1
|
Jorgensen R, Arul Arasan TS, Srkalovic MB, Van Antwerp C, Ng PKW, Gangur V. Glutenin from the Ancient Wheat Progenitor Is Intrinsically Allergenic as It Can Clinically Sensitize Mice for Systemic Anaphylaxis by Activating Th2 Immune Pathway. Int J Mol Sci 2024; 25:7324. [PMID: 39000431 PMCID: PMC11242169 DOI: 10.3390/ijms25137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Wheat allergy is a major type of food allergy with the potential for life-threatening anaphylactic reactions. Common wheat, Triticum aestivum (hexaploid, AABBDD genome), was developed using tetraploid wheat (AABB genome) and the ancient diploid wheat progenitor (DD genome)-Aegilops tauschii. The potential allergenicity of gluten from ancient diploid wheat is unknown. In this study, using a novel adjuvant-free gluten allergy mouse model, we tested the hypothesis that the glutenin extract from this ancient wheat progenitor will be intrinsically allergenic in this model. The ancient wheat was grown, and wheat berries were used to extract the glutenin for testing. A plant protein-free colony of Balb/c mice was established and used in this study. The intrinsic allergic sensitization potential of the glutenin was determined by measuring IgE response upon transdermal exposure without the use of an adjuvant. Clinical sensitization for eliciting systemic anaphylaxis (SA) was determined by quantifying the hypothermic shock response (HSR) and the mucosal mast cell response (MMCR) upon intraperitoneal injection. Glutenin extract elicited a robust and specific IgE response. Life-threatening SA associated and a significant MMCR were induced by the glutenin challenge. Furthermore, proteomic analysis of the spleen tissue revealed evidence of in vivo Th2 pathway activation. In addition, using a recently published fold-change analysis method, several immune markers positively and negatively associated with SA were identified. These results demonstrate for the first time that the glutenin from the ancient wheat progenitor is intrinsically allergenic, as it has the capacity to elicit clinical sensitization for anaphylaxis via activation of the Th2 pathway in vivo in mice.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| | - Maya Blanka Srkalovic
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| | - Perry K W Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
2
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
3
|
Jorgensen R, Devarahalli SS, Shah Y, Gao H, Arul Arasan TS, Ng PKW, Gangur V. Advances in Gluten Hypersensitivity: Novel Dietary-Based Therapeutics in Research and Development. Int J Mol Sci 2024; 25:4399. [PMID: 38673984 PMCID: PMC11050004 DOI: 10.3390/ijms25084399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Gluten hypersensitivity is characterized by the production of IgE antibodies against specific wheat proteins (allergens) and a myriad of clinical allergic symptoms including life-threatening anaphylaxis. Currently, the only recommended treatment for gluten hypersensitivity is the complete avoidance of gluten. There have been extensive efforts to develop dietary-based novel therapeutics for combating this disorder. There were four objectives for this study: (i) to compile the current understanding of the mechanism of gluten hypersensitivity; (ii) to critically evaluate the outcome from preclinical testing of novel therapeutics in animal models; (iii) to determine the potential of novel dietary-based therapeutic approaches under development in humans; and (iv) to synthesize the outcomes from these studies and identify the gaps in research to inform future translational research. We used Google Scholar and PubMed databases with appropriate keywords to retrieve published papers. All material was thoroughly checked to obtain the relevant data to address the objectives. Our findings collectively demonstrate that there are at least five promising dietary-based therapeutic approaches for mitigating gluten hypersensitivity in development. Of these, two have advanced to a limited human clinical trial, and the others are at the preclinical testing level. Further translational research is expected to offer novel dietary-based therapeutic options for patients with gluten hypersensitivity in the future.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Shambhavi Shivaramaiah Devarahalli
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Yash Shah
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venugopal Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| |
Collapse
|
4
|
Jorgensen R, Gao H, Arul Arasan TS, Van Antwerp C, Sundar V, Ng PKW, Gangur V. Is Wheat Glutenin Extract Intrinsically Allergenic? Evaluation Using a Novel Adjuvant-Free Mouse Model of Systemic Anaphylaxis. Int J Mol Sci 2023; 24:17247. [PMID: 38139075 PMCID: PMC10743909 DOI: 10.3390/ijms242417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat is a prominent allergenic food that can trigger life-threatening anaphylaxis. Presently, it remains unclear whether wheat glutenin (WG) extract possesses inherent sensitization potential independently, without the use of adjuvants, and whether it can sensitize mice to the extent of inducing life-threatening systemic anaphylaxis. In this study, we tested the hypothesis that repeated skin exposures to WG extract without adjuvant will sensitize mice with the resultant anaphylactic reaction upon systemic WG challenge. Balb/c mice were bred and maintained on a strict plant protein-free diet and were repeatedly exposed to a WG extract or vehicle once a week for 9 weeks. WG-specific (s)IgE and total (t)IgE levels were quantified. Mice were challenged with WG extract to induce anaphylactic reactions as measured by hypothermic shock response (HSR) and mucosal mast cell degranulation response (MMCR). We also conducted proteomic analysis of 120 spleen immune markers. These skin-sensitized mice exhibited exposure-dependent IgE responses and near-fatal anaphylaxis upon challenge. Proteomic analysis identified seven dramatically elevated immune biomarkers in anaphylactic mice. These data reveal that WG is intrinsically allergenic, and that chronic skin exposure to WG extract can prime the mice for potentially fatal anaphylaxis.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Vaisheswini Sundar
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| |
Collapse
|
5
|
Jorgensen R, Gao H, Chandra S, Sundar V, Loy J, Van Antwerp C, Ng PKW, Gangur V. Chronic application of alcohol-soluble gluten extract over undamaged skin causes clinical sensitization for life-threatening anaphylaxis via activation of systemic Th2 immune responses in mice. FRONTIERS IN ALLERGY 2023; 4:1214051. [PMID: 37841051 PMCID: PMC10570422 DOI: 10.3389/falgy.2023.1214051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Gluten allergy is a major public health problem that is growing at an alarming rate. Specific mechanisms underlying sensitization to gluten remain incompletely understood. Currently, it is unclear whether chronic exposure to alcohol-soluble gluten extract via undamaged skin has the capacity to clinically sensitize mice for life-threatening anaphylaxis. Using an adjuvant-free mouse model, here we tested the hypothesis that chronic application of alcohol-soluble durum gluten (ASDG) extract will clinically sensitize mice for life-threatening anaphylaxis. Methods This study was conducted in a gluten-free Balb/c mouse colony that was established and maintained on a plant protein-free diet. Groups of adult female mice were exposed dermally to ASDG extract or vehicle once a week for 9-weeks. Specific (s) and total (t) IgE levels were quantified. Mice were challenged systemically with ASDG to measure symptoms of systemic anaphylaxis. Hypothermic shock response (HSR) and mucosal mast cell degranulation response (MMCR) were determined upon challenge. Spleen Th1, Th2, and other immune markers were quantified. Results We found that chronic exposure to ASDG elicited robust elevation of sIgE and tIgE. Systemic challenge with ASDG, but not vehicle, elicited life-threatening anaphylaxis associated with dramatic HSR and MMCR. Correlation analysis demonstrated direct positive inter-relationships among IgE, HSR, and MMCR. Anaphylaxis was associated with significant elevation of prototypic Th2 but not Th1 immune markers in the spleen. Discussion/Conclusion Our study collectively demonstrates that ASDG is intrinsically allergenic; and chronic exposure to ASDG via undamaged skin can clinically sensitize mice for life-threatening anaphylaxis via activating the systemic Th2 immune responses.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Shivam Chandra
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Vaisheswini Sundar
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Jaden Loy
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
7
|
Gao H, Jorgensen R, Raghunath R, Chandra S, Othman A, Olson E, Ng PKW, Gangur V. Intrinsic Allergenicity Potential of Salt-Soluble Protein Extracts from the Diploid, Tetraploid and Hexaploid Wheats: Validation Using an Adjuvant-Free Mouse Model. Int J Mol Sci 2023; 24:ijms24065453. [PMID: 36982527 PMCID: PMC10051541 DOI: 10.3390/ijms24065453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Wheat allergies are potentially life-threatening and, therefore, have become a major health concern at the global level. It is largely unknown at present whether genetic variation in allergenicity potential exists among hexaploid, tetraploid and diploid wheat species. Such information is critical in establishing a baseline allergenicity map to inform breeding efforts to identify hyper-, hypo- and non-allergenic varieties. We recently reported a novel mouse model of intrinsic allergenicity using the salt-soluble protein extract (SSPE) from durum, a tetraploid wheat (Triticum durum). Here, we validated the model for three other wheat species [hexaploid common wheat (Triticum aestivum), diploid einkorn wheat (Triticum monococcum), and the ancient diploid wheat progenitor, Aegilops tauschii], and then tested the hypothesis that the SSPEs from wheat species will exhibit differences in relative allergenicities. Balb/c mice were repeatedly exposed to SSPEs via the skin. Allergic sensitization potential was assessed by specific (s) IgE antibody responses. Oral anaphylaxis was quantified by the hypothermic shock response (HSR). The mucosal mast cell response (MMCR) was determined by measuring mast cell protease in the blood. While T. monococcum elicited the least, but significant, sensitization, others were comparable. Whereas Ae. taushcii elicited the least HSR, the other three elicited much higher HSRs. Similarly, while Ae. tauschii elicited the least MMCR, the other wheats elicited much higher MMCR as well. In conclusion, this pre-clinical comparative mapping strategy may be used to identify potentially hyper-, hypo- and non-allergenic wheat varieties via crossbreeding and genetic engineering methods.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Rajsri Raghunath
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Shivam Chandra
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Aqilah Othman
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
8
|
Jorgensen R, Raghunath R, Gao H, Olson E, Ng PKW, Gangur V. A Mouse-Based Method to Monitor Wheat Allergens in Novel Wheat Lines and Varieties Created by Crossbreeding: Proof-of-Concept Using Durum and A. tauschii Wheats. Int J Mol Sci 2022; 23:ijms23126505. [PMID: 35742949 PMCID: PMC9224339 DOI: 10.3390/ijms23126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat allergies are potentially life-threatening because of the high risk of anaphylaxis. Wheats belong to four genotypes represented in thousands of lines and varieties. Monitoring changes to wheat allergens is critical to prevent inadvertent ntroduction of hyper-allergenic varieties via breeding. However, validated methods for this purpose are unavailable at present. As a proof-of-concept study, we tested the hypothesis that salt-soluble wheat allergens in our mouse model will be identical to those reported for humans. Groups of Balb/cJ mice were rendered allergic to durum wheat salt-soluble protein extract (SSPE). Using blood from allergic mice, a mini hyper-IgE plasma bank was created and used in optimizing an IgE Western blotting (IEWB) to identify IgE binding allergens. The LC-MS/MS was used to sequence the allergenic bands. An ancient Aegilops tauschii wheat was grown in our greenhouse and extracted SSPE. Using the optimized IEWB method followed by sequencing, the cross-reacting allergens in A. tauschii wheat were identified. Database analysis showed all but 2 of the durum wheat allergens and all A. tauschii wheat allergens identified in this model had been reported as human allergens. Thus, this model may be used to identify and monitor potential changes to salt-soluble wheat allergens caused by breeding.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Rajsri Raghunath
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
9
|
Assessing Hydrolyzed Gluten Content in Dietary Enzyme Supplements Following Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Partially digested gluten fragments from grains including wheat, rye, spelt and barley are responsible for triggering an inflammatory response in the intestinal tract of Celiac Disease (CD) and Non-Celiac Gluten Sensitive (NCGS) individuals. Fermentation is an effective method to metabolize gluten, with enzymes from bacterial or fungal species being released to help in this process. However, the levels of gluten in commercially available enzymes, including those involved in gluten fermentation, are unknown. In this study we investigated gluten levels in commercially available dietary enzymes combined with assessing their effect on inflammatory response in human cell culture assays. Using antibodies that recognize different gluten epitopes (G12, R5, 2D4, MloBS and Skerritt), we employed ELISA and immunoblotting methodologies to determine gluten content in crude gluten, crude gliadin, pepsin-trypsin digested gluten and a selection of commercially available enzymes. We further investigated the effect of these compounds on inflammatory response in immortalized immune and intestinal human cell lines, as well as in peripheral blood mononuclear cells (PBMCs) from coeliac individuals. All tested supplemental enzyme products reported a gluten concentration that was equivalent to or below 20 parts per million (ppm) as compared with an intact wheat reference standard and a pepsin-trypsin digested standard. Similarly, the inflammatory response to IL-8 and TNF-α inflammatory cytokines in mammalian cell lines and PBMCs from coeliac individuals to the commercial enzymes was not significantly different to 20 ppm of crude gluten, crude gliadin or pepsin-trypsin digested gluten. This combined approach provides insight into the extent of gluten breakdown in the fermentation process and the safety of these products to gluten-sensitive individuals.
Collapse
|