1
|
Kandil SM, Diab HM, Mahfoz AM, Elhawatky A, Abdou EM. Duo photoprotective effect via silica-coated zinc oxide nanoparticles and Vitamin C nanovesicles composites. Pharm Res 2024; 41:1475-1491. [PMID: 38992234 PMCID: PMC11263436 DOI: 10.1007/s11095-024-03733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE Zinc Oxide nanoparticles (ZnO NPs) are used widely in nowadays personal care products, especially sunscreens, as a protector against UV irradiation. Yet, they have some reports of potential toxicity. Silica is widely used to cage ZnO NPs to reduce their potential toxicity. Vitamin C derivative, Magnesium Ascorpyl Phosphate (MAP), is a potent antioxidant that can efficiently protect human skin from harmful impacts of UV irradiation and oxidative stress. The combination of silica coated ZnO NPs and MAP nanovesicles could have potential synergistic protective effect against skin photodamage. METHODS Silica coated ZnO NPs and MAP nanovesicles (ethosomes and niosomes) were synthesized, formulated, and evaluated as topical gels. These gel formulations were evaluated in mice for their photoprotective effect against UV irradiation through histopathology and immuno-histochemistry study. Split-face clinical study was conducted to compare the effect of application of silica coated ZnO NPs either alone or combined with MAP nanovesicles. Their photoprotective action was evaluated, using Antera 3D® camera, for melanin level, roughness index and wrinkles depth. RESULTS Silica coated ZnO NPs when combined with MAP nanovesicles protected mice skin from UV irradiation and decreased the expression of the proinflammatory cytokines, NF-κB. Clinically, silica coated ZnO NPs, alone or combined with MAP nanovesicles, could have significant effect to decrease melanin level, roughness index and wrinkles depth with higher effect for the combination. CONCLUSION A composite of silica coated ZnO NPs and MAP nanovesicles could be a promising cosmetic formulation for skin protection against photodamage signs such as hyperpigmentation, roughness, and wrinkles.
Collapse
Affiliation(s)
- Soha M Kandil
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information (MTI), Cairo, Egypt
| | - Heba M Diab
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal M Mahfoz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology and Information (MTI), Cairo, Egypt.
| | - Ahmed Elhawatky
- Department of Dermatology, Venereology and Andrology, National Research Centre, Cairo, Egypt
| | - Ebtsam M Abdou
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), former; National Organization of Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
2
|
Choi S, Rahman RT, Kim BM, Kang J, Kim J, Shim J, Nam YS. Photochemically Inert Broad-Spectrum Sunscreen by Metal-Phenolic Network Coatings of Titanium Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16767-16777. [PMID: 38512769 DOI: 10.1021/acsami.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Titanium dioxide (TiO2) nanoparticles are extensively used as a sunscreen filter due to their long-active ultraviolet (UV)-blocking performance. However, their practical use is being challenged by high photochemical activities and limited absorption spectrum. Current solutions include the coating of TiO2 with synthetic polymers and formulating a sunscreen product with additional organic UV filters. Unfortunately, these approaches are no longer considered effective because of recent environmental and public health issues. Herein, TiO2-metal-phenolic network hybrid nanoparticles (TiO2-MPN NPs) are developed as the sole active ingredient for sunscreen products through photochemical suppression and absorption spectrum widening. The MPNs are generated by the complexation of tannic acid with multivalent metal ions, forming a robust coating shell. The TiO2-MPN hybridization extends the absorption region to the high-energy-visible (HEV) light range via a new ligand-to-metal charge transfer photoexcitation pathway, boosting both the sun protection factor and ultraviolet-A protection factor about 4-fold. The TiO2-MPN NPs suppressed the photoinduced reactive oxygen species by 99.9% for 6 h under simulated solar irradiation. Accordingly, they substantially alleviated UV- and HEV-induced cytotoxicity of fibroblasts. This work outlines a new tactic for the eco-friendly and biocompatible design of sunscreen agents by selectively inhibiting the photocatalytic activities of semiconductor nanoparticles while broadening their optical spectrum.
Collapse
Affiliation(s)
- Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bo-Min Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyeon Kang
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jeonga Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongwon Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lyamzaev KG, Panteleeva AA, Simonyan RA, Avetisyan AV, Chernyak BV. The critical role of mitochondrial lipid peroxidation in ferroptosis: insights from recent studies. Biophys Rev 2023; 15:875-885. [PMID: 37974984 PMCID: PMC10643799 DOI: 10.1007/s12551-023-01126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is a regulated form of necrotic cell death reliant on iron-catalyzed lipid peroxidation. Although the precise involvement of mitochondria in ferroptosis remains incompletely elucidated, recent research indicates that mitochondrial oxidative events wield a pivotal influence in this mechanism. This article centers on the most recent discoveries, spotlighting the significance of mitochondrial lipid peroxidation in the occurrence of ferroptosis. Modern investigative tools, such as mitochondria-specific dyes responsive to lipid peroxidation and antioxidants targeting mitochondria, have been employed to delve into this phenomenon. The authors' recent empirical evidence demonstrates that mitochondrial lipid peroxidation, quantified using the innovative fluorescent ratiometric probe MitoCLox, takes place prior to the onset of ferroptotic cell death. The mitochondria-targeted antioxidant SkQ1 hinders mitochondrial lipid peroxidation and thwarts ferroptosis, all while leaving unaffected the buildup of reactive oxygen species within the cytoplasm, an antecedent to mitochondrial lipid peroxidation. Similarly, the redox agent methylene blue, impeding the genesis of reactive oxygen species in complex I of the electron transport chain, also imparts a comparable protective effect. These findings collectively imply that reactive oxygen species originating from complex I might hold particular significance in fomenting mitochondrial lipid peroxidation, a pivotal trigger of ferroptosis.
Collapse
Affiliation(s)
- Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alisa A. Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ruben A. Simonyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Armine V. Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Cheng Y, Xia Q, Lu Z, Luan X, Fan L, Wang Z, Luo D. Maslinic acid attenuates UVB-induced oxidative damage in HFF-1 cells. J Cosmet Dermatol 2023. [PMID: 36943873 DOI: 10.1111/jocd.15730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Oxidative damage is one of the major mechanisms of ultraviolet B (UVB)-induced damage to the skin. Maslinic acid (MA) is a natural compound of pentacyclic triterpene acids. It has been proved to have anti-inflammatory and antioxidant properties. OBJECTIVE This study aimed to explore the effects of MA on oxidative damage in human foreskin fibroblast cells (HFF-1) and the potential molecular mechanisms. METHODS A specific dose of UVB radiation was used to induce oxidative damage in HFF-1. Based on this, we performed measurements of cell proliferation, reactive oxygen species (ROS) levels, antioxidant enzyme activity, inflammation-related mediators, and NF-κB nuclear localization with or without the addition of MA. RESULTS MA significantly promoted cell proliferation viability at 10 and 20 μM. The addition of MA 24 h before UVB irradiation was more effective at enhancing cell proliferation and also produced lower ROS levels compared to co-cultured fibroblasts and MA for 24 h after irradiation. However, there was no statistically significant difference between groups at concentrations of 10 and 20 μM. The pretreatment group with MA had elevated superoxide dismutase and catalase activities, decreased IL-6 generation, and lowered mRNA levels of IL-6, TNF-α and MMP3 in comparison with the UVB-irradiated group without additional MA. Meanwhile, the nuclear translocation of NF-κB and the degradation of IκB were inhibited by MA pretreatment. CONCLUSION Taken together, these findings suggest that MA may alleviate UVB-induced oxidative damage in HFF-1 by inhibiting the nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Yuxin Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingyue Xia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyu Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
5
|
Mai ZM, Byrne SN, Little MP, Sargen MR, Cahoon EK. Solar UVR and Variations in Systemic Immune and Inflammation Markers. JID INNOVATIONS 2021; 1:100055. [PMID: 34909751 PMCID: PMC8659735 DOI: 10.1016/j.xjidi.2021.100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The characterization of the effects of solar UVR on a broad set of circulating markers in systemic immunity and inflammation may provide insight into the mechanisms responsible for the UVR associations observed for several benign and malignant diseases. We examined the associations between exposure to solar UVR and circulating levels of 78 markers among 1,819 individuals aged 55–74 years who participated in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial using multiplex assays. Solar UVR was derived by linking the geocoded locations of 10 screening centers across the continental United States and the date of blood draw to the National Solar Radiation Database from 1993 to 2005. We assessed associations between ambient solar UVR and dichotomized marker levels using adjusted weighted logistic regression models and applied a 5% false discovery rate criterion to P-values. UVR exposure was associated (P < 0.05) with 9 of the 78 markers. CCL27, CCL4, FGF2, GM-CSF, IFN-γ, soluble IL4R, IL-7, and IL-11 levels were lower with increasing UVR tertile, with adjusted ORs ranging from 0.66 to 0.80, and the significant association for CCL27 withstood multiple comparison correction. In contrast, CRP levels were elevated with increasing UVR. Solar UVR was associated with alterations in systemic immune and inflammation marker levels.
Collapse
Affiliation(s)
- Zhi-Ming Mai
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michael R Sargen
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Topically Applied Taurine Chloramine Protects against UVB-Induced Oxidative Stress and Inflammation in Mouse Skin. Antioxidants (Basel) 2021; 10:antiox10060867. [PMID: 34071363 PMCID: PMC8229643 DOI: 10.3390/antiox10060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023] Open
Abstract
Excessive exposure to solar light, especially its UV component, is a principal cause of photoaging, dermatitis, and photocarcinogenesis. In searching for candidate substances that can effectively protect the skin from photodamage, the present study was conducted with taurine chloramine (TauCl), formed from taurine in phagocytes recruited to inflamed tissue. Irradiation with ultraviolet B (UVB) of 180 mJ/cm2 intensity caused oxidative damage and apoptotic cell death in the murine epidermis. These events were blunted by topically applied TauCl, as evidenced by the lower level of 4-hydroxynonenal-modified protein, reduced proportions of TUNEL-positive epidermal cells, and suppression of caspase-3 cleavage. In addition, the expression of two prototypic inflammatory enzymes, cyclooxygenase-2 and inducible nitric oxide synthase, and transcription of some pro-inflammatory cytokines (Tnf, Il6, Il1b, Il10) were significantly lower in TauCl-treated mice than vehicle-treated control mice. The anti-inflammatory effect of TauCl was associated with inhibition of STAT3 activation and induction of antioxidant enzymes, such as heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, through activation of nuclear factor erythroid 2-related factor 2.
Collapse
|
7
|
Iosageanu A, Ilie D, Craciunescu O, Seciu-Grama AM, Oancea A, Zarnescu O, Moraru I, Oancea F. Effect of Fish Bone Bioactive Peptides on Oxidative, Inflammatory and Pigmentation Processes Triggered by UVB Irradiation in Skin Cells. Molecules 2021; 26:2691. [PMID: 34064423 PMCID: PMC8124703 DOI: 10.3390/molecules26092691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the present study, we evaluated for the first time the photoprotective effect of fish bone bioactive peptides (FBBP) preparation isolated from silver carp (Hypophthalmichthys molitrix) discarded tissue using in vitro experimental models of skin cells exposed to ultraviolet B (UVB) irradiation and stressing agents. FBBP preparation was obtained by papain treatment of minced bones and centrifugal ultrafiltration, and the molecular weight (MW) distribution was characterized by size exclusion and reversed-phase high performance liquid chromatography (RP-HPLC). In vitro assessment of the effect of FBBP pretreatment in UVB-irradiated L929 fibroblasts and HaCaT keratinocytes revealed their cytoprotective activity. Their capacity to efficiently reduce reactive oxygen species (ROS) production and lipid peroxidation varied in a dose-dependent manner, and it was greater in fibroblasts. A decrease of proinflammatory cytokines secretion, in particular of tumor necrosis factor alpha (TNF-α), was found after FBBP pretreatment of THP-1-derived inflamed macrophages. Melanin production and tyrosinase activity investigated in UVB-irradiated Mel-Juso cells were lowered in direct relation to FBBP concentrations. FBBP fractions with high radical scavenging activity were separated by ion exchange chromatography, and two collagenic sequences were identified. All these results offer new scientific data on aquaculture fish bone-derived peptides confirming their ability to control the antioxidant, anti-inflammatory and pigmentation processes developed during UV irradiation of skin cells and recommend their use as valuable natural ingredients of photoprotective cosmeceutical products.
Collapse
Affiliation(s)
- Andreea Iosageanu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Daniela Ilie
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Ana-Maria Seciu-Grama
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Anca Oancea
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania;
| | - Ionut Moraru
- Laboratoarele Medica SRL, 11, Frasinului Street, 075100 Otopeni, Romania;
| | - Florin Oancea
- National Institute for R&D in Chemistry and Petrochemistry—Icechim, 202, Splaiul Independentei, 060021 Bucharest, Romania;
| |
Collapse
|
8
|
Sundar M, Suresh S, Lingakumar K. Influence of Caralluma adscendens Var. attenuata cold cream on UV-B damaged skin epidermal cells: a novel approach. 3 Biotech 2021; 11:155. [PMID: 33747705 PMCID: PMC7930170 DOI: 10.1007/s13205-021-02694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet radiation-induced sunburns are characterized by pigmented, wrinkled, and dried skin, with rashes and red spots. Chemical sunscreen lotion shows beneficial effects, but it shows the adverse side effect while in continuous usage. Natural substances of plant origin are deemed a possible cause of UV radiation through sunscreen resources. On this basis, we formulated the cold cream from the Caralluma adscendens Var. attenuata (CAVA) plant extract. The phytocompounds were studied by using GC-MS. The antioxidant potential of the plant extract was determined, and the CAVA showed cytotoxicity on A375 skin melanoma cells determined by MTT assay. The FT-IR spectra analysis confirmed the chemical nature of crude and crosslinking between cold creams. The cream was applied topically to rats pre-exposed to UV-B radiation (32,800 J/m2) four times/week (on alternate days). UV-B exposed without any treatment rats showed increased red spots or wrinkles (5 cm2). In contrast, the cold cream treatment application on irradiated skin has significantly reduced the size of rashes and red spots and the wound was contracted in a dose-dependent manner. Furthermore, histopathology of the experimental rat skin confirmed that CAVA cream treatment significantly reduced the epidermal thickening, damage in dermis and epidermis layers, and restructured the hair follicles. This study suggests that the cream formulated using CAVA can alleviate the damages caused by the UV-B-irradiation at a high level and safeguard the skin tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02694-y.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Sudan Suresh
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
| |
Collapse
|
9
|
Lumenato protects normal human dermal fibroblasts from neutrophil-induced collagen-3 damage in co-cultures. PLoS One 2021; 16:e0248183. [PMID: 33730073 PMCID: PMC7968672 DOI: 10.1371/journal.pone.0248183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Collagen is the major structural protein in the extracellular matrix of skin produced by fibroblasts. UV exposure results in infiltration of neutrophils within the epidermis and dermis, inducing collagen damage and contributing to the process of photo-aging. Collagen-3 is an integral structural component with collagen-1, and is an important regulator of collagen-1 fibrillogenesis. Addition of neutrophils activated with TNFα to normal human dermal fibroblast cultures, but not their supernatant, caused significant collagen-3 damage. To study whether Lumenato can protect from collagen-3 damage, it was added to co-cultures of Normal human dermal fibroblasts and neutrophils activated with TNFα. Lumenato prevented collagen-3 damage induced by activated neutrophils in a dose-dependent manner in the co-cultures. Lumenato also induced a low rate of collagen-3 synthesis in a dose-dependent manner detected by pro-collagen-3 secretion, but did not affect fibroblast cell number. Although Lumenato inhibited MMP-8, MMP-9, and elastase secreted from neutrophils, its main effect was in inhibiting both NADPH oxidase-producing superoxides and MPO activity-producing halides in a dose-dependent manner that correlated with protection from collagen-3 damage. In conclusion, the results suggest that Lumenato induces low levels of collagen-3 that may contribute for skin health and is very effective in defending the co-cultures from collagen-3 damage by inhibiting free radicals secreted from neutrophils, thus, indicating Lumenato's possible potential for skin protection.
Collapse
|
10
|
Hübner AA, Sarruf FD, Oliveira CA, Neto AV, Fischer DCH, Kato ETM, Lourenço FR, Baby AR, Bacchi EM. Safety and Photoprotective Efficacy of a Sunscreen System Based on Grape Pomace ( Vitis vinifera L.) Phenolics from Winemaking. Pharmaceutics 2020; 12:E1148. [PMID: 33260841 PMCID: PMC7761385 DOI: 10.3390/pharmaceutics12121148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023] Open
Abstract
In winemaking, a large amount of grape pomace is produced that is rich in polyphenolics and highly beneficial for human health, as phenols are useful for skin ultraviolet (UV) protection. In this investigation, we evaluated the safety and clinical efficacy of a sunscreen system containing a grape pomace extract from Vitis vinifera L. as a bioactive ingredient. The recovery of phenolics in the waste was performed by percolation. Nine emulsions were developed using a factorial design and two were evaluated clinically: Formulation E, containing only UV filters (butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl PABA), and F, with the extract at 10.0% w/w + UV filters. The antioxidant activity was determined by the DPPH assay and the in vitro efficacy was established by sun protection factor (SPF) measurements (Labsphere UV-2000S). Clinical tests were performed to determine safety (human repeated insult patch test) and to confirm efficacy (photoprotective effectiveness in participants). The results showed a synergistic effect between the sunscreen system and the extract on UVB protection and antioxidant activity. Both samples were considered safe. Formulation F was 20.59% more efficient in protecting skin against UVB radiation, taking approximately 21% more time to induce erythema compared to the extract-free sample.
Collapse
Affiliation(s)
- Alexandra A. Hübner
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Fernanda D. Sarruf
- IPclin—Institute of Integrated Clinical Research, Jundiai 13200-000, Brazil;
| | - Camila A. Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Alberto V. Neto
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Dominique C. H. Fischer
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Edna T. M. Kato
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Felipe R. Lourenço
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - André Rolim Baby
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Elfriede M. Bacchi
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| |
Collapse
|
11
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
Wang PW, Hung YC, Lin TY, Fang JY, Yang PM, Chen MH, Pan TL. Comparison of the Biological Impact of UVA and UVB upon the Skin with Functional Proteomics and Immunohistochemistry. Antioxidants (Basel) 2019; 8:antiox8120569. [PMID: 31756938 PMCID: PMC6943602 DOI: 10.3390/antiox8120569] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
The skin provides protection against external stimuli; however, solar radiation, including ultraviolet A (UVA) and ultraviolet B (UVB), can result in profound influences on skin structure and function, which eventually impairs its molecular characteristics and normal physiology. In the current study, we performed proteome tools combined with an immunohistological approach on nude mouse skin to evaluate the adverse responses elicited by UVA and UVB irradiation, respectively. Our findings indicated that UVA significantly promotes oxidative damage in DNA, the breakdown of collagen fiber in the dermis, and the apoptosis of fibroblasts, which leads to inflammation. Meanwhile, UVB administration was found to enhance the carbonylation of various proteins and the proliferation of keratinocyte. Particularly, raspberry extract, which has been confirmed to have antioxidative efficacy, could effectively attenuate ultraviolet (UV) radiation-caused cell death. Network analysis also implied that UVA and UVB induce quite different responses, and that UVA results in cell death as well as inflammation mediated by caspase-3 and activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells (AP-1/NF-κB), while UVB predominantly increases the risk of skin carcinogenesis involved with oncogenes such as p53 and c-Myc. Taken together, functional proteomics coordinated with histological experiments could allow for a high-throughput study to explore the alterations of crucial proteins and molecules linked to skin impacts subjected to UVA and UVB exposure.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan;
| | - Yu-Chiang Hung
- Department of Chinese Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan;
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11042, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5105); Fax: +886-3-211-8700
| |
Collapse
|
13
|
Wu PY, Lin TY, Hou CW, Chang QX, Wen KC, Lin CY, Chiang HM. 1,2-Bis[(3-Methoxyphenyl)Methyl]Ethane-1,2-Dicarboxylic Acid Reduces UVB-Induced Photodamage In Vitro and In Vivo. Antioxidants (Basel) 2019; 8:antiox8100452. [PMID: 31590372 PMCID: PMC6826437 DOI: 10.3390/antiox8100452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects and mechanisms of 1,2-bis[(3-methoxyphenyl)methyl]ethane-1,2-dicarboxylic acid (S4), a sesamin derivative, on anti-inflammation and antiphotoaging in vitro and in vivo. Human skin fibroblasts were treated with S4 and did not show cytotoxicity under concentrations of 5–50 µM. In addition, S4 also reduced ultraviolet (UV)B-induced intracellular reactive oxygen species (ROS) production. Additionally, S4 inhibited UVB-induced phosphorylation of mitogen-activated protein (MAP) kinases, activator protein-1 (AP-1), and matrix metalloproteinases (MMPs) overexpression. Furthermore, S4 also inhibited UVB-induced Smad7 protein expression and elevated total collagen content in human dermal fibroblasts. For anti-inflammatory activity, S4 inhibited UVB-induced nitric oxide synthase (i-NOS) and cyclooxygenase (COX)-2 protein expression and inhibited nuclear factor-kappaB (NF-ĸB) translocation into the nucleus. S4 ameliorated UVB-induced erythema and wrinkle formation in hairless mice. On histological observation, S4 also ameliorated UVB-induced epidermal hyperplasia and collagen degradation. S4 reduced UVB-induced MMP-1, interleukin (IL)-6, and NF-ĸB expression in the mouse skin. The results indicated that S4 had antiphotoaging and anti-inflammatory activities, protecting skin from premature aging.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 40402, Taiwan.
- School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Tzu-Yu Lin
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
| | - Chien-Wei Hou
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Qiao-Xin Chang
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
| | - Chien-Yih Lin
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
14
|
Ho BSY, Ho EXP, Chu CW, Ramasamy S, Bigliardi-Qi M, de Sessions PF, Bigliardi PL. Microbiome in the hair follicle of androgenetic alopecia patients. PLoS One 2019; 14:e0216330. [PMID: 31050675 PMCID: PMC6499469 DOI: 10.1371/journal.pone.0216330] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 12/02/2022] Open
Abstract
Androgenetic alopecia is the most common form of hair loss in males. It is a multifactorial condition involving genetic predisposition and hormonal changes. The role of microflora during hair loss remains to be understood. We therefore analyzed the microbiome of hair follicles from hair loss patients and the healthy. Hair follicles were extracted from occipital and vertex region of hair loss patients and healthy volunteers and further dissected into middle and lower compartments. The microbiome was then characterized by 16S rRNA sequencing. Distinct microbial population were found in the middle and lower compartment of hair follicles. Middle hair compartment was predominated by Burkholderia spp. and less diverse; while higher bacterial diversity was observed in the lower hair portion. Occipital and vertex hair follicles did not show significant differences. In hair loss patients, miniaturized vertex hair houses elevated Propionibacterium acnes in the middle and lower compartments while non-miniaturized hair of other regions were comparable to the healthy. Increased abundance of P. acnes in miniaturized hair follicles could be associated to elevated immune response gene expression in the hair follicle.
Collapse
Affiliation(s)
- Bryan Siu-Yin Ho
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Eliza Xin Pei Ho
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Collins Wenhan Chu
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Srinivas Ramasamy
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Mei Bigliardi-Qi
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Paola Florez de Sessions
- GERMS Platform for microbial genomics, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Paul Lorenz Bigliardi
- Experimental Dermatology Group, Institute of Medical Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- YLL School of Medicine, National University of Singapore and National University Hospital System NUHS, Singapore, Singapore
- * E-mail:
| |
Collapse
|
15
|
Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar Drugs 2019; 17:E222. [PMID: 31013795 PMCID: PMC6521297 DOI: 10.3390/md17040222] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Collapse
Affiliation(s)
- Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Her Y, Shin BN, Lee YL, Park JH, Kim DW, Kim KS, Kim H, Song M, Kim JD, Won MH, Ahn JH. Oenanthe Javanica Extract Protects Mouse Skin from UVB Radiation via Attenuating Collagen Disruption and Inflammation. Int J Mol Sci 2019; 20:E1435. [PMID: 30901885 PMCID: PMC6470913 DOI: 10.3390/ijms20061435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
In recent years, the use of botanical agents to prevent skin damage from solar ultraviolet (UV) irradiation has received considerable attention. Oenanthe javanica is known to exert anti-inflammatory and antioxidant activities. This study investigated photoprotective properties of an Oenanthe javanica extract (OJE) against UVB-induced skin damage in ICR mice. The extent of skin damage was evaluated in three groups: control mice with no UVB, UVB-exposed mice treated with vehicle (saline), and UVB-exposed mice treated with 1% extract. Photoprotective properties were assessed in the dorsal skin using hematoxylin and eosin staining, Masson trichrome staining, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting to analyze the epidermal thickness, collagen expression, and mRNA and protein levels of type I collagen, type III collagen, and interstitial collagenases, including matrix metalloproteinase (MMP)-1 and MMP-3. In addition, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 protein levels were also assessed. In the UVB-exposed mice treated with extract, UV-induced epidermal damage was significantly ameliorated. In this group, productions of collagen types I and III were increased, and expressions of MMP-1 and MMP-3 were decreased. In addition, TNF-α and COX-2 expressions were reduced. Based on these findings, we conclude that OJE displays photoprotective effects against UVB-induced collagen disruption and inflammation and suggest that Oenanthe javanica can be used as a natural product for the treatment of photodamaged skin.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea.
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Ki Seob Kim
- Da Rum & Bio Inc., Chuncheon, Gangwon 24232, Korea.
| | | | - Minah Song
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea.
| |
Collapse
|
17
|
Kawashima S, Funakoshi T, Sato Y, Saito N, Ohsawa H, Kurita K, Nagata K, Yoshida M, Ishigami A. Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage. Sci Rep 2018; 8:16199. [PMID: 30385817 PMCID: PMC6212420 DOI: 10.1038/s41598-018-34530-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Several studies have reported the effects of vitamin C (L-ascorbic acid, AA) on ultraviolet B (UVB)-induced cell damage using cultured keratinocytes. However, the epidermis consists of multiple cell layers, and the effect of AA on UVB-induced damage to the human epidermis remains unclear. Therefore, we investigated the effect of AA on UVB-induced skin damage using reconstituted human epidermis. The reconstituted human epidermal surface was treated with 100 and 500 mM AA and cultured for 3 h before (pre-AA treatment) or after (post-AA treatment) 120 mJ/cm2 UVB irradiation. Pre- and post-AA treatments of the epidermal surface suppressed UVB-induced cell death, apoptosis, DNA damage, reactive oxygen species (ROS) production, and the inflammatory response by downregulating tumour necrosis factor-α (TNF-α) expression and release. Moreover, the pre-AA treatment was more effective at preventing UVB-induced skin damage than the post-AA treatment. In summary, pre- and post-AA treatments of the epidermis prevent UVB-induced damage.
Collapse
Affiliation(s)
- Saki Kawashima
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Tomoko Funakoshi
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yasunori Sato
- Department of Bioenvironmental Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, 920-1181, Japan
| | | | | | | | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
18
|
Lee M, Nam TG, Lee I, Shin EJ, Han A, Lee P, Lee S, Lim T. Skin anti-inflammatory activity of rose petal extract ( Rosa gallica) through reduction of MAPK signaling pathway. Food Sci Nutr 2018; 6:2560-2567. [PMID: 30510758 PMCID: PMC6261181 DOI: 10.1002/fsn3.870] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to investigate the skin anti-inflammatory activity of rose petal extract (RPE) and the mechanisms underlying this phenomenon. Recently, flowers have been considered as dietary resources owing to their biological activities, such as inhibition of nephritis and hemorrhoids. The Rosa plant exerts various biological functions, including antioxidant and anti-microbiological activities. Herein, we confirmed the skin anti-inflammatory activity of RPE upon solar UV (sUV) exposure. RPE reduced sUV-induced COX-2 expression as well as expressions of several cytokines. Activation of MKK4-JNK, MEK-ERK, and MKK3-p38 signaling pathways, which are associated with cytokine production, was also attenuated by RPE treatment. We hypothesized these RPE-induced changes are because of its antioxidant activity, because RPE displayed drastic radical scavenging and oxygen radical absorbance capacity (ORAC). Furthermore, high anthocyanins, polyphenols, and flavonoids contents were found in RPE. Hence, these results indicated the skin anti-inflammatory activity of RPE is because of antioxidant activity.
Collapse
Affiliation(s)
| | | | - Inil Lee
- Department of Food Science and BiotechnologyKyung Hee UniversityYonginKorea
| | | | - Ah‐ram Han
- Korea Food Research InstituteWanju‐gunKorea
| | - Pomjoo Lee
- RAFIQ Cosmetics Co., Ltd. 14Jung‐guKorea
| | - Sung‐Young Lee
- Department of Agricultural BiotechnologySeoul National UniversityGwanak‐guKorea
| | | |
Collapse
|
19
|
Vo TS, Kim SK, Ryu B, Ngo DH, Yoon NY, Bach LG, Hang NTN, Ngo DN. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation. Mar Drugs 2018; 16:E1. [PMID: 29300311 PMCID: PMC5793049 DOI: 10.3390/md16010001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/12/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Se-Kwon Kim
- Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 606-791, Korea.
| | - BoMi Ryu
- School of Pharmacy, the University of Queensland, Brisbane QLD 4072, Australia.
| | - Dai Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
| | - Na-Young Yoon
- Food and Safety Research Center, National Fisheries Research & Development, Busan 46083, Korea.
| | - Long Giang Bach
- Department of Science and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Nguyen Thi Nhat Hang
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
- Faculty of Chemistry, University of Science-VNU-HCM City, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam.
| | - Dai Nghiep Ngo
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
20
|
Martini D, Angelino D, Cortelazzi C, Zavaroni I, Bedogni G, Musci M, Pruneti C, Passeri G, Ventura M, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Di Nuzzo S, De Felici MB, Del Rio D. Claimed Effects, Outcome Variables and Methods of Measurement for Health Claims Proposed Under European Community Regulation 1924/2006 in the Framework of Maintenance of Skin Function. Nutrients 2017; 10:nu10010007. [PMID: 29271939 PMCID: PMC5793235 DOI: 10.3390/nu10010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests a protective role for several nutrients and foods in the maintenance of skin function. Nevertheless, all the requests for authorization to use health claims under Article 13(5) in the framework of maintenance of skin function presented to the European Food Safety Authority (EFSA) have received a negative opinion. Reasons for such failures are mainly due to an insufficient substantiation of the claimed effects, including the choice of inappropriate outcome variables (OVs) and methods of measurement (MMs). The present paper reports the results of an investigation aimed at collecting, collating and critically analyzing the information with relation to claimed effects (CEs), OVs and MMs related to skin health compliance with Regulation 1924/2006. CEs, OVs and MMs were collected from both the EFSA Guidance document and from the authorization requests of health claims under Article 13(5). The critical analysis of OVs and MMs was based on a literature review, and was aimed at defining their appropriateness (alone or in combination with others) in the context of a specific CE. The results highlight the importance of an adequate choice of OVs and MMs for an effective substantiation of the claims.
Collapse
Affiliation(s)
- Daniela Martini
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
| | - Donato Angelino
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
| | - Chiara Cortelazzi
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Ivana Zavaroni
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Giorgio Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Basovizza, 34149 Trieste, Italy;
| | - Marilena Musci
- Department of Food and Drug, University of Parma, 43125 Parma, Italy;
| | - Carlo Pruneti
- Department of Medicine and Surgery, Clinical Psychology Unit, University of Parma, 43125 Parma, Italy;
| | - Giovanni Passeri
- Department of Medicine and Surgery, University of Parma, Building Clinica Medica Generale, 43125 Parma, Italy;
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy;
| | - Daniela Galli
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Prisco Mirandola
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Riccardo C. Bonadonna
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Sergio Di Nuzzo
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Maria Beatrice De Felici
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
- Correspondence: ; Tel.: +39-0521-903830
| |
Collapse
|
21
|
N-(4-bromophenethyl) Caffeamide Protects Skin from UVB-Induced Inflammation Through MAPK/IL-6/NF-κB-Dependent Signaling in Human Skin Fibroblasts and Hairless Mouse Skin. Molecules 2017; 22:molecules22101639. [PMID: 28961200 PMCID: PMC6151473 DOI: 10.3390/molecules22101639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023] Open
Abstract
Long-term exposure to ultraviolet (UV) irradiation causes skin inflammation and aging. N-(4-bromophenethyl) caffeamide (K36H) possesses antioxidant and antimelanogenic properties. The present study investigated the effects of K36H on UVB-induced skin inflammation in human skin fibroblasts and hairless mice and evaluated the underlying mechanisms. The in vitro results indicated that K36H reduced UVB-induced mitogen-activated protein kinase (MAP kinase) expression. Furthermore, K36H treatment reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated fibroblasts by regulating IκB and nuclear factor-kappa B (NF-κB) expression. In the animal study, topically applied K36H markedly reduced inflammation and skin thickness and prevented photodamage to the skin of hairless mice. In addition, K36H inhibited the levels of UV-upregulated inflammation-related proteins levels such as IL-1, iNOS, and NF-κB in the dermis of hairless mice. Our findings demonstrated the antioxidant and anti-inflammatory properties of K36H in human skin fibroblasts and hairless mice. Therefore, K36H can be developed as an antiphotodamage and antiphotoinflammation agent.
Collapse
|
22
|
Kuo YH, Lin TY, You YJ, Wen KC, Sung PJ, Chiang HM. Antiinflammatory and Antiphotodamaging Effects of Ergostatrien-3β-ol, Isolated from Antrodia camphorata, on Hairless Mouse Skin. Molecules 2016; 21:molecules21091213. [PMID: 27626393 PMCID: PMC6274320 DOI: 10.3390/molecules21091213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Ergostatrien-3β-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 μM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 μM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent.
Collapse
Affiliation(s)
- Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Tzu-Yu Lin
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Ya-Jhen You
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
23
|
Nobile V, Michelotti A, Cestone E, Caturla N, Castillo J, Benavente-García O, Pérez-Sánchez A, Micol V. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. Food Nutr Res 2016; 60:31871. [PMID: 27374032 PMCID: PMC4931025 DOI: 10.3402/fnr.v60.31871] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/04/2016] [Accepted: 06/04/2016] [Indexed: 02/06/2023] Open
Abstract
Background Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR)-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial. Objective We investigated the efficacy of a combination of rosemary (R. officinalis) and grapefruit (C. paradisi) in decreasing the individual susceptibility to UVR exposure (redness and lipoperoxides) and in improving skin wrinkledness and elasticity. Design A randomised, parallel group study was carried out on 90 subjects. Furthermore, a pilot, randomised, crossover study was carried out on five subjects. Female subjects having skin phototype from I to III and showing mild to moderate chrono- or photoageing clinical signs were enrolled in both studies. Skin redness (a* value of CIELab colour space) after UVB exposure to 1 minimal erythemal dose (MED) was assessed in the pilot study, while MED, lipoperoxides (malondialdehyde) skin content, wrinkle depth (image analysis), and skin elasticity (suction and elongation method) were measured in the main study. Results Treated subjects showed a decrease of the UVB- and UVA-induced skin alterations (decreased skin redness and lipoperoxides) and an improvement of skin wrinkledness and elasticity. No differences were found between the 100 and 250 mg extracts doses, indicating a plateau effect starting from 100 mg extracts dose. Some of the positive effects were noted as short as 2 weeks of product consumption. Conclusions The long-term oral intake of Nutroxsun™ can be considered to be a complementary nutrition strategy to avoid the negative effects of sun exposure. The putative mechanism for these effects is most likely to take place through the inhibition of UVR-induced reactive oxygen species and the concomitant inflammatory markers (lipoperoxides and cytokines) together with their direct action on intracellular signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | - Julián Castillo
- Nutrafur S.A. (Frutarom Group), Murcia, Spain.,Universidad Católica San Antonio, Murcia, Spain
| | - Obdulio Benavente-García
- Nutrafur S.A. (Frutarom Group), Murcia, Spain.,Institute of Research Into Aging, University of Murcia, Murcia, Spain
| | - Almudena Pérez-Sánchez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (UMH), Alicante, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (UMH), Alicante, Spain
| |
Collapse
|
24
|
Abstract
Aspirin has been one of the oldest drugs in the field of medicine, with a wide range of applications. In dermatology, aspirin has shown benefit in a variety of disorders. Recently, reduction of melanoma risk with aspirin has been demonstrated. Although an analgesic to begin with, aspirin has come a long way; after cardiology, it is now found to be useful even in dermatology.
Collapse
Affiliation(s)
- Aditya Kumar Bubna
- Department of Dermatology, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
25
|
Correia de Sá TR, Silva R, Lopes JM. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes. Future Oncol 2015; 11:3011-21. [PMID: 26449153 DOI: 10.2217/fon.15.246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer worldwide with increasing incidence, but difficult to assess due to the current under registration practice. Despite the low mortality rate, BCC is a cause of great morbidity and an economic burden to health services. There are several risk factors that increase the risk of BCC and partly explain its incidence. Low-penetrance susceptibility alleles, as well as genetic alterations in signaling pathways, namely SHH pathway, also contribute to the carcinogenesis. BCC associate with several genetic syndromes, of which basal cell nevus syndrome is the most common.
Collapse
Affiliation(s)
| | - Roberto Silva
- Faculty of Medicine, Porto University, 4099-002 Porto, Portugal
| | | |
Collapse
|
26
|
Lopes DM, McMahon SB. Ultraviolet Radiation on the Skin: A Painful Experience? CNS Neurosci Ther 2015; 22:118-26. [PMID: 26331607 PMCID: PMC4833175 DOI: 10.1111/cns.12444] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Excessive exposure of skin to ultraviolet radiation (UVR) has dramatic clinical effects in humans, and it is a significant public health concern. Discomfort and sensory changes caused by skin sunburn are the main common features experienced by many of us, a phenomena triggered by the combination of long and short wavelengths radiation (UVA and UVB, respectively). Although the biological processes underlying UVR exposure are not fully understood, in the last few years many studies have made significant progress in characterizing sunburn at the cellular and molecular levels, making use of both humans and laboratory animal models. Here we review and reason that UVR can be used as an excellent model of sensitization and inflammation for pain research. UVR, particularly UVB, produces a controllable and sterile inflammation that causes a robust dose‐dependent hypersensitivity with minimal confounding effects. Importantly, we show that UVR animal models precisely recapitulate the sensory, cellular, and molecular changes observed in human skin, giving it great confidence as a translational model. Furthermore, in this article, we give an overview of the pharmacology underlying UVB inflammation, the latest advances in the field, and potential new targets for inflammatory pain.
Collapse
Affiliation(s)
- Douglas M Lopes
- Neurorestoration group, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Stephen B McMahon
- Neurorestoration group, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
27
|
Costa C, Scalvenzi M, Ayala F, Fabbrocini G, Monfrecola G. How to treat actinic keratosis? An update. J Dermatol Case Rep 2015; 9:29-35. [PMID: 26236409 DOI: 10.3315/jdcr.2015.1199] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Actinic keratosis (AKs) is one of the most common skin lesions leading to an increased risk of developing squamous cell carcinoma and other skin malignancies. The lesions principally arise as a result of excessive ultraviolet (UV) exposure. AKs may regress spontaneously, remain stable or evolve to invasive squamous cell carcinoma. The risk of squamous cell carcinoma is significantly increased patients with more than 5 AKs. The main mechanisms involved in the formation of AK are inflammation, mutagenesis, oxidative stress, impaired apoptosis, immunosuppression, disregulation of cell growth and proliferation, and tissue remodeling. Human papilloma virus has also been correlated with the formation of some AKs. As an individual ages, his skin is exposed to increasing cumulative amounts of UV light and other environmental insults. This is especially true for the head, neck and forearms. These insults do not target only the skin where individual lesions develop, but also the surrounding area. In this area undetectable preclinical AK lesions or dysplastic cells may be present. The whole affected area is known as the 'field'. Therefore, management is divided into lesion-directed and field-directed therapies. Currently, the therapies in use are lesion-directed cryotherapy and/or excision, and field-directed topical agents: 5-fluorouracil, diclofenac, photodynamic therapy, imiquimod, and ingenol mebutate. Combining lesion- and field-directed therapies showed good results and several novel therapies are under investigation. Treatment is variable and personalized, what makes a gold standard management algorithm difficult to design. This review aims to describe the rationale behind the available treatment options for AKs based on current understanding of pathophysiology and epidemiology.
Collapse
Affiliation(s)
- Claudia Costa
- Department of Dermatology, Federico II University, Naples, Italy
| | | | - Fabio Ayala
- Department of Dermatology, Federico II University, Naples, Italy
| | | | | |
Collapse
|
28
|
Zhuang Y, Lyga J. Inflammaging in skin and other tissues - the roles of complement system and macrophage. ACTA ACUST UNITED AC 2015; 13:153-61. [PMID: 24853681 PMCID: PMC4082166 DOI: 10.2174/1871528113666140522112003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Inflammaging refers to a continuous, low-grade inflammation associated with aging. Such chronic inflammatory response could build up with time and gradually causes tissue damage. It is considered as one of the driving forces for many age-related diseases such as diabetes, atherosclerosis, age-related macular degeneration (AMD), and skin aging. There is mounting evidence that indicates aging is driven by the pro-inflammatory cytokines and substances produced by our body’s innate immune system. The macrophage and complement system, two important components of innate immune system, have attracted more and more attention since they appear to be involved in the pathogenesis of several inflammaging-associated diseases, such as AMD and atherosclerosis. This paper will review what we know about these two innate immune systems in the pathogenesis of AMD, atherosclerosis and skin aging.
Collapse
Affiliation(s)
| | - John Lyga
- Avon Global R&D, 1 Avon Place, Suffern, NY, 10901, USA.
| |
Collapse
|
29
|
Ostyn P, El Machhour R, Begard S, Kotecki N, Vandomme J, Flamenco P, Segard P, Masselot B, Formstecher P, Touil Y, Polakowska R. Transient TNF regulates the self-renewing capacity of stem-like label-retaining cells in sphere and skin equivalent models of melanoma. Cell Commun Signal 2014; 12:52. [PMID: 25223735 PMCID: PMC4172864 DOI: 10.1186/s12964-014-0052-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse. RESULTS Using an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal. CONCLUSIONS We conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor.
Collapse
Affiliation(s)
- Pauline Ostyn
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Raja El Machhour
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Severine Begard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Nuria Kotecki
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Jerome Vandomme
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pilar Flamenco
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Pascaline Segard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Bernadette Masselot
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pierre Formstecher
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
- />CHULille, F-59000 Lille, France
| | - Yasmine Touil
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />SIRIC ONCOLille, Lille, France
| | - Renata Polakowska
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| |
Collapse
|
30
|
Abstract
Actinic keratoses (AKs) are common skin lesions heralding an increased risk of developing squamous cell carcinoma (SCC) and other skin malignancies, arising principally due to excessive ultraviolet (UV) exposure. They are predominantly found in fair-skinned individuals, and increasingly, are a problem of the immunosuppressed. AKs may regress spontaneously, remain stable or transform to invasive SCC. The risk of SCC increases for those with more than 5 AKs, and the majority of SCCs arise from AKs. The main mechanisms of AK formation are inflammation, oxidative stress, immunosuppression, impaired apoptosis, mutagenesis, dysregulation of cell growth and proliferation, and tissue remodeling. Human papilloma virus has also been implicated in the formation of some AKs. Understanding these mechanisms guides the rationale behind the current available treatments for AKs. One of the main principles underpinning the management of AKs is that of field cancerization. Wide areas of skin are exposed to increasing amounts of UV light and other environmental insults as we age. This is especially true for the head, neck and forearms. These insults do not target only the skin where individual lesions develop, but also large areas where crops of AKs may appear. The skin between lesions is exposed to the same insults and is likely to contain as-yet undetectable preclinical lesions or areas of dysplastic cells. The whole affected area is known as the ‘field’. Management is therefore divided into lesion-directed and field-directed therapies. Current therapies include lesion-directed cryotherapy and/or excision, and topical field-directed creams: 5-fluorouracil, imiquimod, diclofenac, photodynamic therapy and ingenol mebutate. Combining lesion- and field-directed therapies has yielded good results and several novel therapies are under investigation. Treatment is variable and tailored to the individual making a gold standard management algorithm difficult to design. This literature review article aims to describe the rationale behind the best available therapies for AKs in light of current understanding of pathophysiology and epidemiology. A PubMed and MEDLINE search of literature was performed between January 1, 2000 and September 18, 2013. Where appropriate, articles published prior to this have been referenced. This is not a systematic review or meta-analysis, but aims to highlight the most up to date understanding of AK disease and its management.
Collapse
|
31
|
Song EJ, Gordon-Thomson C, Cole L, Stern H, Halliday GM, Damian DL, Reeve VE, Mason RS. 1α,25-Dihydroxyvitamin D3 reduces several types of UV-induced DNA damage and contributes to photoprotection. J Steroid Biochem Mol Biol 2013; 136:131-8. [PMID: 23165145 DOI: 10.1016/j.jsbmb.2012.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 01/01/2023]
Abstract
Vitamin D production requires UVB. In turn, we have shown that vitamin D compounds reduce UV-induced damage, including inflammation, sunburn, thymine dimers, the most frequent type of cyclobutane pyrimidine dimer, immunosuppression, and photocarcinogenesis. Our previous studies have shown most of the photoprotective effects by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) occurred through the nongenomic pathway because similar protection was seen with an analog, 1α,25-dihydroxylumistrol3 (JN), which has little ability to alter gene expression and also because a nongenomic antagonist of 1,25(OH)2D3 abolished protection. In the current study, we tested whether this photoprotective effect would extend to other types of DNA damage, and whether this could be demonstrated in human ex vivo skin, as this model would be suited to pre-clinical testing of topical formulations for photoprotection. In particular, using skin explants, we examined a time course for thymine dimers (TDs), the most abundant DNA photolesion, as well as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is a mutagenic DNA base lesion arising from UV-induced oxidative stress, and 8-nitroguanosine (8-NG). Nitric oxide products, known markers for chronic inflammation and carcinogenesis, are also induced by UV. This study showed that 1,25(OH)2D3 significantly reduced TD and 8-NG as early as 30min post UV, and 8-oxodG at 3h post UV, confirming the photoprotective effect of 1,25(OH)2D3 against DNA photoproducts in human skin explants. At least in part, the mechanism of photoprotection by 1,25(OH)2D3 is likely to be through the reduction of reactive nitrogen species and the subsequent reduction in oxidative and nitrosative damage. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Eric J Song
- Department of Physiology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mikulec C, Rundhaug JE, Simper MS, Lubet RA, Fischer SM. The chemopreventive efficacies of nonsteroidal anti-inflammatory drugs: the relationship of short-term biomarkers to long-term skin tumor outcome. Cancer Prev Res (Phila) 2013; 6:675-85. [PMID: 23682071 PMCID: PMC3701752 DOI: 10.1158/1940-6207.capr-13-0064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ultraviolet B (UVB) component of sunlight, which causes DNA damage and inflammation, is the major cause of nonmelanoma skin cancer (NMSC), the most prevalent of all cancers. Nonsteroidal anti-inflammatory drugs (NSAID) and coxibs have been shown to be effective chemoprevention agents in multiple preclinical trials, including NMSC, colon, and urinary bladder cancer. NSAIDs, however, cause gastrointestinal irritation, which led to the recent development of nitric oxide (NO) derivatives that may partially ameliorate this toxicity. This study compared the efficacy of several NSAIDs and NO-NSAIDs on UV-induced NMSC in SKH-1 hairless mice and determined whether various short-term biomarkers were predictive of long-term tumor outcome with these agents. Naproxen at 100 (P = 0.05) and 400 ppm (P < 0.01) in the diet reduced tumor multiplicity by 26% and 63%, respectively. The NO-naproxen at slightly lower molar doses shows similar activities. Aspirin at 60 or 750 ppm in the diet reduced tumor multiplicity by 19% and 50%, whereas the equivalent doses (108 and 1,350 ppm) were slightly less effective. Sulindac at 25 and 150 ppm in the diet, doses far below the human equivalent dose was the most potent NSAID with reductions of 50% and 94%, respectively. In testing short-term biomarkers, we found that agents that reduce UV-induced prostaglandin E2 synthesis and/or inhibit UV-induced keratinocyte proliferation yielded long-term tumor efficacy.
Collapse
Affiliation(s)
- Carol Mikulec
- The Department of Molecular Carcinogenesis Science Park The University of Texas MD Anderson Cancer Center Smithville, TX 78957
| | - Joyce E. Rundhaug
- The Department of Molecular Carcinogenesis Science Park The University of Texas MD Anderson Cancer Center Smithville, TX 78957
| | - Melissa S. Simper
- The Department of Molecular Carcinogenesis Science Park The University of Texas MD Anderson Cancer Center Smithville, TX 78957
| | - Ronald A. Lubet
- Chemopreventive Agent Development Research Group Division of Cancer Prevention NIH Bethesda, MD 20852
| | - Susan M. Fischer
- The Department of Molecular Carcinogenesis Science Park The University of Texas MD Anderson Cancer Center Smithville, TX 78957
| |
Collapse
|
33
|
Wagener FADTG, Carels CE, Lundvig DMS. Targeting the redox balance in inflammatory skin conditions. Int J Mol Sci 2013; 14:9126-67. [PMID: 23624605 PMCID: PMC3676777 DOI: 10.3390/ijms14059126] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic) antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| | | | - Ditte M. S. Lundvig
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| |
Collapse
|
34
|
Lee CW, Ko HH, Chai CY, Chen WT, Lin CC, Yen FL. Effect of Artocarpus communis Extract on UVB Irradiation-Induced Oxidative Stress and Inflammation in Hairless Mice. Int J Mol Sci 2013; 14:3860-73. [PMID: 23403620 PMCID: PMC3588075 DOI: 10.3390/ijms14023860] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Administration of antioxidants and anti-inflammatory agents is an effective strategy for preventing ultraviolet (UV) irradiation-induced skin damage. Artocarpus communis possesses several pharmacological activities, such as antioxidant, anticancer and anti-inflammation. However, the photoprotective activity of methanol extract of A. communis heartwood (ACM) in ultraviolet irradiation-induced skin damage has not yet been investigated. The present study was performed using ultraviolet absorption, histopathological observation, antioxidant and anti-inflammation assays to elucidate the mechanism of the photoprotective activity of ACM. Our results indicated that ACM displayed a UVA and UVB absorption effect and then effectively decreased scaly skin, epidermis thickness and sunburn cells during ultraviolet irradiation in hairless mice. ACM not only decreased ultraviolet irradiation-mediated oxidative stress, including lowering the overproduction of reactive oxygen species and lipid peroxidation (p < 0.05), but also reduced the levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin 1β. Additionally, ACM can decrease the synthesis of cytosolic phospholipase A2, cyclooxygenase, inducible nitric oxide synthase and vascular cell adhesion molecular-1 via inhibiting TNF-α-independent pathways (p < 0.05) in UVB-mediated inflammation and formation of sunburn cells. Consequently, we concluded that ACM extract has a photoprotective effect against UVB-induced oxidative stress and inflammation due to its sunscreen property, and its topical formulations may be developed as therapeutic and/or cosmetic products in further studies.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan; E-Mail:
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; E-Mail:
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; E-Mails: (C.-Y.C.); (W.-T.C.)
| | - Wan-Tzu Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; E-Mails: (C.-Y.C.); (W.-T.C.)
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; E-Mail:
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-312-1101 (ext. 2028); Fax: +886-7-321-0683
| |
Collapse
|
35
|
Tongkao-on W, Gordon-Thomson C, Dixon KM, Song EJ, Luu T, Carter SE, Sequeira VB, Reeve VE, Mason RS. Novel vitamin D compounds and skin cancer prevention. DERMATO-ENDOCRINOLOGY 2013; 5:20-33. [PMID: 24494039 PMCID: PMC3897591 DOI: 10.4161/derm.23939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
As skin cancer is one of the most costly health issues in many countries, particularly in Australia, the possibility that vitamin D compounds might contribute to prevention of this disease is becoming increasingly more attractive to researchers and health communities. In this article, important epidemiologic, mechanistic and experimental data supporting the chemopreventive potential of several vitamin D-related compounds are explored. Evidence of photoprotection by the active hormone, 1α,25dihydroxyvitamin D3, as well as a derivative of an over-irradiation product, lumisterol, a fluorinated analog and bufalin, a potential vitamin D-like compound, are provided. The aim of this article is to understand how vitamin D compounds contribute to UV adaptation and potentially, skin cancer prevention.
Collapse
Affiliation(s)
- Wannit Tongkao-on
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Clare Gordon-Thomson
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Katie M. Dixon
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Eric J. Song
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Tan Luu
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Sally E. Carter
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Vanessa B. Sequeira
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Kensington, NSW Australia
| | - Vivienne E. Reeve
- Department of Faculty of Veterinary Science; The University of Sydney; Sydney, NSW Australia
| | - Rebecca S. Mason
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| |
Collapse
|
36
|
Wen KC, Fan PC, Tsai SY, Shih IC, Chiang HM. Ixora parviflora Protects against UVB-Induced Photoaging by Inhibiting the Expression of MMPs, MAP Kinases, and COX-2 and by Promoting Type I Procollagen Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2012:417346. [PMID: 22203872 PMCID: PMC3235733 DOI: 10.1155/2012/417346] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/30/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022]
Abstract
Ixora parviflora with high polyphenol content exhibited antioxidant activity and reducing UVB-induced intracellular reactive oxygen species production. In this study, results of the photoaging screening experiments revealed that IPE at 1000 μg/mL reduced the activity of bacterial collagenase by 92.7 ± 4.2% and reduced the activity of elastase by 32.6 ± 1.4%. Therefore, we investigated the mechanisms by which IPE exerts its anti-photoaging activity. IPE at 1 μg/mL led to an increase in type I procollagen expression and increased total collagen synthesis in fibroblasts at 5 μg/mL. We found that IPE inhibited MMP-1, MMP-3, and MMP-9 expression at doses of 1, 5, and 10 μg/mL, respectively, in fibroblasts exposed to UV irradiation (40 mJ/cm(2)). Gelatin zymography assay showed that IPE at 50 μg/mL inhibited MMP-9 secretion/activity in cultured fibroblasts after UVB exposure. In addition, IPE inhibited the phosphorylation of p38, ERK, and JNK induced by UVB. Furthermore, IPE inhibited the UVB-induced expression of Smad7. In addition, IPE at 1 μg/mL inhibited NO production and COX-2 expression in UV-exposed fibroblasts. These findings show that IPE exhibits anti-inflammatory and anti-photoaging activities, indicating that IPE could be a potential anti-aging agent.
Collapse
Affiliation(s)
- Kuo-Ching Wen
- Department of Cosmecutics, China Medical University, Taichung 404, Taiwan
| | - Pei-Ching Fan
- Department of Cosmecutics, China Medical University, Taichung 404, Taiwan
| | - Shang-Yuan Tsai
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - I-Chen Shih
- Department of Cosmecutics, China Medical University, Taichung 404, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmecutics, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
37
|
Rother M, Rother I. Placebo controlled, crossover validation study of oral ibuprofen and topical hydrocortisone- 21-acetate for a model of ultraviolet B radiation (UVR)-induced pain and inflammation. J Pain Res 2011; 4:357-63. [PMID: 22090804 PMCID: PMC3215515 DOI: 10.2147/jpr.s24821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Pain related to ultraviolet B radiation (UVR) induced sunburn is an established, simple, acute pain model. One of the major criticisms is related to the potential dermal adverse events caused by the UVR exposure. This study tried to validate the model for oral and topical drugs and to define the minimum required UVR exposure. METHODS This subject- and observer-blinded, placebo-controlled, crossover study evaluated 600 mg oral ibuprofen (IB) and topical hydrocortisone-21-acetate (HC) twice daily (bid) in 24 healthy volunteers. Treatment started immediately after irradiation and again at 12 hours, 24 hours, and 36 hours post-UVR. Assessment of hyperalgesia to heat and signs of inflammation (erythema, skin temperature) for all areas was performed after UVR and again at 6, 12, 24, 36, and 48 hours. Subjects returned within 4-11 days to the study site for the second period of the study. As in the first period, subjects received HC at one side and topical placebo on the other side, but oral treatment was crossed-over. RESULTS The primary analysis failed to show the expected superiority of the IB-group vs the placebo group in period 1 of the study. Evaluating period 2 alone clearly showed the expected treatment effects of IB for erythema and heat pain threshold. The results were less pronounced for skin temperature. In contrast to IB vs oral placebo, there were no differences in treatment response between HC and topical placebo. UVR at all dosages induced profound erythema and reduction of heat pain threshold without causing blisters or other unexpected discomfort to the subjects. The changes were almost linear between 1 and 2 minimal erythema doses (MED), whereas the change from 2 to 3 MED was less pronounced. CONCLUSION Use of 2 MED in upcoming studies seems to be reasonable to limit subjects' UVB exposure. The following procedural changes are suggested: Intensified training sessions before randomization to treatmentIncrease in sample size if they are crossover studiesSimplification in design (either oral or topical treatment).
Collapse
Affiliation(s)
- Matthias Rother
- Department of Clinical Operations, X-pert Med GmbH, Graefelfing, Germany
| | | |
Collapse
|
38
|
Li S, Zhu F, Zykova T, Kim MO, Cho YY, Bode AM, Peng C, Ma W, Carper A, Langfald A, Dong Z. T-LAK cell-originated protein kinase (TOPK) phosphorylation of MKP1 protein prevents solar ultraviolet light-induced inflammation through inhibition of the p38 protein signaling pathway. J Biol Chem 2011; 286:29601-9. [PMID: 21715333 DOI: 10.1074/jbc.m111.225813] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solar UV radiation is a major environmental factor that causes DNA damage, inflammation, and even skin cancer. T-LAK cell-originated protein kinase (TOPK) is expressed widely in both normal and cancer cells and functions to inhibit apoptosis and promote carcinogenesis. However, its function in inflammation is not known. The p38 MAPK signaling pathway plays an important role in solar UV light-induced inflammation. In this study, we found that TOPK negatively regulated the activity of p38α by phosphorylating the p38α-specific phosphatase MKP1 and enhancing the stability of MKP1. Notably, the absence of TOPK in mice resulted in a striking increase in skin inflammation. Therefore, we conclude that TOPK has a protective function in solar UV light-induced inflammation.
Collapse
Affiliation(s)
- Shengqing Li
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim C, Ryu HC, Kim JH. Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med 2011; 42:833-41. [PMID: 20966635 DOI: 10.3858/emm.2010.42.12.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skin exposure to low-dose ultraviolet B (UVB) light up-regulates the expression of matrix metalloproteinase-1 (MMP-1), thus contributing to premature skin aging (photo-aging). Although cyclooxygenase-2 (COX- 2) and its product, prostaglandin E(2) (PGE((2))), have been associated with UVB-induced signaling to MMP expression, very little are known about the roles of lipoxygenases and their products, especially leukotriene B((4)) (LTB((4))) and 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), in MMP-1 expression in skin keratinocytes. In the present study, we demonstrate that BLT2, a cell surface receptor for LTB((4)) and 12(S)-HETE, plays a critical role in UVB-mediated MMP-1 upregulation in human HaCaT keratinocytes. Moreover, our results demonstrated that BLT2-mediated MMP-1 upregulation occurs through a signaling pathway dependent on reactive oxygen species (ROS) production and the subsequent stimulation of ERK. Blockage of BLT2 via siRNA knockdown or with the BLT2-antagonist LY255283 completely abolished the up-regulated expression of MMP-1 induced by low-dose UVB irradiation. Finally, when HaCaT cells were transiently transfected with a BLT2 expression plasmid, MMP-1 expression was significantly enhanced, along with ERK phosphorylation, suggesting that BLT2 overexpression alone is sufficient for MMP-1 up-regulation. Together, our results suggest that the BLT2-ROS- ERK-linked cascade is a novel signaling mechanism for MMP-1 upregulation in low-dose UVB- irradiated keratinocytes and thus potentially contributes to photo-aging.
Collapse
Affiliation(s)
- Cheolmin Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | |
Collapse
|
40
|
Black AT, Gordon MK, Heck DE, Gallo MA, Laskin DL, Laskin JD. UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem Pharmacol 2011; 81:873-80. [PMID: 21300015 DOI: 10.1016/j.bcp.2011.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The cornea is highly sensitive to ultraviolet B (UVB) light-induced oxidative stress, a process that results in the production of inflammatory mediators which have been implicated in tissue injury. In the present studies, we characterized the inflammatory response of human corneal epithelial cells to UVB (2.5-25mJ/cm(2)). UVB caused a dose-dependent increase in the generation of reactive oxygen species in the cells. This was associated with increases in mRNA expression of the antioxidants Cu,Zn superoxide dismutase (SOD), Mn-SOD, catalase and heme oxygenase-1 (HO-1), as well as the glutathione S-transferases (GST), GSTA1-2, GSTA3, GSTA4, GSTM1, and mGST2. UVB also upregulated expression of the proinflammatory cytokines, IFNγ, IL-1β, TGFβ and TNFα, and enzymes important in prostaglandin (PG) biosynthesis including cyclooxygenase-2 (COX-2) and the PG synthases mPGES-2, PGDS, PGFS and thromboxane synthase, and in leukotriene biosynthesis including 5-lipoxygenase (5-LOX), 15-LOX-2, and the epidermal and platelet forms of 12-LOX. UVB was found to activate JNK and p38 MAP kinases in corneal epithelial cells; ERK1/2 MAP kinase was found to be constitutively active, and its activity increased following UVB treatment. Inhibition of p38 blocked UVB-induced expression of TNFα, COX-2, PGDS and 15-LOX-2, while JNK inhibition suppressed TNFα and HO-1. These data indicate that UVB modulates corneal epithelial cell expression of antioxidants and proinflammatory mediators by distinct mechanisms. Alterations in expression of these mediators are likely to be important in regulating inflammation and protecting the cornea from UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Kaneko T, Kaise C, Kimoto Y, Suzuki S, Kondo T, Yuasa M. Detection of Superoxide Anion Radical in a Stratum Corneum Intercellular Lipid Model Using an Electrochemical Sensor. J Oleo Sci 2011; 60:647-54. [DOI: 10.5650/jos.60.647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 2010; 31:1949-56. [PMID: 20600423 DOI: 10.1016/j.peptides.2010.06.020] [Citation(s) in RCA: 984] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 02/06/2023]
Abstract
Bioactive peptides, as products of hydrolysis of diverse food proteins, are the focus of current research. They exert various biological roles, one of the most crucial of which is the antioxidant activity. Reverse relationship between antioxidant intake and diseases has been approved through plenty of studies. Antioxidant activity of bioactive peptides can be attributed to their radical scavenging, inhibition of lipid peroxidation and metal ion chelation properties of peptides. It also has been proposed that peptide structure and its amino acid sequence can affect its antioxidative properties. This paper reviews bioactive peptides from food sources concerning their antioxidant activities. Additionally, specific characteristics of antioxidative bioactive peptides, enzymatic production, methods to evaluate antioxidant capacity, bioavailability, and safety concerns of peptides are reviewed.
Collapse
Affiliation(s)
- Bahareh H Sarmadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | |
Collapse
|
43
|
Jin XJ, Kim EJ, Oh IK, Kim YK, Park CH, Chung JH. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo. J Korean Med Sci 2010; 25:930-7. [PMID: 20514317 PMCID: PMC2877234 DOI: 10.3346/jkms.2010.25.6.930] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging.
Collapse
Affiliation(s)
- Xing-Ji Jin
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - In Kyung Oh
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
44
|
Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci 2010; 27:17-34. [PMID: 18492178 DOI: 10.1111/j.1467-2494.2004.00241.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammation and the resulting accumulation of reactive oxygen species (ROS) play an important role in the intrinsic and photoaging of human skin in vivo. Environmental insults such as ultraviolet (UV) rays from sun, cigarette smoke exposure and pollutants, and the natural process of aging contribute to the generation of free radicals and ROS that stimulate the inflammatory process in the skin. UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin. In short, UV causes depletion of cellular antioxidants and antioxidant enzymes (SOD, catalase), initiates DNA damage leading to the formation of thymidine dimmers, activates the neuroendocrine system leading to immunosuppression and release of neuroendocrine mediators, and causes increased synthesis and release of pro-inflammatory mediators from a variety of skin cells. The pro-inflammatory mediators increase the permeability of capillaries leading to infiltration and activation of neutrophils and other phagocytic cells into the skin. The net result of all these effects is inflammation and free radical generation (both reactive oxygen and nitrogen species). Furthermore, elastsases and other proteases (cathepsin G) released from neutrophils cause further inflammation, and activation of matrix metalloproteases. The inflammation further activates the transcription of various matrixes degrading metalloproteases, leading to abnormal matrix degradation and accumulation of non-functional matrix components. In addition, the inflammation and ROS cause oxidative damage to cellular proteins, lipids and carbohydrates, which accumulates in the dermal and epidermal compartments, contributing to the aetiology of photoaging. Strategies to prevent photodamage caused by this cascade of reactions initiated by UV include: prevention of UV penetration into skin by physical and chemical sunscreens, prevention/reduction of inflammation using anti-inflammatory compounds (e.g. cyclooxygenase inhibitors, inhibitors of cytokine generation); scavenging and quenching of ROS by antioxidants; inhibition of neutrophil elastase activity to prevent extracellular matrix damage and activation of matrix metalloproteases (MMPs), and inhibition of MMP expression (e.g. by retinoids) and activity (e.g. by natural and synthetic inhibitors).
Collapse
Affiliation(s)
- S Pillai
- Engelhard Corporation, Long Island, New York, NY, USA.
| | | | | |
Collapse
|
45
|
Sharpley CF, Kauter KG, McFarlane JR. Diurnal Variation in Peripheral (Hair) vs Central (Saliva) HPA Axis Cortisol Concentrations. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2010; 3:9-16. [PMID: 22879782 PMCID: PMC3411532 DOI: 10.4137/cmed.s4350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cortisol concentrations in hair and saliva collected from male and female adults over a 15-hour period were compared for differences in overall level and cyclic pattern. Typical diurnal fluctuations were noted for both salivary and hair cortisol, with some individual differences that are congruent with the previous literature. Issues of the link between central and peripheral HPA axes are raised for discussion and further investigation, and hypothetical explanations for the diurnal variability shown in these two sets of cortisol secretion patterns are discussed from an evolutionary advantage perspective.
Collapse
|
46
|
Inhibitory Effect of Luteolin Liposome Solution by Animal Model for Atopic Dermatitis in NC/Nga Mice. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
47
|
Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 2009; 302:71-83. [PMID: 19898857 DOI: 10.1007/s00403-009-1001-3] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/15/2009] [Accepted: 10/21/2009] [Indexed: 12/12/2022]
Abstract
Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.
Collapse
|
48
|
Chizh BA, Sang CN. Use of sensory methods for detecting target engagement in clinical trials of new analgesics. Neurotherapeutics 2009; 6:749-54. [PMID: 19789077 PMCID: PMC5084294 DOI: 10.1016/j.nurt.2009.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The translation of analgesic efficacy seen in preclinical pain models into the clinic is problematic and is associated with a number of factors that may result in the failure of clinical trials to detect the effect of investigational therapeutic agents. The use of translational pain biomarkers in phase I trials can potentially reduce some of these risks by measuring the interaction between the drug and its target (termed target engagement) in humans. To serve this purpose, sensory tests and other measures of pharmacological activity in nociceptive pathways need to be identified, based on the preclinical profile of the drug being tested and the feasibility of human assessments. Here we discuss some examples to assess the utility of sensory and related pain biomarkers in the early phase of evaluation of novel analgesics for confirmation of target engagement in humans. The emphasis is on the TRPV1 antagonists, but some other target mechanisms are also discussed in examining the validity of this approach.
Collapse
Affiliation(s)
- Boris A Chizh
- GlaxoSmithKline, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 2GG, United Kingdom.
| | | |
Collapse
|
49
|
Katiyar SK. Grape seed proanthocyanidines and skin cancer prevention: inhibition of oxidative stress and protection of immune system. Mol Nutr Food Res 2008; 52 Suppl 1:S71-6. [PMID: 18384090 DOI: 10.1002/mnfr.200700198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overexposure of the skin to UV radiation has a variety of adverse effects on human health, including the development of skin cancers. There is a need to develop nutrition-based efficient chemopreventive strategies. The proanthocyanidins present in grape seeds (Vitis vinifera) have been shown to have some biological effects, including prevention of photocarcinogenesis. The present communication discusses the in vitro and in vivo studies of the possible protective effect of grape seed proanthocyanidins (GSPs) and the molecular mechanism for these effects. In SKH-1 hairless mice, dietary supplementation with GSPs is associated with a decrease of UVB-induced skin tumor development in terms of tumor incidence, tumor multiplicity, and a decrease in the malignant transformation of papillomas to carcinomas. It is suggested that the chemopreventive effects of dietary GSPs are mediated through the attenuation of UV-induced: (i) oxidative stress; (ii) activation of mitogen-activated protein kinases and nuclear factor-kappa B (NF-kappaB) signaling pathways; and (iii) immunosuppression through alterations in immunoregulatory cytokines. Collectively, these studies indicate protective potential of GSPs against experimental photocarcinogenesis in SKH-1 hairless mice, and the possible mechanisms of action of GSPs, and suggest that dietary GSPs could be useful in the attenuation of the adverse UV-induced health effects in human skin.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
50
|
Black AT, Gray JP, Shakarjian MP, Mishin V, Laskin DL, Heck DE, Laskin JD. UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicol Appl Pharmacol 2008; 232:14-24. [PMID: 18597804 DOI: 10.1016/j.taap.2008.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/19/2022]
Abstract
Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE(2), PGF(2alpha), PGD(2) and PGI(2) (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE(2), PGD(2) and the PGD(2) metabolite PGJ(2). Twenty-four hours after treatment with UVB (25 mJ/cm(2)), production of PGE(2) and PGJ(2) increased, while PGD(2) production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm(2)) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE(2) (EP1 and EP2), PGD(2) (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.
Collapse
Affiliation(s)
- Adrienne T Black
- Department of Pharmacology and Toxicology, Rutgers University, USA
| | | | | | | | | | | | | |
Collapse
|