1
|
Murphy CM, Mendoza M, Walter L, Jeong KH, Liao A, Green T, Killinger K, Hanrahan I, Zhu MJ. Impact of overhead evaporative cooling, canopy location, sunlight exposure, inoculation level, region, and growing season on the survival of generic Escherichia coli on in-field Fuji apples. J Appl Microbiol 2024; 135:lxae195. [PMID: 39076016 DOI: 10.1093/jambio/lxae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 07/31/2024]
Abstract
AIMS The survival of inoculated Escherichia coli on Fuji apples in Washington State orchards was studied, considering evaporative cooling, canopy location, year, and region, with the examination of sunlight exposure and inoculation levels in year 2. METHODS AND RESULTS Rifampicin-resistant E. coli was applied to Fuji apples. Initial concentrations for the high-inoculation study were 7.4 ± 0.3 log10 CFU per apple and 3.4 ± 0.3 log10 CFU per apple for the low-inoculation study. Enumeration of E. coli was conducted at 0, 2, 10, 18, 34, 42, 58, 82, 106, and 154 h after inoculation. Results were analyzed using Tukey's honest significance difference test and a log-linear model. Log-linear, Weibull, and biphasic models characterized E. coli die-off patterns for high and low inoculations. The application of evaporative overhead cooling water did not significantly influence E. coli survival on Fuji apples; inoculation level and sunlight exposure were significant factors in a log-linear model. Escherichia coli decreased by 5.5 ± 1.3 and 3.3 ± 0.4 log10 CFU per apple for high and low-inoculated apples, respectively, by 154 h. The biphasic model best explained the die-off pattern for high and low-inoculated Fuji apples. CONCLUSIONS Overhead evaporative cooling, a useful fruit quality practice, did not impact the survival of generic E. coli on Fuji apple surfaces. The significant impact of sunlight exposure and inoculation levels on die-off highlights the importance of ultraviolet radiation in risk reduction and the need for various inoculum concentrations in preharvest field studies.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University-Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, United States
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA 98801, United States
| | - Lauren Walter
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Kyu Ho Jeong
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Andy Liao
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Karen Killinger
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA 98801, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
2
|
Arcot Y, Mu M, Lin YT, DeFlorio W, Jebrini H, Kunadu APH, Yegin Y, Min Y, Castillo A, Cisneros-Zevallos L, Taylor TM, Akbulut ME. Edible nano-encapsulated cinnamon essential oil hybrid wax coatings for enhancing apple safety against food borne pathogens. Curr Res Food Sci 2024; 8:100667. [PMID: 38292343 PMCID: PMC10825335 DOI: 10.1016/j.crfs.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.
Collapse
Affiliation(s)
- Yashwanth Arcot
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Minchen Mu
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Ting Lin
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - William DeFlorio
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Haris Jebrini
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | | | - Yagmur Yegin
- Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Younjin Min
- Depart of Chemical and Environmental Engineering, University of California, Riverside, CA, USA, 92521
| | - Alejandro Castillo
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas M. Taylor
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Mustafa E.S. Akbulut
- Artie McFerrin Department of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Xie Y, Nitin N, Harris LJ. Transfer of Enterococcus faecium and Salmonella enterica during simulated postharvest handling of yellow onions (Allium cepa). Food Microbiol 2023; 115:104340. [PMID: 37567641 DOI: 10.1016/j.fm.2023.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Bacterial transfer during postharvest handling of fresh produce provides a mechanism for spreading pathogens, but risk factors in dry environments are poorly understood. The aim of the study was to investigate factors influencing bacterial transfer between yellow onions (Allium cepa) and polyurethane (PU) or stainless steel (SS) under dry conditions. Rifampin-resistant Enterococcus faecium NRRL B-2354 or a five-strain cocktail of Salmonella was inoculated onto onion skin or PU surfaces at high or moderate levels using peptone, onion extract, or soil water as inoculum carriers. Transfer from inoculated to uninoculated surfaces was conducted using a texture analyzer to control force, time, and number of contacts. Transfer rates (ratio of recipient surface to donor surface populations) of E. faecium (4-5%) were significantly higher than those of Salmonella (0.5-0.6%) at the high (7 log CFU/cm2) but not moderate (5 log CFU/cm2) inoculum levels. Significantly higher populations of E. faecium transferred from onion to PU than from PU to onion. The transfer rates of E. faecium were impacted by inoculum carrier (61% [onion extract], 1.6% [peptone], and 0.31% [soil]) but not by inoculation level or recipient surface (PU versus SS). Bacterial transfer during dry onion handling is significantly dependent on bacterial species, inoculation levels, inoculum carrier, and transfer direction.
Collapse
Affiliation(s)
- Yucen Xie
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8598, USA.
| | - Nitin Nitin
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8598, USA; Department of Agricultural and Biological Engineering, University of California Davis, Davis, CA, 95616, USA.
| | - Linda J Harris
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8598, USA; Western Center for Food Safety, University of California Davis, One Shields Avenue, Davis, CA, 95618, USA.
| |
Collapse
|
4
|
Graikini D, Soro AB, Sivagnanam SP, Tiwari BK, Sánchez L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar Drugs 2023; 21:478. [PMID: 37755091 PMCID: PMC10532486 DOI: 10.3390/md21090478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.
Collapse
Affiliation(s)
- Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Arturo B. Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium;
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Saravana P. Sivagnanam
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12P928 Cork Ireland
| | - Brijesh K. Tiwari
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Lee HE, Jeon YB, Chin BA, Lee SH, Lee HJ, Park MK. Performance of wild, tailed, humidity-robust phage on a surface-scanning magnetoelastic biosensor for Salmonella Typhimurium detection. Food Chem 2023; 409:135239. [PMID: 36584528 DOI: 10.1016/j.foodchem.2022.135239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A wild, tailed phage (TST) was compared with a genetically modified, filamentous phage (FST) for S. Typhimurium (ST) detection. When both phages were introduced into oppositely charged MUA and MUAM sensors, the RU values of TST showed an obvious increase on the MUAM sensor. The sensitivity of TST [54.78 ΔRU/(log PFU/mL)] was greater than that of FST [48.05 ΔRU/(log PFU/mL)]. The binding affinity (KD = 1.75 × 10-13 M) of TST on MUAM sensor was greater than that of FST. Both phages were specific to only ST, and TST exhibited a persistent binding capability at 50 % RH. When each phage-immobilized sensor was employed on chili pepper, the sensitivity [880.80 Hz/(log CFU/mL)] and detection limit (1.31 ± 0.27 log CFU/mL) of TST were significantly greater than those of FST. The orientation of TST on sensor promoted the uniform capture of bacteria and enhanced the reliable performance of a surface-scanning magnetoelastic biosensor.
Collapse
Affiliation(s)
- Hwa-Eun Lee
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu-Bin Jeon
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bryan A Chin
- Department of Materials Engineering, and Material Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Bolten S, Mowery J, Gu G, Redding M, Kroft B, Luo Y, Nou X. Listeria monocytogenes loss of cultivability on carrot is associated with the formation of mesosome-like structures. Int J Food Microbiol 2023; 390:110121. [PMID: 36807003 DOI: 10.1016/j.ijfoodmicro.2023.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Raw carrot is known to have antimicrobial activity against Listeria monocytogenes, but the mechanism of action has not been fully elucidated. In this study, we examined carrot antilisterial activity against several strains of Listeria species (including L. grayi, L. innocua, L. seeligeri, and L. welshimeri) and L. monocytogenes. A representative strain of L. monocytogenes was subsequently used for further characterizing carrot antilisterial activity. Exposure to fresh-cut carrot for 15 min resulted in a similar loss of cultivability, ranging from 2.5 to 4.7 log units, across all Listeria strains evaluated. L. monocytogenes recovered from the fresh-cut surface of different raw carrots was 1.6 to 4.1 log lower than levels obtained from paired boiled carrot samples with abolished antilisterial activity. L. monocytogenes levels recovered from fresh-cut carrot were 2.8 to 3.1 log lower when enumerated by culture-dependent methods than by the culture-independent method of PMAxx-qPCR, a qPCR assay that is performed using DNA pre-treated to selectively sequester DNA from cells with injured membranes. These results suggested that L. monocytogenes loss of cultivability on fresh-cut carrot was not associated with a loss of L. monocytogenes cell membrane integrity and putative cell viability. Transmission electron microscopy imaging revealed that L. monocytogenes rapidly formed mesosome-like structures upon exposure to carrot fresh-cut surface but not upon exposure to boiled carrot surface, suggesting there may be an association between the formation of these mesosome-like structures and a loss of cultivability in L. monocytogenes. However, further research is necessary to conclude the causality of this association.
Collapse
Affiliation(s)
- Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Marina Redding
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Brenda Kroft
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States of America
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America.
| |
Collapse
|
7
|
Wang L, Teplitski M. Microbiological food safety considerations in shelf-life extension of fresh fruits and vegetables. Curr Opin Biotechnol 2023; 80:102895. [PMID: 36689852 DOI: 10.1016/j.copbio.2023.102895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023]
Abstract
There are a number of opportunities for reducing loss and waste, and extending shelf life of fresh produce that go beyond cold chain optimization. For example, plant genotype (including ripening-related genes), presence of phytopathogens, maturity at harvest, and environmental conditions close to the harvest time, storage conditions, and postharvest treatments (washing, cutting, and waxing) all impact both shelf life of produce and food safety outcomes. Therefore, loss can be reduced and shelf life of fresh produce can be extended with plant breeding to manipulate ripening-related traits, or with pre- and postharvest treatments delaying senescence and decay. Food safety considerations of these applications are discussed.
Collapse
Affiliation(s)
- Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Max Teplitski
- International Fresh Produce Association, Washington, DC, United States.
| |
Collapse
|
8
|
Approaches for a more microbiologically and chemically safe dried fruit supply chain. Curr Opin Biotechnol 2023; 80:102912. [PMID: 36841150 DOI: 10.1016/j.copbio.2023.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
Global production of dried fruits has increased significantly in the past decade. Both the increased consumer acceptance of nutritious packaged food and the broad use of dried fruits in products such as confectionery and bakery goods have fueled the dried fruit demand. Unfortunately, outbreaks and recalls due to contamination by pathogenic bacteria and viruses as well as the detection of mycotoxins highlight the need for optimizing current approaches, and evaluating and adopting newer interventions to protect the microbial and chemical safety of dried fruits. Drying processes alone are inadequate to control these hazards. Pre- and post-drying treatments serve as promising opportunities, with or without combination with the drying step, to achieve the goals of efficient hazard control.
Collapse
|
9
|
Lee IH, Kim SH, Kang DH. Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes. Curr Res Food Sci 2022; 6:100428. [PMID: 36632435 PMCID: PMC9826937 DOI: 10.1016/j.crfs.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Interest in using an antimicrobial photodynamic treatment (aPDT) for the microbial decontamination of food has been growing. In this study, quercetin, a substance found ubiquitously in plants, was used as a novel exogenous photosensitizer with 405 nm blue light (BL) for the aPDT on foodborne pathogens, and the inactivation mechanism was elucidated. The inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in PBS solution by the quercetin and BL combination treatment reached a log reduction of 6.2 and more than 7.55 at 80 J/cm2 (68 min 21 s), respectively. When EDTA was added to investigate the reason for different resistance between two bacteria, the effect of aPDT was enhanced against E. coli O157:H7 but not L. monocytogenes. This result indicated that the lipopolysaccharide of Gram-negative bacteria operated as a protective barrier. It was experimentally demonstrated that quercetin generated the superoxide anion and hydrogen peroxide as the reactive oxygen species that oxidize and inactivate cell components. The damage to the bacterial cell membrane by aPDT was evaluated by propidium iodide, where the membrane integrity significantly (P < 0.05) decreased from 40 J/cm2 compared to control. In addition, DNA integrity of bacteria was significantly (P < 0.05) more decreased after aPDT than BL treatment. The inactivation results could be applied in liquid food industries for decontamination of foodborne pathogens, and the mechanisms data was potentially utilized for further studies about aPDT using quercetin.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Hwan Kim
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea,Institutes of Green Bio Science and Technology, Seoul National University, Pyeong-Chang, Gangwon-do, 25354, Republic of Korea,Corresponding author. Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Possas A, Pérez-Rodríguez F. New insights into Cross-contamination of Fresh-Produce. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Protozoa as the “Underdogs” for Microbiological Quality Evaluation of Fresh Vegetables. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monitoring of the microbial quality of fresh products in the industrial environment has mainly focused on bacterial indicators. Protozoa, such as Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii, and Cyclospora cayetanensis, are routinely excluded from detection and surveillance systems, despite guidelines and regulations that support the need for tracking and monitoring these pathogens in fresh food products. Previous studies performed by our laboratory, within the scope of the SafeConsume project, clearly indicated that consumption of fresh produce may be a source of T. gondii, thus posing a risk for the contraction of toxoplasmosis for susceptible consumers. Therefore, preliminary work was performed in order to assess the microbiological quality of vegetables, highlighting not only bacteria (Escherichia. coli, Listeria monocytogenes, and Salmonella spp.), but also the zoonotic protozoa G. duodenalis and Cryptosporidium spp. Although all samples were found to be acceptable based on bacteriological parameters, cysts of G. duodenalis and oocysts of Cryptosporidium spp. were observed in vegetables. Moreover, it was possible to genetically characterize G. duodenalis positive samples as assemblage A, a genotype that poses risks to human health. Although these are preliminary results, they highlight the need to include protozoa in the microbiological criteria for foodstuffs, as required by EU Law No. 1441/2007, and to improve inactivation and removal procedures of (oo)cysts in fresh produce and water.
Collapse
|
12
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Sheng L, Shen X, Su Y, Xue Y, Gao H, Mendoza M, Green T, Hanrahan I, Zhu MJ. Effects of 1-methylcyclopropene and gaseous ozone on Listeria innocua survival and fruit quality of Granny Smith apples during long-term commercial cold storage. Food Microbiol 2021; 102:103922. [PMID: 34809948 DOI: 10.1016/j.fm.2021.103922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
This study evaluated the impact of 1-methylcyclopropene (1-MCP), an ethylene synthesis inhibitor, followed by long-term commercial cold storage with low-dose gaseous ozone on the microbiological safety and quality of fresh apples. Granny Smith apples were inoculated with or without Listeria innocua, treated with or without 1.0 mg/L 1-MCP for 24 h, then subjected to commercial cold storage conditions including refrigerated air (RA, 0.6 °C, control), controlled atmosphere (CA, 2% O2, 1% CO2, 0.6 °C), and CA with 51-87 μg/L ozone gas for up to 36 weeks. RA storage reduced L. innocua on apples by up to 3.6 log10 CFU/apple. CA had no advantage over RA in controlling Listeria. Continuous ozone gas application resulted in an additional ∼2.0 log10 CFU/apple reduction of L. innocua (total reduction up to 5.7 log10 CFU/apple) and suppressed native bacteria and fungi. Treatment with 1-MCP had a minor impact on survival of L. innocua or background microbiota on apples, while it significantly delayed fruit ripening and reduced the incidence of superficial scald and internal browning. In summary, 1-MCP treatment followed by CA storage with low-dose continuous ozone gas can effectively control Listeria on fresh apples and delay fruit ripening.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Hui Gao
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
15
|
Shen X, Su Y, Hua Z, Sheng L, Mendoza M, He Y, Green T, Hanrahan I, Blakey R, Zhu MJ. Effectiveness of Low-Dose Continuous Gaseous Ozone in Controlling Listeria innocua on Red Delicious Apples During 9-Month Commercial Cold Storage. Front Microbiol 2021; 12:712757. [PMID: 34659142 PMCID: PMC8513861 DOI: 10.3389/fmicb.2021.712757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of low-dose continuous ozone gas in controlling Listeria innocua and quality attributes and disorders of Red Delicious apples during long-term commercial cold storage. Red Delicious apples were inoculated with a three-strain L. innocua cocktail at ∼6.2 log10 CFU/apple, treated with or without 1-methylcyclopropene, and then subjected to controlled atmosphere (CA) storage with or without continuous gaseous ozone in a commercial facility for 36 weeks. Uninoculated Red Delicious apples subjected to the above storage conditions were used for yeast/mold counts and quality attributes evaluation. The 36 weeks of refrigerated air (RA) or CA storage caused ∼2.2 log10 CFU/apple reduction of L. innocua. Ozone gas application caused an additional > 3 log10 CFU/apple reduction of L. innocua compared to RA and CA storage alone. During the 36-week CA storage, low-dose continuous gaseous ozone application significantly retarded the growth of yeast/mold, delayed apple firmness loss, and had no negative influence on ozone burn, lenticel decay, russet, CO2 damage, superficial scald, and soft scald of Red Delicious apples compared to CA-alone storage. In summary, the application of continuous low-dose gaseous ozone has the potential to control Listeria on Red Delicious apples without negatively influencing apple quality attributes.
Collapse
Affiliation(s)
- Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Zi Hua
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Yang He
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Rob Blakey
- Stemilt Growers LLC., Wenatchee, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|