1
|
Thümmel L, Tintner-Olifiers J, Amendt J. A methodological approach to age estimation of the intra-puparial period of the forensically relevant blow fly Calliphora vicina via Fourier transform infrared spectroscopy. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:22-32. [PMID: 39093723 DOI: 10.1111/mve.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Estimating the age of immature blow flies is of great importance for forensic entomology. However, no gold-standard technique for an accurate determination of the intra-puparial age has yet been established. Fourier transform infrared (FTIR) spectroscopy is a method to (bio-)chemically characterise material based on the absorbance of electromagnetic energy by functional groups of molecules. In recent years, it also has become a powerful tool in forensic and life sciences, as it is a fast and cost-effective way to characterise all kinds of material and biological traces. This study is the first to collect developmental reference data on the changes in absorption spectra during the intra-puparial period of the forensically important blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Calliphora vicina was reared at constant 20°C and 25°C and specimens were killed every other day throughout their intra-puparial development. In order to investigate which part yields the highest detectable differences in absorption spectra throughout the intra-puparial development, each specimen was divided into two different subsamples: the pupal body and the former cuticle of the third instar, that is, the puparium. Absorption spectra were collected with a FTIR spectrometer coupled to an attenuated total reflection (ATR) unit. Classification accuracies of different wavenumber regions with two machine learning models, i.e., random forests (RF) and support vector machines (SVMs), were tested. The best age predictions for both temperature settings and machine learning models were obtained by using the full spectral range from 3700 to 600 cm-1. While SVMs resulted in better accuracies for C. vicina reared at 20°C, RFs performed almost as good as SVMs for data obtained from 25°C. In terms of sample type, the pupal body gave smoother spectra and usually better classification accuracies than the puparia. This study shows that FTIR spectroscopy is a promising technique in forensic entomology to support the estimation of the minimum post-mortem interval (PMImin), by estimating the age of a given insect specimen.
Collapse
Affiliation(s)
- Luise Thümmel
- Goethe-University Frankfurt, University Hospital, Institute of Legal Medicine, Frankfurt am Main, Germany
- Department of Aquatic Ecotoxicology, Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| | | | - Jens Amendt
- Goethe-University Frankfurt, University Hospital, Institute of Legal Medicine, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Zhang X, Yang F, Xiao J, Qu H, Jocelin NF, Ren L, Guo Y. Analysis and comparison of machine learning methods for species identification utilizing ATR-FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123713. [PMID: 38056185 DOI: 10.1016/j.saa.2023.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Accurate identification of insect species holds paramount significance in diverse fields as it facilitates a comprehensive understanding of their ecological habits, distribution range, and impact on both the environment and humans. While morphological characteristics have traditionally been employed for species identification, the utilization of empty pupariums for this purpose remains relatively limited. In this study, ATR-FTIR was employed to acquire spectral information from empty pupariums of five fly species, subjecting the data to spectral pre-processing to obtain average spectra for preliminary analysis. Subsequently, PCA and OPLS-DA were utilized for clustering and classification. Notably, two wavebands (3000-2800 cm-1 and 1800-1300 cm-1) were found to be significant in distinguishing A. grahami. Further, we established three machine learning models, including SVM, KNN, and RF, to analyze spectra from different waveband groups. The biological fingerprint region (1800-1300 cm-1) demonstrated a substantial advantage in identifying empty puparium species. Remarkably, the SVM model exhibited an impressive accuracy of 100 % in identifying all five fly species. This study represents the first instance of employing infrared spectroscopy and machine learning methods for identifying insect species using empty pupariums, providing a robust research foundation for future investigations in this area.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ngando Fernand Jocelin
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
3
|
Shang Y, Yang F, Ngando FJ, Zhang X, Feng Y, Ren L, Guo Y. Development of Forensically Important Sarcophaga peregrina (Diptera: Sarcophagidae) and Intra-Puparial Age Estimation Utilizing Multiple Methods at Constant and Fluctuating Temperatures. Animals (Basel) 2023; 13:ani13101607. [PMID: 37238037 DOI: 10.3390/ani13101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830) has the potential to estimate the minimum postmortem interval (PMImin). Development data and intra-puparial age estimation are significant for PMImin estimation. Previous research has focused on constant temperatures, although fluctuating temperatures are a more real scenario at a crime scene. The current study examined the growth patterns of S. peregrina under constant (25.75 °C) and fluctuating temperatures (18-36 °C; 22-30 °C). Furthermore, differentially expressed genes, attenuated total reflectance Fourier-transform infrared spectroscopy, and cuticular hydrocarbons of S. peregrina during the intra-puparial period were used to estimate age. The results indicated that S. peregrina at fluctuating temperatures took longer to develop and had a lower pupariation rate, eclosion rate, and pupal weight than the group at constant temperatures did. Moreover, we found that six DEG expression profiles and ATR-FTIR technology, CHCs detection methods, and chemometrics can potentially estimate the intra-puparial age of S. peregrina at both constant and fluctuating temperatures. The findings of the study support the use of S. peregrina for PMImin estimation and encourage the use of entomological evidence in forensic practice.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yakai Feng
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
4
|
Shang Y, Feng Y, Ren L, Zhang X, Yang F, Zhang C, Guo Y. Pupal Age Estimation of Sarcophaga peregrina (Diptera: Sarcophagidae) at Different Constant Temperatures Utilizing ATR-FTIR Spectroscopy and Cuticular Hydrocarbons. INSECTS 2023; 14:143. [PMID: 36835712 PMCID: PMC9965786 DOI: 10.3390/insects14020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) is a forensically important flesh fly that has potential value in estimating the PMImin. The precise pupal age estimation has great implications for PMImin estimation. During larval development, the age determination is straightforward by the morphological changes and variation of length and weight, however, the pupal age estimation is more difficult due to anatomical and morphological changes not being visible. Thus, it is necessary to find new techniques and methods that can be implemented by standard experiments for accurate pupal age estimation. In this study, we first investigated the potential of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and cuticular hydrocarbons (CHCs) for the age estimations of S. peregrina pupae at different constant temperatures (20 °C, 25 °C, and 30 °C). The orthogonal projections latent structure discrimination analysis (OPLS-DA) classification model was used to distinguish the pupae samples of different developmental ages. Then, a multivariate statistical regression model, partial least squares (PLS), was established with the spectroscopic and hydrocarbon data for pupal age estimations. We identified 37 CHCs with a carbon chain length between 11 and 35 in the pupae of S. peregrina. The results of the OPLS-DA model show a significant separation between different developmental ages of pupae (R2X > 0.928, R2Y > 0.899, Q2 > 0.863). The PLS model had a satisfactory prediction with a good fit between the actual and predicted ages of the pupae (R2 > 0.927, RMSECV < 1.268). The results demonstrate that the variation tendencies of spectroscopy and hydrocarbons were time-dependent, and ATR-FTIR and CHCs may be optimal for the age estimations of pupae of forensically important flies with implications for PMImin estimation in forensic practice.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yakai Feng
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
5
|
Weber A, Hoplight B, Ogilvie R, Muro C, Khandasammy SR, Pérez-Almodóvar L, Sears S, Lednev IK. Innovative Vibrational Spectroscopy Research for Forensic Application. Anal Chem 2023; 95:167-205. [PMID: 36625116 DOI: 10.1021/acs.analchem.2c05094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alexis Weber
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States.,SupreMEtric LLC, 7 University Pl. B210, Rensselaer, New York 12144, United States
| | - Bailey Hoplight
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rhilynn Ogilvie
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Claire Muro
- New York State Police Forensic Investigation Center, Building #30, Campus Access Rd., Albany, New York 12203, United States
| | - Shelby R Khandasammy
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Luis Pérez-Almodóvar
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Samuel Sears
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States.,SupreMEtric LLC, 7 University Pl. B210, Rensselaer, New York 12144, United States
| |
Collapse
|