1
|
Habault J, Thonnart N, Ram-Wolff C, Bagot M, Bensussan A, Poyet JL, Marie-Cardine A. Validation of AAC-11-Derived Peptide Anti-Tumor Activity in a Single Graft Sézary Patient-Derived Xenograft Mouse Model. Cells 2022; 11:cells11192933. [PMID: 36230895 PMCID: PMC9564267 DOI: 10.3390/cells11192933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with poor prognosis mainly characterized by the expansion of a tumor CD4+ T cell clone in both skin and blood. So far, the development of new therapeutic strategies has been hindered by a lack of reproducible in vivo models closely reflecting patients’ clinical features. We developed an SS murine model consisting of the intravenous injection of Sézary patients’ PBMC, together with a mixture of interleukins, in NOD-SCID-gamma mice. Thirty-four to fifty days after injection, mice showed skin disorders similar to that observed in patients, with the detection of epidermis thickening and dermal tumor T cell infiltrates. Although experimental variability was observed, Sézary cells could be tracked in the blood stream, confirming that our model could efficiently exhibit both skin and blood involvement. Using this model, we evaluated the therapeutic potential of RT39, a cell-penetrating peptide derived from the survival protein anti-apoptosis clone 11 (AAC-11), that we previously characterized as specifically inducing apoptosis of Sézary patients’ malignant clone ex vivo. Systemic administration of RT39 led to cutaneous tumor T cells depletion, demonstrating efficient malignant cells’ targeting and a favorable safety profile. These preclinical data confirmed that RT39 might be an innovative therapeutic tool for Sézary syndrome.
Collapse
Affiliation(s)
- Justine Habault
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Nicolas Thonnart
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Caroline Ram-Wolff
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Department of Dermatology, Saint Louis Hospital, AP-HP, 75010 Paris, France
| | - Martine Bagot
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Department of Dermatology, Saint Louis Hospital, AP-HP, 75010 Paris, France
| | - Armand Bensussan
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Anne Marie-Cardine
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Correspondence:
| |
Collapse
|
2
|
Challenging Cutaneous T-Cell Lymphoma: What Animal Models Tell us So Far. J Invest Dermatol 2022; 142:1533-1540. [PMID: 35000751 DOI: 10.1016/j.jid.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Cutaneous T-cell lymphomas are characterized by heterogeneity of clinical variants, further complicated by genomic and microenvironmental variables. Furthermore, in vitro experiments are hampered by the low culture efficiency of these malignant cells. Animal models are essential for understanding the pathogenetic mechanisms underlying malignancy and for discovering new anticancer treatments. They are divided into two main categories: those in which tumors arise in the host owing to genetic modifications and those that use tumor cell transplantation. In this review, we summarize the attempts to decipher the complexity of the pathogenesis of cutaneous T-cell lymphoma by exploiting genetically modified and xenograft models.
Collapse
|
3
|
Cristóbal L, Asúnsolo Á, Sánchez J, Ortega MA, Álvarez-Mon M, García-Honduvilla N, Buján J, Maldonado AA. Mouse Models for Human Skin Transplantation: A Systematic Review. Cells Tissues Organs 2021; 210:250-259. [PMID: 34521089 DOI: 10.1159/000516154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Immunodeficient mouse models with human skin xenografts have been developed in the past decades to study different conditions of the skin. Features such as follow-up period and size of the graft are of different relevance depending on the purpose of an investigation. The aim of this study is to analyze the different mouse models grafted with human skin. A systematic review of the literature was performed in line with the PRISMA statement using MEDLINE/PubMed databases from January 1970 to June 2020. Articles describing human skin grafted onto mice were included. Animal models other than mice, skin substitutes, bioengineered skin, postmortem or fetal skin, and duplicated studies were excluded. The mouse strain, origin of human skin, graft dimensions, follow-up of the skin graft, and goals of the study were analyzed. Ninety-one models were included in the final review. Five different applications were found: physiology of the skin (25 models, mean human skin graft size 1.43 cm2 and follow-up 72.92 days), immunology and graft rejection (17 models, mean human skin graft size 1.34 cm2 and follow-up 86 days), carcinogenesis (9 models, mean human skin graft size 1.98 cm2 and follow-up 253 days), skin diseases (25 models, mean human skin graft size 1.55 cm2 and follow-up 86.48 days), and would healing/scars (15 models, mean human skin graft size 2.54 cm2 and follow-up 129 days). The follow-up period was longer in carcinogenesis models (253 ± 233.73 days), and the skin graft size was bigger in wound healing applications (2.54 ± 3.08 cm2). Depending on the research application, different models are suggested. Careful consideration regarding graft size, follow-up, immunosuppression, and costs should be analyzed and compared before choosing any of these mouse models. To our knowledge, this is the first systematic review of mouse models with human skin transplantation.
Collapse
Affiliation(s)
- Lara Cristóbal
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, New York, USA
| | - Jorge Sánchez
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain,
| | - Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, CIBEREHD, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Andrés A Maldonado
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department for Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main, Academic Hospital of the Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Schütz C, Fischer K, Völkl S, Hoves S, Halbritter D, Mackensen A, Fleck M. A new flow cytometric assay for the simultaneous analysis of antigen-specific elimination of T cells in heterogeneous T cell populations. J Immunol Methods 2009; 344:98-108. [PMID: 19332073 DOI: 10.1016/j.jim.2009.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Novel immunosuppressive strategies are targeting for an antigen-specific deletion of T cells responsible for organ damage in autoimmunity and allograft rejection. Here, we present a new flow cytometry-based assay that allows the reliable and efficient detection of T cells that were eliminated in an antigen-specific fashion. A stable cell-labelling technique utilizing the two membrane dyes PKH26 and PKH67 has been combined with annexin V and 7-aminoactinomycin (7-AAD) staining to detect apoptotic cells. A differential gating strategy enabled us to determine the viability/apoptosis for each PKH-stained T cell subpopulation independently. The capability to simultaneously analyze apoptosis within T cell mixtures of different antigen specificities establishes this assay as a superior tool for the further development of novel antigen-specific immunosuppressive approaches.
Collapse
Affiliation(s)
- Christian Schütz
- University of Regensburg, Department of Internal Medicine I, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
5
|
Igney FH, Asadullah K, Zollner TM. Humanised mouse models in drug discovery for skin inflammation. Expert Opin Drug Discov 2006; 1:53-68. [DOI: 10.1517/17460441.1.1.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Igney FH, Asadullah K, Zollner TM. Techniques: species' finest blend--humanized mouse models in inflammatory skin disease research. Trends Pharmacol Sci 2004; 25:543-9. [PMID: 15380939 DOI: 10.1016/j.tips.2004.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Differences between humans and mice often hamper the transfer of promising results from the bench to the clinic. For ethical reasons, research that involves patients is limited, and so there is an urgent need for models that mimic the human situation as closely as possible. In recent years, there has been considerable progress in generating humanized mouse models, and their application to drug discovery has proved fruitful. So, how can mice be humanized, and how can humanized mice be employed in immunology research and drug discovery? In this article, we answer these questions, focusing on T-cell-mediated skin diseases as an example.
Collapse
|
7
|
Fischer K, Mackensen A. The flow cytometric PKH-26 assay for the determination of T-cell mediated cytotoxic activity. Methods 2003; 31:135-42. [PMID: 12957571 DOI: 10.1016/s1046-2023(03)00123-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We present a rapid flow cytometric and non-radioactive functional assay developed for the determination of the cytotoxic activity of T lymphocytes, natural killer cells, and lymphokine-activated killer cells. In contrast to indirect evaluation of cytotoxicity using radioactive assays, this assay is based on the quantitative and qualitative flow cytometric analysis of cell damage on a single cell level. Target cells are stained with PKH-26, a lipophilic dye that stably integrates into the cell membrane, without disturbing its surface marker expression. It, thus, permits the distinction between target and effector cells. After short term in vitro incubation (1.5-3h), AnnexinV-FITC (ann-FITC) staining allows to discriminate between apoptotic and non-apoptotic target cells. Data analysis is performed first by gating on PKH-26 positive target cells, followed by the analysis of the ann-FITC positive subpopulation. The percentage of cytotoxicity in the PKH-26 gated cell population is calculated by subtracting unspecific ann-FITC positive target cells, measured in appropriate controls without effector cells. Using in vitro generated antigen-specific cytotoxic T lymphocytes, we demonstrate that this flow cytometric assay is sensitive, correlates well with the standard 51Cr release assay, and is easy to handle.
Collapse
Affiliation(s)
- Karin Fischer
- Department of Hematology/Oncology, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg D-93042, Germany
| | | |
Collapse
|
8
|
Fischer K, Andreesen R, Mackensen A. An improved flow cytometric assay for the determination of cytotoxic T lymphocyte activity. J Immunol Methods 2002; 259:159-69. [PMID: 11730851 DOI: 10.1016/s0022-1759(01)00507-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytotoxic activity of T lymphocytes, natural killer and lymphokine-activated killer cells is usually tested by radioactive assays, which detect the release of cytoplasmic contents after plasma membrane disintegration of dying cells. In contrast to this indirect evaluation of cytotoxicity, we describe here an improved fluorescence assay that is based on the direct quantitative and qualitative flow cytometric analysis of cell damage at a single cell level. Target cells are stained with PKH-26, a lipophilic dye that stably integrates into the cell membrane and permits distinction between target and effector cells. After 3 h of in vitro incubation, costaining with AnnexinV-FITC (ann-FITC) and propidium iodide (PI) permitted discrimination between vital, early apoptotic and necrotic cells. Data analysis is performed first by gating on PKH-26-positive target cells followed by the analysis of ann-FITC- and PI-positive subpopulations. The percentage of cytotoxicity in the PKH-26-gated cell population is calculated by subtracting non-specific ann-FITC- or PI-positive target cells, measured in appropriate controls without effector cells. Membrane staining of target cells such as primary melanoma cells or leukemic blasts revealed high and stable loading of PKH-26 without altering the viability or the immunogenicity of the cells. Using in vitro-generated antigen-specific cytotoxic T lymphocytes (CTL), we could demonstrate that this flow cytometric assay is sensitive and correlates well with the standard 51Cr release assay. In conclusion, the improved fluorescence assay is a simple and highly reproducible procedure for evaluating the specific cytotoxicity of T cells.
Collapse
Affiliation(s)
- Karin Fischer
- Department of Hematology/Oncology, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany
| | | | | |
Collapse
|
9
|
Rousselle C, Barbier M, Comte VV, Alcouffe C, Clement-Lacroix J, Chancel G, Ronot X. Innocuousness and intracellular distribution of PKH67: a fluorescent probe for cell proliferation assessment. In Vitro Cell Dev Biol Anim 2001; 37:646-55. [PMID: 11776970 DOI: 10.1290/1071-2690(2001)037<0646:iaidop>2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PKH dyes were initially developed by Horan et al. to provide appropriate probes for in vitro and in vivo cell tracking. It has been reported for many cell types that PKH bind irreversibly to the cell membrane without significantly affecting cell growth. Thus, these probes provide an opportunity for long-term cell monitoring and the identification of cells of interest among a heterogeneous cell population. An important feature is that upon cell division, the probe is partitioned equally between each daughter cell, making it possible to quantify tell fluorescence by flow cytometry. In this situation. the flow cytometric study of PKH67 characteristics shows that this probe does not affect the main cell-functions such as viability or proliferation. Moreover, the intracellular distribution of PKH67 is demonstrated by following its kinetics of internalization by confocal microscopy. These results present PKH67 as a probe suitable for dynamic analysis of cell proliferation as well as the study of intracellular localization and membrane recycling mechanisms.
Collapse
Affiliation(s)
- C Rousselle
- Laboratoire de Dynamique Cellulaire, Ecole Pratique des Hautes Etudes, Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF. A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 2001; 249:99-110. [PMID: 11226468 DOI: 10.1016/s0022-1759(00)00329-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 51Cr release assay has traditionally been used to investigate effector cell cytotoxic function against labeled targets, but this method has inherent problems that include hazards associated with radioactivity, cell labeling and high spontaneous release. Here we describe a novel flow cytometric assay which addresses and improves upon the problems currently encountered with the 51Cr release assay. The fluorometric assessment of T lymphocyte antigen specific lysis (FATAL) assay employs dual staining (PKH-26 and CFSE) to identify and evaluate the target population. We found that the PKH-26/CFSE combination efficiently labeled target cells. Evaluation of the spontaneous leakage from dye labeled target cells was forty fold lower than the spontaneous leakage seen with the 51Cr release assay. The FATAL assay permitted a more accurate assessment of the effector: target ratio, and detected low levels of cytotoxic T lymphocyte (CTL) mediated lysis. There was a strong correlation between the 51Cr release and FATAL assays, when performed in parallel with identical effector and target cells (r(2)=0.998, P=<0.0001). This novel method of detecting cytolysis represents a qualitative and quantitative improvement over standard 51Cr release analysis. The FATAL assay will be of value to further investigate mechanisms of cytolysis by effector cell populations.
Collapse
Affiliation(s)
- M E Sheehy
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
11
|
Galkowska H, Moscicka M, Cybulska E, Wojewodzka U, Mijal J, Olszewski WL. Cutaneous CsA-resistant veiled (dendritic) cells are responsible for uncontrolled skin allograft rejection. Transplant Proc 2001; 33:445-7. [PMID: 11266902 DOI: 10.1016/s0041-1345(00)02086-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H Galkowska
- Department of Surgical Research and Transplantology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Galkowska H, Moscicka M, Cybulska E, Wojewodzka U, Mijal J, Olszewski WL. Skin allografts-host cutaneous veiled cells initiate rejection reaction by indirect pathway of allorecognition. Transplant Proc 2001; 33:627-30. [PMID: 11266990 DOI: 10.1016/s0041-1345(00)02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Galkowska
- Department of Surgical Research and Transplantology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Abe R, Peng T, Sailors J, Bucala R, Metz CN. Regulation of the CTL response by macrophage migration inhibitory factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:747-53. [PMID: 11145646 DOI: 10.4049/jimmunol.166.2.747] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF) has been shown to be a pivotal cytokine that mediates host inflammatory and immune responses. Recently, immunoneutralization of MIF has been found to inhibit tumor growth in mice; however, the contributing mechanisms underlying this effect have not been well defined. We investigated whether MIF plays a regulatory role in the expression of CTL activity. In a mouse model of the CTL response using the OVA-transfected tumor cell line EL4 (EG.7), we found that cultures of splenocytes obtained from EG.7-primed mice secrete high levels of MIF following Ag stimulation in vitro. Notably, parallel splenocyte cultures treated with neutralizing anti-MIF mAb showed a significant increase in the CTL response directed against EG.7 cells compared with control mAb-treated cultures. This effect was accompanied by elevated expression of IFN-gamma. Histological examination of the EG. 7 tumors from anti-MIF-treated animals showed a prominent increase in both CD4(+) and CD8(+) T cells as well as apoptotic tumor cells, consistent with the observed augmentation of CTL activity in vivo by anti-MIF. This increased CTL activity was associated with enhanced expression of the common gamma(c)-chain of the IL-2R that mediates CD8(+) T cell survival. Finally, CD8(+) T lymphocytes obtained from the spleens of anti-MIF-treated EG.7 tumor-bearing mice, when transferred into recipient tumor-bearing mice, showed increased accumulation in the tumor tissue. These data provide the first evidence of an important role for MIF in the regulation and trafficking of anti-tumor T lymphocytes in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/immunology
- Female
- Injections, Intraperitoneal
- Lymphocytes, Tumor-Infiltrating/immunology
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/physiology
- Mice
- Mice, Inbred C57BL
- Neoplasm Transplantation
- T-Lymphocytes, Cytotoxic/immunology
- Thymoma/immunology
- Thymoma/pathology
- Thymoma/prevention & control
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- R Abe
- Laboratories of. Vascular Biology and Medical Biochemistry, The Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|