1
|
Alijani S, Hahn A, Harris WS, Schuchardt JP. Bioavailability of EPA and DHA in humans - A comprehensive review. Prog Lipid Res 2024:101318. [PMID: 39736417 DOI: 10.1016/j.plipres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), free fatty acids (FFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: FFA > PL > rTAG > unmodified TAG > ethyl esters (EE). However, varying oil compositions complicate conclusions about source-specific bioavailability. Significant differences observed in acute bioavailability studies (e.g., faster absorption) often did not translate into long-term impacts in chronic supplementation studies. This raises questions about the clinical relevance of acute findings, especially given that n-3 PUFA supplements are typically consumed long-term. Methodological limitations, such as inappropriate biomarkers, short sampling windows, and inadequate product characterization, hinder the reliability and comparability of studies. The review emphasizes the need for standardized protocols and robust chronic studies to clarify the clinical implications of bioavailability differences. Future research should prioritize biomarkers that reflect sustained n-3 PUFA status to better understand the health benefits of various EPA and DHA formulations.
Collapse
Affiliation(s)
- Sepideh Alijani
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Willian S Harris
- The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| | - Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States.
| |
Collapse
|
2
|
Jiang M, Hu Z, Huang Y, Chen XD, Wu P. Impact of wall materials and DHA sources on the release, digestion and absorption of DHA microcapsules: Advancements, challenges and future directions. Food Res Int 2024; 191:114646. [PMID: 39059932 DOI: 10.1016/j.foodres.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
Collapse
Affiliation(s)
- Maoshuai Jiang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
| | - Yixiao Huang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Bara-Ledesma N, Jimenez-Esteban J, Fabregate M, Fabregate-Fuente R, Cymberknop LJ, Castillo-Martinez P, Navarro-Fayos MT, Gomez del Olmo V, Saban-Ruiz J. Effect of Encapsulated Purple Garlic Oil on Microvascular Function and the Components of Metabolic Syndrome: A Randomized Placebo-Controlled Study-The ENDOTALLIUM Study. Nutrients 2024; 16:1755. [PMID: 38892688 PMCID: PMC11175032 DOI: 10.3390/nu16111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial dysfunction (ED) is associated with progressive changes contributing to clinical complications related to macro- and microvascular diseases. Garlic (Allium sativum L.) and its organosulfur components have been related to beneficial cardiovascular effects and could improve endothelial function. The ENDOTALLIUM Study aimed to evaluate the effect of the regular consumption of encapsulated purple garlic oil on microvascular function, endothelial-related biomarkers, and the components of metabolic syndrome (MetS) in untreated subjects with cardiometabolic alterations. Fifty-two individuals with at least one MetS component were randomized (1:1) in a single-center, single-blind, placebo-controlled, parallel-group study. The participants received encapsulated purple garlic oil (n = 27) or placebo (n = 25) for five weeks. Skin microvascular peak flow during post-occlusive reactive hyperemia significantly increased in the purple garlic oil group compared to the placebo group (between-group difference [95%CI]: 15.4 [1.5 to 29.4] PU; p = 0.031). Likewise, hs-CRP levels decreased in the purple garlic group compared to the control group (-1.3 [-2.5 to -0.0] mg/L; p = 0.049). Furthermore, we observed a significant reduction in the mean number of MetS components in the purple garlic group after five weeks (1.7 ± 0.9 vs. 1.3 ± 1.1, p = 0.021). In summary, regular consumption of encapsulated purple garlic oil significantly improved microvascular function, subclinical inflammatory status, and the overall MetS profile in a population with cardiometabolic alterations.
Collapse
Affiliation(s)
- Nuria Bara-Ledesma
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Judith Jimenez-Esteban
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Martin Fabregate
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Rosa Fabregate-Fuente
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Leandro Javier Cymberknop
- Group of Research and Development in Bioengineering (GIBIO), Universidad Tecnológica Nacional, Buenos Aires C1179AAQ, Argentina
| | | | | | - Vicente Gomez del Olmo
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jose Saban-Ruiz
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
4
|
Gill R, Al-Badr M, Alghouti M, Mohamed NA, Abou-Saleh H, Rahman MM. Revolutionizing Cardiovascular Health with Nano Encapsulated Omega-3 Fatty Acids: A Nano-Solution Approach. Mar Drugs 2024; 22:256. [PMID: 38921567 PMCID: PMC11204627 DOI: 10.3390/md22060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Richa Gill
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mohammad Alghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nura Adam Mohamed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| |
Collapse
|
5
|
Correa LB, Gomes-da-Silva NC, dos Santos CC, Rebelo Alencar LM, Graças Muller de Oliveira Henriques MD, Bhattarai P, Zhu L, Noronha Souza PF, Rosas EC, Santos-Oliveira R. Chia nanoemulsion: anti-inflammatory mechanism, biological behavior and cellular interactions. Ther Deliv 2024; 15:325-338. [PMID: 38469701 PMCID: PMC11157993 DOI: 10.4155/tde-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
| | - Clenilton Costa dos Santos
- Biophysics & Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, MA, 65065690, Brazil
| | | | | | - Prapanna Bhattarai
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Pedro Filho Noronha Souza
- Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Ceará, 60430275, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
- Master & Doctoral Degree in Drugs Translational Research, Farmanguinhos – Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy & Synthesis of New Radiopharmaceuticals, Rio de Janeiro RJ, 21941906, Brazil
- Rio de Janeiro State University, Laboratory of Radiopharmacy & Nanoradiopharmaceuticals, Rio de Janeiro, RJ, 23070200, Brazil
| |
Collapse
|