers of barrier maturation, were reduced in day 17.5 C-pups. C-pups derived from pregnancies supplemented with physiologic amounts of cortisone, however, display normal SC ultrastructure on day 17.5 of gestation. Furthermore, at birth, both control and C-pups exhibit a multilayered SC replete with mature lamellar membrane structures. These data demonstrate that fetal glucocorticoid deficiency delays SC maturation, and suggests that normal levels of glucocorticoids are not absolutely required for SC development.
Collapse
Affiliation(s)
- K Hanley
- Department of Dermatology, University of California, San Francisco 94143-0316, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G, Sideras-Haddad E, Mauro T, Williams ML, Feingold KR. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol 1998; 110:399-404. [PMID: 9540982 DOI: 10.1046/j.1523-1747.1998.00151.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal permeability barrier forms late in gestation, coincident with decreased lipid synthesis, increased lipid processing, and development of a mature, multi-layered stratum corneum. Prior studies have shown that changes in the epidermal Ca++ gradient in vivo regulate lamellar body secretion and lipid synthesis, and modulations in extracellular Ca++ in vitro also regulate keratinocyte differentiation. We asked here whether a Ca++ gradient forms in fetal epidermis in utero, and whether its emergence correlates with key developmental milestones of barrier formation and stratum corneum development. Using either ion precipitation or proton induced X-ray emission analysis of fetal mouse and rat skin, we showed that a Ca++ gradient is not present at gestational days 16-18, prior to barrier formation, and that a gradient forms coincident with the emergence of barrier competence (day 19, mouse; day 20, rat) prior to birth. These results are consistent with a role for Ca++ in the regulation of key metabolic events leading to barrier formation. Whether the calcium gradient is formed actively or passively remains to be determined.
Collapse
Affiliation(s)
- P M Elias
- Dermatology and Medicine (Metabolism) Services, Veterans Administration Medical Center, Department of Dermatology, University of California School of Medicine, San Francisco 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hanley K, Jiang Y, Crumrine D, Bass NM, Appel R, Elias PM, Williams ML, Feingold KR. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. J Clin Invest 1997; 100:705-12. [PMID: 9239419 PMCID: PMC508240 DOI: 10.1172/jci119583] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the superfamily of nuclear hormone receptors which are obligate heterodimeric partners of the retinoid X receptor may be important in epidermal development. Here, we examined the effects of activators of the receptors for vitamin D3 and retinoids, and of the peroxisome proliferator activated receptors (PPARs) and the farnesoid X-activated receptor (FXR), on the development of the fetal epidermal barrier in vitro. Skin explants from gestational day 17 rats (term is 22 d) are unstratified and lack a stratum corneum (SC). After incubation in hormone-free media for 3-4 d, a multilayered SC replete with mature lamellar membranes in the interstices and a functionally competent barrier appear. 9-cis or all-trans retinoic acid, 1,25 dihydroxyvitamin D3, or the PPARgamma ligands prostaglandin J2 or troglitazone did not affect the development of barrier function or epidermal morphology. In contrast, activators of the PPARalpha, oleic acid, linoleic acid, and clofibrate, accelerated epidermal development, resulting in mature lamellar membranes, a multilayered SC, and a competent barrier after 2 d of incubation. The FXR activators, all-trans farnesol and juvenile hormone III, also accelerated epidermal barrier development. Activities of beta-glucocerebrosidase and steroid sulfatase, enzymes previously linked to barrier maturation, also increased after treatment with PPARalpha and FXR activators. In contrast, isoprenoids, such as nerolidol, cis-farnesol, or geranylgeraniol, or metabolites in the cholesterol pathway, such as mevalonate, squalene, or 25-hydroxycholesterol, did not alter barrier development. Finally, additive effects were observed in explants incubated with clofibrate and farnesol together in suboptimal concentrations which alone did not affect barrier development. These data indicate a putative physiologic role for PPARalpha and FXR in epidermal barrier development.
Collapse
Affiliation(s)
- K Hanley
- Department of Dermatology, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|