1
|
Nerney A, Reitz S, Kovacevic J, Waite-Cusic J. Cross-contamination Risks in Dry Produce Packinghouses: Efficacy of Alcohol-based Sanitizers to Reduce Salmonella and Potential Surrogates on Relevant Surface Materials. J Food Prot 2025; 88:100443. [PMID: 39733795 DOI: 10.1016/j.jfp.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
A 2020 Salmonella outbreak was epidemiologically linked to red onions; however, insufficient cleaning and sanitation in the packinghouse expanded the recall to include all onions handled by the packing house in the preceding 3 months. Our objective was to evaluate the efficacy of dry sanitizers to reduce cross-contamination risk on food contact surfaces (FCSs) found in postharvest packing areas. Transfer of Salmonella and potential surrogates (Escherichia coli, Enterococcus faecium) to and from onions to FCS materials (high-density polypropylene, polyester-nylon conveyor belts, plywood) was quantified. Transfer rates from inoculated onions to FCS were highly variable, but did not differ by surface, averaging -1.19 log %. Transfer rates from contaminated FCS to uninoculated onions averaged 0.2 log %, with 40% (31/81) of onions having no detectable transfer. Onion variety, surface type, and species did not influence the transfer rate (p > 0.05). Commercial sanitizers and alcohol solutions were tested for efficacy of reducing targeted bacteria on FCS. Reductions were quantified after 30 s and after drying (15 min). High alcohol sanitizers (∼60%) achieved a 5-log reduction on HDPE after drying. Lower alcohol (<30%) products were ineffective (<2-log reduction). E. coli and Salmonella were comparable in sensitivity to sanitizers, but E. faecium was more sensitive (p < 0.05). Transfer and sanitizer evaluation was scaled to investigate cross-contamination in postharvest storage bins (plastic and wood). With no sanitation, inoculated plastic bin contact resulted in contamination of 49-71% of onions. Use of ∼60% alcohol solutions reduced contamination to <4% of onions (p < 0.05). Low-alcohol product significantly increased cross-contamination to 86-100% of onions (p < 0.05). These findings highlight the importance of validating sanitizer efficacy to quantify microbial reduction and cross-contamination risk on produce contact surfaces.
Collapse
Affiliation(s)
- Alexandra Nerney
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Stuart Reitz
- Malheur County Experiment Station, College of Agricultural Sciences, Oregon State University, Ontario, OR 97914, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, 1207 NW Naito Parkway, Portland, OR 97209, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Chen H, Anderson NM, Grasso-Kelley EM, Harris LJ, Marks BP, McGowen L, Scharff RL, Subbiah J, Tang J, Wu F, Feng Y. Food Safety Research and Extension Needs for the U.S. Low-Moisture Food Industry. J Food Prot 2024; 87:100358. [PMID: 39245347 DOI: 10.1016/j.jfp.2024.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Historically, low-moisture foods were considered to have minimal microbial risks. However, they have been linked to many high-profile multistate outbreaks and recalls in recent years, drawing research and extension attention to low-moisture food safety. Limited studies have assessed the food safety research and extension needs for the low-moisture food industry. The objectives of this needs assessment were to explore the food safety culture and education needs, identify the food safety challenges and data gaps, and understand the barriers to adopting food-safety-enhancing technologies in the U.S. low-moisture food industry. This needs assessment was composed of two studies. In Study 1, food safety experts from the low-moisture food industry upper management participated in online interviews and a debriefing discussion session. In Study 2, an online anonymous survey was disseminated to a different group of experts with experience in the low-moisture food industry. The qualitative data were analyzed using deductive and inductive coding approaches, while the quantitative data were analyzed via descriptive analysis. Twenty-five experts participated in the studies (Study 1: n = 12; Study 2: n = 13). Common commodities that participants had worked with included nuts and seeds, spices, flour, and dried fruits and vegetables. A food safety culture conceptual framework was adapted, which included three main components: infrastructure conditions (foundation), individual's food safety knowledge, attitudes, and risk perceptions; and organizational conditions (supporting pillars). Major barriers to establishing a positive food safety culture were identified to be limited resources, difficulties in risk communication, and difficulties in behavioral change. For continual improvement in food safety performance, two major themes of food safety challenges and data gaps were identified: cleaning, sanitation, and hygienic design; and pathogen reduction. Participants perceived the main barriers discouraging the low-moisture food industry from adopting food-safety-enhancing technologies were: (1) budgetary priorities, (2) operation constraints, (3) technology validation, (4) consumer acceptance, and (5) maintaining desired product characteristics such as quality and sensory functionality. The findings of this needs assessment provide guidance for the food industry, academia, and government agencies about the direction of future research and the development of targeted extension programs that might help improve food safety in the low-moisture food industry.
Collapse
Affiliation(s)
- Han Chen
- Department of Food Science, Purdue University, West Lafayette, IN 47906, United States.
| | - Nathan M Anderson
- U.S. Food and Drug Administration, Bedford Park, IL 60501, United States.
| | | | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States.
| | - Bradley P Marks
- Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, MI 48824, United States.
| | - Lindsey McGowen
- Department of Psychology, North Carolina State University, Raleigh, NC 27607, United States.
| | - Robert L Scharff
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States.
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States.
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, United States.
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States; Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI 48824, United States.
| | - Yaohua Feng
- Department of Food Science, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
3
|
Yeak KYC, Garre A, Membré JM, Zwietering MH, den Besten HMW. Systematic risk ranking of microbiological hazards in infant foods. Food Res Int 2024; 192:114788. [PMID: 39147463 DOI: 10.1016/j.foodres.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Ensuring food safety, particularly for vulnerable groups, like infants and young children, requires identifying and prioritizing potential hazards in food chains. We previously developed a web-based decision support system (DSS) to identify specific microbiological hazards (MHs) in infant and toddler foods through a structured five-step process. This study takes the framework further by introducing systematic risk ranking (RR) steps to rank MH risks with seven criteria: process survival, recontamination, growth opportunity, meal preparation, hazard-food association evidence, food consumption habits of infants and toddlers in the EU, and MH severity. Each criterion is given a semi-quantitative or quantitative score or risk value, contributing to the final MH risk calculation via three aggregation methods: semi-quantitative risk scoring, semi-quantitative risk value, and outranking multi-criteria decision analysis (MCDA). To validate the criteria and ranking approaches, we conducted a case study to rank MH risks in infant formula, compared the results of the three risk ranking methods, and additionally evaluated the ranking results against expert opinions to ensure their accuracy. The results showed strong agreement among the three methods, consistently ranking Salmonella non-Typhi and Cronobacter spp. and Shiga-toxin-producing Escherichia coli as the top MH risks in infant formulae, with minor deviations. When MHs were ranked after an initial hazard identification step, all three methods produced nearly identical MH rankings, reinforcing the reliability of the ranking steps and the selected criteria. Notably, the risk value and MCDA methods provided more informative MH rankings compared to the risk scoring method. The risk value and risk scoring methods were implemented into an online tool, called the MIcrobiological hazards risk RAnking decision support system (Mira-DSS), available at https://foodmicrobiologywur.shinyapps.io/MIcrobial_hazards_RAnking/. In conclusion, our framework enables the ranking of MH risks, facilitating intervention comparisons and resource allocations to mitigate MH risks in infant foods, with potential applicability to broader food categories.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alberto Garre
- Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Yeak KYC, Dank A, den Besten HMW, Zwietering MH. A web-based microbiological hazard identification tool for infant foods. Food Res Int 2024; 178:113940. [PMID: 38309868 DOI: 10.1016/j.foodres.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
An integrated approach to identify and assess Microbiological Hazards (MHs) and mitigate risks in infant food chains is crucial to ensure safe foods for infants and young children. A systematic procedure was developed to identify MHs in specific infant foods. This includes five major steps: 1) relevant hazard-food pairing, 2) process inactivation efficiency, 3) recontamination possibility after processing, 4) MHs growth opportunity, and 5) MHs-food association level. These steps were integrated into an online tool called the Microbiological Hazards IDentification (MiID) decision support system (DSS), targeting food companies, governmental agencies and academia users, and is accessible at https://foodmicrobiologywur.shinyapps.io/Microbial_hazards_ID/. The MiID DSS was validated in four case studies, focussing on infant formula, fruit puree, cereal-based meals, and fresh fruits, each representing distinct products and processing characteristics. The results obtained through the application of the MiID DSS, compared with identification by food safety experts, consistently identified the top MHs in these food products. This process affirms its effectiveness in systematic hazard identification. The introduction of the MiID DSS helps to structure the first steps in HACCP (hazard analysis) and in risk assessment (hazard identification) to follow a structured and well-documented procedure, balancing the risk of overlooking relevant MHs or including too many irrelevant MHs. It is a valuable addition to risk analysis/assessment in infant food chains and has the potential for future extension. This includes the incorporation of newly acquired data related to infant foods via a semi-publicly hosted platform, or it can be adapted for hazard identification in general food products using a similar framework.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alexander Dank
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Liang N, Mohamed HM, Kim BJ, Burroughs S, Lowder A, Waite-Cusic J, Dallas DC. High-Pressure Processing of Human Milk: A Balance between Microbial Inactivation and Bioactive Protein Preservation. J Nutr 2023; 153:2598-2611. [PMID: 37423385 PMCID: PMC10517232 DOI: 10.1016/j.tjnut.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.
Collapse
Affiliation(s)
- Ningjian Liang
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Hussein Mh Mohamed
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Bum Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Samantha Burroughs
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | | | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States; Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
6
|
Modeling the effect of protein and fat on the thermal resistance of Salmonella enterica Enteritidis PT 30 in egg powders. Food Res Int 2022; 155:111098. [DOI: 10.1016/j.foodres.2022.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
7
|
Thermal resistance for Salmonella enterica strains in Sous-vide chicken-and-vegetable patties. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Smid J, van der Swaluw-Dekker C, Ueckert J, de Vries E, Pielaat A. Bayesian global regression model relating product characteristics of intermediate moisture food products to heat inactivation parameters for Salmonella Napoli and Eurotium herbariorum mould spores. Int J Food Microbiol 2022; 370:109638. [DOI: 10.1016/j.ijfoodmicro.2022.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/03/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
|
9
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
10
|
Liu S, Wei X, Tang J, Qin W, Wu Q. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34927484 DOI: 10.1080/10408398.2021.2016601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.
Collapse
Affiliation(s)
- Shuxiang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Wen Qin
- Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|